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ABSTRACT 
We present TrussFormer, an integrated end-to-end system 
that allows users to 3D print large-scale kinetic structures, 
i.e., structures that involve motion and deal with dynamic 
forces. TrussFormer builds on TrussFab, from which it 
inherits the ability to create static large-scale truss structures 
from 3D printed connectors and PET bottles. TrussFormer 
adds movement to these structures by placing linear actuators 
into them: either manually, wrapped in reusable components 
called assets, or by demonstrating the intended movement. 
TrussFormer verifies that the resulting structure is 
mechanically sound and will withstand the dynamic forces 
resulting from the motion. To fabricate the design, 
TrussFormer generates the underlying hinge system that can 
be printed on standard desktop 3D printers.  We demonstrate 
TrussFormer with several example objects, including a 
6-legged walking robot and a 4m-tall animatronics dinosaur 
with 5 degrees of freedom. 

Author Keywords 
Fabrication; 3D printing; variable geometry truss; large scale 
mechanism.  

INTRODUCTION 
Personal fabrication tools [3], such as 3D printers, afford 
rapid prototyping [21] and empower non-experts with the 
ability to fabricate interactive objects [14]. The latter 
includes animated objects, such as kinematic animals [9] or 
actuated paper origami [23], and simple machines [25]. 

More recently, HCI researchers have started to explore how 
to enable non-expert users to fabricate large-scale structures. 
While professional users may have access to large-scale 3D 
printing equipment [16], non-experts are generally limited to 
the use of desktop 3D printers, causing these systems to 
achieve scale by combining 3D print with ready-made 
objects, such as empty plastic bottles [17]. The resulting 

systems also support users in creating structures capable of 
dealing with the substantial forces such structures are subject 
to. TrussFab [17], for example, achieves this by allowing 
users to combine already sturdy primitives and by checking 
stability during editing.  

 
Figure 1: (a) TrussFormer is an end-to-end system that allows 

users to design and 3D print large-scale kinetic truss 
structures that deform and animate. (b) TrussFormer verifies 

that the designed structure can handle the forces resulting 
from its motion, as shown on this animatronics 4m tall T-Rex. 

While large-scale fabrication systems like TrussFab have 
been shown to support a wide range of applications, from 
furniture to tradeshow pavilions, such systems are limited to 
creating static structures.  

In this paper, we present a system that allows users to create 
large kinetic structures, i.e., structures that involve motion 
and deal with dynamic forces, as they occur as part of 
animatronics devices, such as the animated Tyrannosaurus 
Rex, illustrated by Figure 1, and other large-scale machinery. 
TrussFormer embodies the required engineering knowledge 
from creating the appropriate mechanism, verifying its 
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structural soundness, and generating the underlying hinge 
system printable on desktop 3D printers. 

TRUSSFORMER 
TrussFormer helps users to create the shape and design the 
motion of large-scale kinetic structures. It does this by 
incorporating linear actuators into rigid truss structures in a 
way that they move “organically”, i.e., hinge around multiple 
points at the same time. These structures are also known as 
variable geometry trusses [1]. Figure 2 illustrates this on the 
smallest elementary truss, (a) the rigid tetrahedron. (b) We 
swap one of the edges with a linear actuator, (c) resulting in 
a variable geometry truss. The only required change for this 
is to introduce hubs that enable rotation at the nodes. We call 
these hinging hubs. 

 
Figure 2: (a) The static tetrahedron (b-c) is converted into a 

deformable structure by swapping one edge with a linear 
actuator. The only required change is to introduce connectors 

that enable rotation. 

This simple approach to create variable geometry truss 
mechanisms scales well to arbitrary larger structures. Our T-
Rex model from Figure 1 contains five linear actuators and 
thus offers five degrees of freedom (DoF). It can (a) lift or 
lower its neck (1 DoF), (b) turn its head left and right 
(1 DoF), (c) sweep its tail (2 DoF), and (d) open its mouth 
(1 DoF), as shown in Figure 3. 

 
Figure 3: The T-Rex offers 5 degrees of freedom. 

In the following, we demonstrate how TrussFormer allows 
non-expert users to create such structures in six steps. 

Step 1: Creating a static structure 
As shown in Figure 4, this particular model was created by 
first modeling the T-Rex as a static structure in TrussFormer. 

Our editor’s ability to create static structures is based on 
TrussFab [17]: users design the shape of their T-Rex using 
structurally stable primitives (tetrahedra and octahedra).  

