Hasso-Plattner-Institut25 Jahre HPI
Hasso-Plattner-Institut25 Jahre HPI

Mohamed Esameldin Mohamed Elsaid

"Virtual Machines Live Migration Cost Modeling"

Dynamic resource management is an essential requirement for private and public cloud computing environments. With dynamic resource management, the physical resources assignment to the cloud virtual resources depends on the actual need of the applications or the running services, which enhances the cloud physical resources utilization and reduces the offered services cost. In addition, the virtual resources can be moved across different physical resources in the cloud environment without an obvious impact on the running applications or services production. This means that the availability of the running services and applications in the cloud is independent on the hardware resources including the servers, switches and storage failures. This increases the reliability of using cloud services compared to the classical data-centers environments.

In this thesis we briefly discuss the dynamic resource management topic and then deeply focus on live migration as the definition of the compute resource dynamic management. Live migration is a commonly used and an essential feature in cloud and virtual data-centers environments. Cloud computing load balance, power saving and fault tolerance features are all dependent on live migration to optimize the virtual and physical resources usage. As we will discuss in this thesis, live migration shows many benefits to cloud and virtual data-centers environments, however the cost of live migration can not be ignored. Live migration cost includes the migration time, downtime, network overhead, power consumption increases and CPU overhead.

IT admins run virtual machines live migrations without an idea about the migration cost. So, resources bottlenecks, higher migration cost and migration failures might happen. The first problem that we discuss in this thesis is how to model the cost of the virtual machines live migration. Secondly, we investigate how to make use of machine learning techniques to help the cloud admins getting an estimation of this cost before initiating the migration for one of multiple virtual machines. Also, we discuss the optimal timing for a specific virtual machine before live migration to another server. Finally, we propose practical solutions that can be used by the cloud admins to be integrated with the cloud administration portals to answer the raised research questions above.

Our research methodology to achieve the project objectives is to propose empirical models based on using VMware test-beds with different benchmarks tools. Then we make use of the machine learning techniques to propose a prediction approach for virtual machines live migration cost. Timing optimization for live migration is also proposed in this thesis based on using the cost prediction and data-centers network utilization prediction. Live migration with persistent memory clusters is also discussed at the end of the thesis. The cost prediction and timing optimization techniques proposed in this thesis could be practically integrated with VMware vSphere cluster portal such that the IT admins can now use the cost prediction feature and timing optimization option before proceeding with a virtual machine live migration.

Testing results show that our proposed approach for VMs live migration cost prediction shows acceptable results with less than 20% prediction error and can be easily implemented and integrated with VMware vSphere as an example of a commonly used resource management portal for virtual data-centers and private cloud environments. The results show that using our proposed VMs migration timing optimization technique also could save up to 51% of migration time of the VMs migration time for memory intensive workloads and up to 27% of the migration time for network intensive workloads. This timing optimization technique can be useful for network admins to save migration time with utilizing higher network rate and higher probability of success.

At the end of this thesis, we discuss the persistent memory technology as a new trend in servers memory technology. Persistent memory modes of operation and configurations are discussed in detail to explain how live migration works between servers with different memory configuration set up. Then, we build a VMware cluster with persistent memory inside server and also with DRAM only servers to show the live migration cost difference between the VMs with DRAM only versus the VMs with persistent memory inside.