Hasso-Plattner-InstitutSDG am HPI
Hasso-Plattner-InstitutDSG am HPI

Pejman Najafi

"Leveraging Data Science & Engineering for Advanced Security Operations"

The Security Operations Center (SOC) represents a specialized unit responsible for managing security within enterprises. To aid in its responsibilities, the SOC relies heavily on a Security Information and Event Management (SIEM) system that functions as a centralized repository for all security-related data, providing a comprehensive view of the organization's security posture. Due to the ability to offer such insights, SIEMS are considered indispensable tools facilitating SOC functions, such as monitoring, threat detection, and incident response. Despite advancements in big data architectures and analytics, most SIEMs fall short of keeping pace. Architecturally, they function merely as log search engines, lacking the support for distributed large-scale analytics. Analytically, they rely on rule-based correlation, neglecting the adoption of more advanced data science and machine learning techniques.

This thesis first proposes a blueprint for next-generation SIEM systems that emphasize distributed processing and multi-layered storage to enable data mining at a big data scale. Next, with the architectural support, it introduces two data mining approaches for advanced threat detection as part of SOC operations.

First, a novel graph mining technique that formulates threat detection within the SIEM system as a large-scale graph mining and inference problem, built on the principles of guilt-by-association and exempt-by-reputation. The approach entails the construction of a Heterogeneous Information Network (HIN) that models shared characteristics and associations among entities extracted from SIEM-related events/logs. Thereon, a novel graph-based inference algorithm is used to infer a node's maliciousness score based on its associations with other entities in the HIN. Second, an innovative outlier detection technique that imitates a SOC analyst's reasoning process to find anomalies/outliers. The approach emphasizes explainability and simplicity, achieved by combining the output of simple context-aware univariate submodels that calculate an outlier score for each entry. Both approaches were tested in academic and real-world settings, demonstrating high performance when compared to other algorithms as well as practicality alongside a large enterprise's SIEM system.

This thesis establishes the foundation for next-generation SIEM systems that can enhance today's SOCs and facilitate the transition from human-centric to data-driven security operations.