 
Figure 4: Modeling the static shape of the T-Rex. Here, the 
user creates the jaws of the T-Rex by attaching tetrahedron 

primitives through the steps (a, b, c). 

Step 2: Adding movement 
To add movement to the static structure, users select the 
demonstrate movement tool and pull the T-Rex head 
downwards, as shown in Figure 5. TrussFormer responds by 
placing an actuator that turns the T-Rex body into a structure 
that organically moves and bends down. Together with the 
Demonstrate movement tool, TrussFormer provides three 
different approaches to animating structures, ranging from 
this (1) automated placement (for novice users), through (2) 
placing elements with predefined motion, called assets, to (3) 
manual placement (as users acquire engineering knowledge). 
We discuss these in section “Adding motion to the structure”.  

 
Figure 5: (a) The user selects the demonstrate movement tool 

and pulls the T-Rex head downwards. (b) TrussFormer 
responds by adding an actuator to the T-Rex body so that it is 

capable of performing this type of motion. At this point the 
system also places 9 hinging hubs to enable this motion 

(marked with blue dots). 

Step 3: Stability check across poses 
During this step, TrussFormer also verifies that the 
mechanism is structurally sound. In the background, 
TrussFormer finds the safe range of expansion and 
contraction of the placed actuator by simulating the 
occurring forces in a range of positions. If there is a pose 
where the forces exceed the pre-determined breaking limits 
or the structure would tip over, TrussFormer sets the limits 
for the actuator so it will not extend beyond them. This check 
prevents users from producing invalid configurations.  

Step 4: Animation 
To animate the structure users open the animation pane in 
the toolbar, as shown in Figure 6. First, they control the 
movement of the structure manually using sliders, to try out 



 

 

the movement. When they find the desired pose, they simply 
add it as a keyframe to the animation timeline. With this 
TrussFormer allows users to orchestrate the movement of all 
actuators using a simple timeline/keyframe editor. In Figure 
6 we program a “feeding” behaviour, where the T-Rex opens 
its mouth while reaching down and waving its tail. 

 
Figure 6: Animating the structure. Users sets the desired pose 
using the sliders in the animation pane and orchestrates the 

movement by placing key-frames on the timeline. 

Step 5: Checking forces during the motion 
Once a movement has been defined, TrussFormer computes 
the dynamic forces. As shown in Figure 7a, the user creates 
an animation that moves the T-Rex body up and down. 
(b) TrussFormer computes the forces while T-Rex’s body 
comes back up quickly after dipping down; the large 
acceleration of the long neck leads to very high inertial 
forces, exceeding the breaking limit of the construction, 
(c) causing the structure to fail at the indicated time point. 
These situations are hard to foresee, because the inertial 
forces can be multiple times higher than the static load in the 
structure. (d) TrussFormer addresses this by automatically 
correcting the animation sequence by either limiting the 
acceleration or the range of the movement, assuring that the 
structure will now withstand the movement. 

 
Figure 7: Verifying the inertial forces: (a-b) The forces are 

increasing with the acceleration of the structure. (c) The 
structure breaks when the direction of the movement changes 

rapidly. (d) TrussFormer resolves this by making the 
movement slower. 

Step 6: Fabrication 
When users are satisfied with their design (structure, 
movement and animation), they click the fabricate button, 
shown in Figure 8a. This invokes (1) TrussFormer’s hinge 
generation algorithm, which analyzes the structure’s motion 
and generates the appropriate 3D printable hinge and hub 
geometries, annotated with imprinted IDs for assembly. In 
the case of the T-Rex, the system exports 42 3D printed hubs, 
consisting of 135 unique hinging pieces. (2) Next, 
TrussFormer exports the created animation patterns as 
Arduino code that users upload to their microcontroller. 
(3) Lastly, it outputs a specification, containing the force, 
speed, and motion range of the actuators, in order to achieve 
the desired animation pattern. Users find these actuators as 
standardized components.  

 
Figure 8: (a) To fabricate our T-Rex model, TrussFormer 
exports: (b) the appropriate 3D printable hinging-hubs, 

(c) and the specifications for the actuators that inform the 
users which one to buy. TrussFormer also exports the 

animation sequence for an Arduino. 

CONTRIBUTION, BENEFITS, AND LIMITATIONS 
Our main contribution is TrussFormer: an end-to-end system 
that enables non-expert users to create large-scale kinetic 
structures, such as the devices used in large-scale 
animatronics.  

