Hasso-Plattner-InstitutSDG am HPI
Hasso-Plattner-InstitutDSG am HPI

Sören Discher

"Real-Time Rendering Techniques for Massive 3D Point Clouds"

Today, point clouds are among the most important categories of spatial data, as they constitute digital 3D models of the as-is reality that can be created at unprecedented speed and precision. However, their unique properties, i.e., lack of structure, order, or connectivity information, necessitate specialized data structures and algorithms to leverage their full precision. In particular, this holds true for the interactive visualization of point clouds, which requires to balance hardware limitations regarding GPU memory and bandwidth against a naturally high susceptibility to visual artifacts.

This thesis focuses on concepts, techniques, and implementations of robust, scalable, and portable 3D visualization systems for massive point clouds. To that end, a number of rendering, visualization, and interaction techniques are introduced, that extend several basic strategies to decouple rendering efforts and data management: First, a novel visualization technique that facilitates context-aware filtering, highlighting, and interaction within point cloud depictions. Second, hardware-specific optimization techniques that improve rendering performance and image quality in an increasingly diversified hardware landscape. Third, natural and artificial locomotion techniques for nausea-free exploration in the context of state-of-the-art virtual reality devices. Fourth, a framework for web-based rendering that enables collaborative exploration of point clouds across device ecosystems and facilitates the integration into established workflows and software systems.

In cooperation with partners from industry and academia, the practicability and robustness of the presented techniques are showcased via several case studies using representative application scenarios and point cloud data sets. In summary, the work shows that the interactive visualization of point clouds can be implemented by a multi-tier software architecture with a number of domain-independent, generic system components that rely on optimization strategies specific to large point clouds. It demonstrates the feasibility of interactive, scalable point cloud visualization as a key component for distributed IT solutions that operate with spatial digital twins, providing arguments in favor of using point clouds as a universal type of spatial base data usable directly for visualization purposes.