Andreas Meyer

Data Perspective in Business Process Management

Business process management (BPM) is a systematic and structured approach to model, analyze, control, and execute business operations also referred to as business processes that get carried out to achieve business goals. Central to BPM are conceptual models. Most prominently, process models describe which tasks are to be executed by whom utilizing which information to reach a business goal. Process models generally cover the perspectives of control flow, resource, data flow, and information systems.

Execution of business processes leads to the work actually being carried out. Automating them increases the efficiency and is usually supported by process engines. This, though, requires the coverage of control flow, resource assignments, and process data. While the first two perspectives are well supported in current process engines, data handling needs to be implemented and maintained manually. However, model-driven data handling promises to ease implementation, reduces the error-proneness through graphical visualization, and reduces development efforts through code generation.

This thesis addresses the modeling, analysis, and execution of data in business processes and presents a novel approach to execute dataannotated process models entirely model-driven. As a first step and formal grounding for the process execution, a conceptual framework for the integration of processes and data is introduced. This framework is complemented by operational semantics through a Petri net mapping extended with data considerations. Model-driven data execution comprises the handling of complex data dependencies, process data, and data exchange in case of communication between multiple process participants. This thesis introduces concepts from the database domain into BPM to enable the distinction of data operations, to specify relations between data objects of the same as well as different of types, to correlate modeled data nodes as well as received messages to the correct run-time process instances, and to generate messages for interprocess communication. The underlying approach, which is not limited to a particular process description language, has been implemented as proof-of-concept.

Automation of data handling in business processes requires dataannotated and correct process models. Targeting the former, algorithms are introduced to extract information about data nodes, their states, and data dependencies from control information and to annotate the process model accordingly. Usually, not all required information can be extracted from control flow information, since some data manipulations are not specified. This requires further refinement of the process model. Given a set of object life cycles specifying allowed data manipulations, automated refinement of the process model towards containment of all data manipulations is enabled. Process models are an abstraction focusing on specific aspects in detail, e. g., the control flow and the data flow views are often represented through activity-centric and object-centric process models. This thesis introduces algorithms for roundtrip transformations enabling the stakeholder to add information to the process model in the view being most appropriate.

Targeting process model correctness, this thesis introduces the notion of weak conformance that checks for consistency between given object life cycles and the process model such that the process model may only utilize data manipulations specified directly or indirectly in an object life cycle. The notion is computed via soundness checking of a hybrid representation integrating control flow and data flow correctness checking. Making a process model executable, identified violations must be corrected. Therefore, an approach is proposed that identifies for each violation multiple, alternative changes to the process model or the object life cycles.

Utilizing the results of this thesis, business processes can be executed entirely model-driven from the data perspective in addition to the control flow and resource perspectives already supported before. Thereby, the model creation is supported by algorithms partly automating the creation process while model consistency is ensured by data correctness checks.