TrussFormer helps users in the 3 main steps along the design 
process. (1) It enables users to animate large truss structures 
by adding linear actuators to them. It offers three tools for 
this purpose: manual actuator placement, placement of assets 
performing predefined motion, and creating motion by 
demonstration. (2) TrussFormer validates the design in real 
time against static forces, static forces across all poses, and 
dynamic forces. (3) TrussFormer automatically generates the 
necessary 3D printable hinges for fabricating the structure. 
Its algorithm determines the placement and configuration of 
the hinges and their exact dimensions. 



 

 

To validate our system, we created a series of example 
objects, including a 6-legged walking robot and a 4m-tall 
animatronics dinosaur with five degrees of freedom, 
comprising of 17 static and 25 hinging hubs. 

TrussFormer is subject to some limitations. 
(1) TrussFormer’s simulation relies on the Newton 
Dynamics physics engine [52], which offers only limited 
accuracy for engineering purposes. Higher precision could 
be achieved by replacing Newton Dynamics with a better 
physics engine (e.g., [7]). (2) When deployed, TrussFormer 
should be provided with additional safety features, such as 
the option to use stronger materials and additional safety 
margins in the computation.  

WORKING PRINCIPLE BEHIND TRUSSFORMER’S 
KINETIC STRUCTURES 
Before we discuss how TrussFormer allows users to define 
motion of the structure, we explain where actuators can be 
placed inside the truss structure and how their motion 
propagates. 

A structure created in TrussFormer consists of unit cells, 
which can be tetrahedra or octahedra. Each cell can contain 
one or more linear actuators. When actuated, the actuators 
change the geometry of the cell and thus move the entire 
structure.  

First, as an example, Figure 9 illustrates how inserting an 
actuator affects only its surrounding. (a) One way of thinking 
of the actuated tetrahedron is as a rotary hinge, with a triangle 
face at each side (shaded in gray). (b) Such structures can be 
extended by attaching a rigid structure to each of the two 
faces (here two octahedra). As a result the two structures are 
hinging around each other. Since the motion is localized, this 
type of actuator placement is intuitively graspable.  

 
Figure 9: Attaching rigid primitives to (a) faces that do not 

contain an actuator (b) results in simple structures with only 
localized deformation. This structure acts as a hinge between 

the two octahedra. 

Second, as illustrated by Figure 10, (a) we can produce more 
complex kinetic structures by attaching rigid primitives to 
the faces that contain an actuator (e.g., the one shaded in 
gray). (b) Now, the newly placed primitive will also contain 
this actuator and therefore the result is a structure that moves 
in whole, resulting in more complex behavior. 

 
Figure 10: Attaching a rigid primitive (here an octahedron) to 
a face that contains an actuator results in a larger deforming 

structure. 

The third way to propagate motion is to build structures 
where the cells are interconnected through two or more 
moving faces. Figure 11a shows an octahedron with one 
actuator in it. (b) We attach two tetrahedra to the marked 
faces and place a second octahedron in between them. Since 
the two original connecting faces are moving with respect to 
each other, the two tetrahedra are moving as well, causing 
the second octahedra to deform. The second octahedra 
requires removing one arbitrary edge (here on the top) to 
allow for deformation. (c) Applying this principle users can 
propagate the movement of one actuator through the truss.  

 
Figure 11: The motion caused by one actuator propagates 

throughout the entire truss beam, making it bend. 

ADDING MOTION TO THE STRUCTURE 
TrussFormer offers three ways for users to animate their 
structures: (1) by demonstrating the desired movement, as 
we discussed in our walkthrough, (2) using elements with 
predefined motion, which we call assets, and (3) by placing 
actuators manually.  

The first two strategies are better suited for novice users, 
since they do not require knowledge about the mechanism, 
but rather focus on the shape of the structure and the 
movement they want to achieve. The third option is best 
suited for users with more experience, who have already 
gained a deeper understanding into variable geometry 
trusses. 

1. Automatic actuator placement by demonstration 
As we briefly discussed in the walkthrough section and in 
Figure 5, TrussFormer enables users to create moving 
structures by offering automatic actuator placement. Users 
can focus on only designing the shape of their structure first. 
Then, they invoke the demonstrate movement tool and drag 
the static structure in the direction they want it to move. 
TrussFormer then replaces the edge with an actuator at the 
position which best satisfies the movement.  



 

 

To identify which edge should be replaced with an actuator 
TrussFormer runs an exhaustive search by virtually replacing 
every member with an actuator one by one. At every 
replacement it moves the actuator while measuring if the 
structure moved closer or further to the desired target 
position. Finally, it compares all the results and selects the 
actuator that produced the closest motion. A limitation of this 
simplistic method is that it works by naïve approximation, 
i.e., that it does not guarantee that the desired position will 
be exactly reached. To improve these results, further 
optimization algorithms can be utilized, similarly as 
demonstrated by Coros et al. [9] for planar mechanisms. 

2. Creating kinetic structures based on assets 
Because the resulting motion of variable geometry trusses 
tends to be hard to predict, TrussFormer encapsulates them 
into predefined sub-assemblies, which we call assets. Assets 
connect to the existing geometry through a dedicated triangle 
surface. This results in structures that contain the asset’s 
movement which is localized and thus easy to understand. 

Figure 12 shows a selection of assets. The triangles marked 
in gray are their connectors, i.e., the side that connects to 
existing geometry when the asset is added to a structure. 
TrussFormer offers a basic selection of assets, however, 
users can easily create their own asset library by saving a 
custom asset into an asset folder.  

 
Figure 12: A selection of assets: (a) tetrahedron with 1DoF, 

(b) “robotic leg” asset, (c) hinging tetrahedra, (d) octahedron 
with 1DoF, (e) Stewart platform (6DoF), and (f) double-

octahedron performing “bending” motion. 

Figure 13 illustrates the workflow enabled by assets: a 
simple walking robot with six robotic legs. (a) Users start by 
creating the rigid body of the robot from tetrahedra and 
octahedra blocks. They design it to offer six connector faces, 
i.e., three on each side, (b) where they attach copies of the 
robotic leg asset, shown in Figure 12b. (c) This results in an 
autonomous walking structure. 

 
Figure 13: (a) Users start the design by making the body of the 
walking robot. The predesigned 2DoF “leg” asset is added to 

the side triangles 6 times. (b) The fabricated robot.  

The concept of assets is useful beyond the use of actuators. 
Figure 14 for example, shows a bike we designed around the 
hinge asset that forms the steering column. 

 
Figure 14: This bike’s steering column is based on the hinge 

asset, which is used without the actuator in this example. 

3. Manual actuator placement 
As users gain expertise in creating variable geometry trusses, 
they may prefer to place actuators directly into their 
structures. TrussFormer’s turn edge to actuator tool allows 
users to transform rigid edges into actuators by simply 
clicking on them, as illustrated by Figure 15. 

 
Figure 15: The turn edge to actuator tool allows users to turn 
any edge into an actuator. Here user replaces one edge in the 

T-Rex’s head to make its jaws move. 

We designed this tool deliberately as a “turn existing edge 
into actuator” tool and not as a “place new actuator” tool. 
Normally, placing a new actuator edge into an already rigid 



 

 

structure would not allow for movement, however, by 
turning an existing edge into an actuator, users are essentially 
adding a degree of freedom to the structure. If user  

VERIFYING AND ADAPTING FORCES 
Our system helps users to create the shape and the motion of 
large-scale kinetic structures. To accomplish this, it helps 
users handle the dynamic forces that occur when large 
structures move, such as the T-Rex in Figure 1.  

TrussFormer enables users to (1) constantly monitor the 
forces that occur within the structure at interactive rates. 
Furthermore, it (2) validates the poses of the structure and 
adapts the motion range of the actuators to not damage the 
model and (3) automatically adapts the user-defined 
animation sequence in case it breaks the structure. 

To perform these tasks, TrussFormer takes into account the 
breaking limits of the building materials. The model is 
considered broken when the simulated peak stress value 
exceeds the entered breaking limit of the building material. 
We acquired these values from fracture testing the materials, 
in our case the plastic bottles, as described in TrussFab [17], 
resulting in max.85 kg compression and max.135 kg tension. 
If users decide to use different building materials, we 
recommend testing the forces these elements can withstand 
again. However, we expect users to share this information on 
platforms such as thingiverse.com. 

1. Constantly visualizing forces during animations 
While the user animates the structure, TrussFormer is 
continuously simulating the forces using its built-in physical 
simulation. The forces are visualized as colored edges: red 
indicates compression, blue indicates tension, while the 
saturation signalizes the intensity of the force. 

This allows users not only to preview artifacts that arise from 
their current animation, e.g., the structure wobbling too much 
due to rapid changes from pose to pose; but, more 
importantly, it allows them to preview how the stress is 
distributed in the structure and even foresee breaking points 
when rapidly actuated.  

2. Validating possible poses 
After users have placed an actuator in their structure, 
TrussFormer automatically determines their motion range, 
i.e., how far can it expand without damaging the structure. 

Figure 16 shows that the structure can break due to various 
causes, such as the structure falling over, hitting the ground 
from too high of a movement allowance, or simply exerting 
too much force on another structural element (e.g., an edge).  

To determine the limits of an actuator, TrussFormer 
iteratively increases the expansion until the simulated model 
breaks. TrussFormer then stores the previous valid expansion 
as the maximum length for that actuator. This value is 
then set as the upper bound for the motion in the keyframe 
editor. This way the user is never able to over-actuate them.  

 
Figure 16: In the background, TrussFormer tests each 

actuator to see if its extension leads to invalid position, such as 
the structure tipping over, hitting the ground, or braking any 

structural elements.  

This check is performed for each actuator individually. 
While a full factorial cross check would be necessary to 
detect damaging interaction effects, unfortunately, such an 
exhaustive search does not scale well with the increasing 
number of actuators and would deteriorate the software’s 
interactivity. Therefore, TrussFormer still checks if the 
structure breaks in the later animation step and offers 
automatic correction. 

3. Automatically adapting forces 
After users create an animation sequence using the keyframe 
editor, shown in Figure 17a, TrussFormer continues to 
validate if the structure can withstand user-defined 
accelerations.  

As we previously demonstrated in Figure 7, TrussFormer 
predicts that the T-Rex breaks if its neck is actuated too 
rapidly between a neck-down and a neck-up pose. This 
happened due to the large inertial forces. Since the structure 
is large, its mass is large as well. Forces that act on the 
elements of the structure increase proportionally with the 
acceleration of the movement (𝑭 = 𝑚𝒂). While the mass is 
a constant in the structure, the acceleration is what 
TrussFormer can alter to prevent it from breaking. When the 
model breaks in the simulation, TrussFormer offers two 
options to reduce the occurring inertial forces, as shown in 
Figure 17. 

 
Figure 17: If the user-defined animation breaks the model, 

TrussFormer offers to automatically reduce the speed or the 
motion range. 

TrussFormer offers to fix the animation slopes in two ways: 
(1) by reducing the speed of the motion, i.e., by stretching 
the time of the animation, or (2) by reducing the range of the 
movement. TrussFormer finds the valid actuation profiles by 
simulating the structure in the background and gradually 



 

 

reducing the speed or the extension of the actuation, 
depending on the users’ choice.  

The predicted force values during the simulation are also 
used to inform users about properties of the actuators they 
need to buy to fabricate their structures, i.e., the minimum 
force that actuators must exert and the speed set in the 
animation. This force is defined as the maximum force that 
we measure during the simulation while the structure is 
performing the programmed animation. 

Matching simulated and real forces 
In order to accurately predict the forces within a structure, 
we measured the forces in our T-Rex example and tuned our 
simulation based on these measurements.  

 
 

 

Figure 18: (a) We measured the forces on the bottom front 
edge of the T-Rex (b) using a digital force gauge. (c) The 

measured forces agree with the simulated forces.  

As Figure 18a-b shows, we inserted the external force sensor 
(capacity: 5000 N, error: 0.5%) between two bottles at the 
bottom of the T-Rex structure. We chose this element as it 
bears the largest forces. We then actuated the T-Rex to move 
its entire head up to its highest position and down again to its 
lowest position. Figure 18c shows the measured and the 
simulated forces. The simulation is in agreement with the 
forces we measured. 

Our simulated results hold for structures other than the T-
Rex example, under the condition that the physical 
components remain the same.  

TRUSSFORMER’S HINGE SYSTEM 
A key element behind TrussFormer’s kinetic structures is the 
3D printable hinge system, that enables multiple edges to 
spherically pivot around a node point. While traditional ball 
joints allow for spherical motion, they are limited to connect 
only two edges. To address this shortcoming, TrussFormer 
uses the generic design of a spherical joint mechanism [5], 
shown in Figure 19a, that allows for multiple edges to pivot 
around the same center point, as they were connected via ball 

joint. Figure 19b shows TrussFormer’s rendering of the 
spherical joint mechanism, adopted for 3D printing. 

 
Figure 19: (a) Spherical joint mechanism [5] connecting 5 

edges. (b) TrussFormer’s 3D printable hinge design. 

To achieve the motion that users designed, TrussFormer 
arranges the necessary spherical joints automatically in the 
structure. Traditionally, determining the required mobility of 
the joints is done by evaluating the Grübler–Kutzbach 
mobility criterion. However, this analytical approach is hard 
to fit for spatial (i.e., 3D) parallel mechanisms, and it’s still 
subject to active research [19]. Therefore, instead of 
attempting an analytical solution to this problem, 
TrussFormer tests the motion of the user-defined structure by 
using its built-in physical simulation and arranges the hinges 
heuristically. In the following, we describe TrussFormer’s 
four step hinge placement routine on the example of an 
octahedra with one actuator, shown in Figure 20a.  

Step 1: Placing all possible hinges. As a first step, 
TrussFormer assigns the intermediate link connections of the 
spherical joint mechanism from Figure 19a, between all the 
edges forming a triangle in the structure, as illustrated with 
blue lines in Figure 20b. This provides 2DoF to all the edges, 
as they were connected via ball joints. This already gives a 
mechanically satisfying solution, however it can be further 
optimized. In variable geometry truss structures, most of the 
edges are confined in triangles and larger rigid substructures, 
therefore not all movements are possible. Placing 
unnecessary hinges only adds complexity for assembly and 
reduce mechanical stability.  

 
Figure 20: (a) Octahedron with an actuator, still with rigid 

hubs.  (b) After the first step, intermediate links are assigned 
inside all triangles, creating spherical joints. 

Step 2: Identifying rigid substructures. To identify rigid 
substructures in the structure, TrussFormer now runs the 
physical simulation and moves all the actuators 
simultaneously. It observes the angular movement between 
the edges and if the angle between two or more connected 
edges never changed, TrussFormer considers them as a rigid 



 

 

substructure. Figure 21a shows the rigid substructures 
identified in the octahedron, visualized in distinct colors. The 
triangles containing the actuator are not considered as rigid, 
since it’s internal angles are changing. Figure 21b shows the 
result of this step on the example of the T-Rex. Here, the 
rigid substructures consisting of single triangles are left 
uncolored, for clarity.  

a       b  

Figure 21: TrussFormer identified the rigid substructures (a) 
in the octahedron from Figure 20, and (b) in the T-Rex. 

Step 3: Reducing the excess of hinges. Now that TrussFormer 
knows which parts of the structure are rigid, it can remove 
the unnecessary hinges between the edges which belong to 
the same rigid substructure and don’t move in regards to each 
other. In Figure 22 we show this step on our octahedron 
example. Between the edges forming rigid substructures, the 
intermediate link connections (before blue lines) are reduced 
to rigid connections (black lines). Rigid substructures will 
still rotate with respect to each other. At this stage, the final 
hinge chain is already found for the octahedron example and 
the resulting 3D print is shown in Figure 22b. 

 
Figure 22: (a) The intermediate hinge connections are reduced 

to rigid connections where rigid substructures are identified 
(black lines). (b) The fabricated hinging hub of the marked 

node of the octahedron. 

Step 4: Resolving impossible connections. At this point, 
TrussFormer has already assigned an optimized valid hinge 
configuration, however, not all the connections might be 
physically possible to assemble. TrussFormer’s hinge design 
have the limitation that it only supports one-on-one hinge 
connections, as shown in Figure 19b. Three way connections 
are not possible, i.e., three parts cannot physically hinge 
around the same axis.  

However, after Step 3, there might be hubs violating this 
condition, e.g., where three hinges are meeting at the same 
axis. We demonstrate this case in Figure 23 on the example 
of the double-octahedra structure with one actuator, similar 

to the one found in the body of the T-rex. In Figure 23b we 
highlight the hub where three-way hinge connections are 
present after performing Step 3. Fortunately, these 
connections are redundant in TrussFormer’s kinetic 
structures, and they can be resolved by eliminating some of 
the hinges, while still maintaining the hub’s structural 
integrity, i.e., all the edges remain interconnected via 
continuous hinge chain.  

 
Figure 23: (a) Double-octahedral structure, where (b) violating 
three-way hinge connections appear. (c-d) TrussFormer finds 

the valid configurations by heuristic elimination and (d) 
chooses the structurally more stable closed chain. 

TrussFormer resolves violating connections using a 
backtracking algorithm that removes connections 
heuristically. After each removed connection, it checks the 
validity of the resulting hinge configuration for two 
constraints: (1) all edges around the node are still 
interconnected directly or indirectly with each other, and (2) 
no more than two hinges are connected at each axis. If these 
constraints are satisfied, a valid hinge configuration was 
found. The algorithm continues until it finds all valid 
configurations. If available, TrussFormer will select the 
configuration with closed hinge chain (Figure 23d) over open 
chain (Figure 23c), for stability reasons. The fabricated hinge 
for this example was shown earlier in Figure 8b-c.    

Generating the hinge geometries for 3D printing  
After determining where the hinges should be placed in the 
structure, TrussFormer has all the necessary information to 
export the 3D printable geometries in the form of 
OpenSCAD [51] files. These files contain the information 
about the angle and connector lengths of the hinging pieces, 
as well as their imprinted IDs (as visible in Figure 23a). 
Users assemble the hinging hubs by matching the 
corresponding IDs. These IDs also contain the information 
about the placement of the actual hub within the structure, 
the IDs of the neighboring hubs, and the bottle type to be 
inserted.  



 

 

RELATED WORK 
TrussFormer builds on previous efforts in animatronics, 
robotics, software tools for creating mechanisms in HCI and 
graphics, and creating variable geometry truss mechanisms. 

Software tools for Animatronics 
Many HCI researchers have built software tools to empower 
users to animate robots [20, 25]. This is especially 
challenging when the users are novices and the intended 
results are expressive movements, such as imitating animal 
(organic) movements, i.e., animatronics [10, 28].  

Animatronics interfaces follow several designs, from manual 
control [20] to puppeteering using skeletal tracking [27].  
Marti et al. designed an early example of an animatronics 
software tool for a small (puppet sized) phone call handling 
agent, demonstrating two methods: manual control (user 
directly controls each single actuator using one GUI fader) 
and programming motion patterns using a sequencer [20]. 
Later work integrated robotics into keyframe editors, as for 
3D animation [43] or video editing [44].  

Previous tools suffice for animating small robots because 
actuating these robots (typically via small servo motors) does 
not involve moving large loads. With smaller robots, 
software tools do not have to simulate the adversarial effects 
of dynamics, e.g., inertia and resonance. However, when 
animating large animatronics, such as our T-Rex (Figure 1), 
these forces affect not only the stability of the structure but 
also the desired animation. 

Software tools for designing mechanisms and dealing 
with forces 
TrussFormer draws from work on systems that assist users 
with creating mechanisms that involve motion or forces. 

Algorithmic tools can help users create moving mechanisms. 
For example, kinematic synthesis of mechanisms [34], or 
generation of personalized walking toys from a library of 
predefined template mechanisms [2]. These can be 
embedded in design support systems, for example, 
generating moving toys from motion input [42], or 
synthetized planar kinematic mechanisms from sketch-based 
motion input [9].  

Several software tools directly help the manual design of 
linkage-based mechanisms, such as LinkageDesigner [48] 
and Mechanism Perfboard [15]. These tools sometimes 
include physical simulation of simple mechanisms (e.g., 
hinges); examples include Crayon Physics [50] and freeCAD 
[49].  

Researchers in the domain of personal fabrication have 
started to investigate the effects of dynamic forces in the 
resulting models, such as balancing rotating objects [22], 
interactively designing model airplanes [39], and 
approximating the elastic behavior of 3D printed 
materials [7]. 

TrussFormer extends these approaches by using physical 
simulation interactively in its editor. This combination is 

necessary to provide an editor that embodies the domain 
knowledge needed to produce large scale animated truss 
structures.  

Programming robotic manipulators 
Programming robotic manipulators is a similar task to 
creating animation patterns for TrussFormer’s mechanisms. 
The manufacturers of industrial robots usually provide their 
proprietary software packages for expert users, like 
ABB RobotStudio [45] or KUKA.Sim [46]. Recently, also 
visual block-based interfaces become popular for non-expert 
users, like KUKA|prc [47] and CoBlox [40]. These software 
tools provide advanced programming capabilities, however 
they still lack real time physical simulation to simulate forces 
during the motion. 

Variable geometry truss mechanisms  
TrussFormer’s mechanisms are based on variable geometry 
trusses (VGT) [1, 24, 31]. An example of a VGT is the 
Stewart Platform [33], a common mechanism found in 
haptics/HCI. A Stewart platform uses actuators in every 
member to enable 6 DoF motion while maintaining the 
stability of a truss, crucial for scenarios that involve large 
inertial forces.   

VGTs have been used extensively in robotics. Tetrobot 
[11, 12] is built by chaining the tetrahedron edges with linear 
actuators, which unite at a vertex in a spherical joint. The 
design and mechanics behind this type of spherical joints 
have been extensively analyzed [30, 32]. Tetrobot was 
designed to enable robots to reconfigure into different usages 
by reusing the same basic primitives. Researchers and 
engineers have explored variations of this VGT design in 
different contexts, for example: space applications [1], 
reconfigurable robotic manipulators [1, 11, 36], and shape 
morphing trusses [30].  

Other researchers introduced design variations in this basic 
cell, allowing the resulting structure to afford new qualities. 
For instance, the Spiral Zipper [8] is an extendable edge, 
based on extending a cylinder that allows for extreme 
expansion ratios (e.g., 14:1). Similarly, Pneumatic Reel 
Actuator [13] is based on a mechanism that extrudes and 
retracts a plastic (tape-like) tubing, to act as an actuator. The 
mechanism is designed to be lightweight and low-cost ($4 
USD) while being limited in its robustness. 

TrussFormer takes inspiration from VGTs and builds on the 
conceptual design of Tetrobot. To this work, TrussFormer 
contributes a spherical joint design that is automatically 
generated based on the designed truss geometry. 

IMPLEMENTATION 
To help readers replicate our results, we now describe the 
implementation of the main components of the TrussFormer 
software system and the hardware we used to actuate our 
prototypes.  

Software system 
We extend the TrussFab editor [5], which provides the core 
functionality to create, save, load, and export static 



 

 

structures. TrussFormer further allows users to add 
movement and animate these structures. Like TrussFab, 
TrussFormer is also implemented as a plugin for the 3D 
modelling software SketchUp [53]. The native programming 
language for SketchUp plugins is Ruby, which most of the 
features that we described throughout the paper, such as the 
hinge placement algorithm, are written in.  

To simulate the movement and the force distribution in the 
3D model, we use the physical simulation engine MSPhysics 
[35], a Ruby wrapper for the C++ physics library Newton 
Dynamics [52]. To achieve interactive performance, the only 
simulated components are the hubs, the edges are just 
animated on the scene. The hubs contain all the necessary 
information, such as weight, breaking force, and the stiffness 
determining how much hubs can move in relation to their 
neighbors.  

User interface elements (e.g., the control or the animation 
pane) are displayed in a SketchUp-integrated Web Browser 
View. We implemented the UI in HTML and JavaScript to 
take advantage of UI frameworks such as React [53]. 

To generate the 3D printable hinge, we use the parametric 
3D modeling tool OpenSCAD [51]. When users export their 
kinetic structure, TrussFormer determines the hinges and 
static hubs and calls the pre-defined OpenSCAD scripts with 
the relevant parameters (e.g., angle, connection type, or 
length of the connection). These scripts describe the resulting 
parametrized 3D model, which are rendered in OpenSCAD 
as .stl files. 

Control system and actuators 
Figure 24 shows the hardware we use to actuate our T-Rex 
example. We use pneumatic actuators with interfaced with 
proportional valves (Festo VPPE and MPYE series) that are 
controlled by an Arduino Nano. The pneumatic cylinders 
have diameters from 25 to 35 mm and produce forces 
between 390 N and 770 N. We use an Airpress HL 360 
compressor that can provide up to 8 bar of pressure.  

 
Figure 24: Hardware setup for controlling the T-Rex, with 
Arduino, electric pressure control valves, and compressor.   

Our spider example in Figure 13 uses electric linear actuators 
similar to those found in garage doors. These actuators have 
a motion range of 45 cm and move rather slowly: 0.03 m/s 
compared to the pneumatic actuator speed of 20 m/s.  

Building materials 
For creating our models we used refillable soda bottles and 
3D printed the hubs on an Ultimaker 3 3D printer using PLA 
material. To increase stability we set 3mm wall thickens for 
our hubs.  While the 3D printing process is rather time 
consuming (5-8 hours/hub) the assembly of the hubs is quite 
fast (10-15min/hub). The overall structure is assembled in 
reasonable short time; our T-Rex took approximately 1-2 
hours for 3 person. 

We use plastic bottles as building material as they are 
ecologically friendly and commonly available all around the 
world. However, TrussFormer also supports any other type 
of building materials. Users only need to create and copy the 
3D models of their material primitives into TrussFormer’s 
material library folder.  

To create more realistic looking animatronic creatures, users 
can also cover the structure with stretchable textile or other 
materials and attach smaller features (e.g. ears, fingers, etc) 
using 3D printing or other fabrication techniques. 

CONCLUSIONS 
We presented TrussFormer, an end-to-end system that 
enables novice users to design and build large animated 
structures. Such structures are usually a privilege of industry 
such as theme parks. TrussFormer encapsulates domain 
knowledge about the occurring dynamic forces so that even 
novice users can build such animated structures. 

We showed how TrussFormer enables users to add motion to 
static structures in three ways, including simply pulling on 
the virtual model and letting the system find the placement 
of an actuator to enable this motion. Furthermore, we showed 
how TrussFormer finds valid motion and force ranges for 
actuators to realize user-defined animations. TrussFormer 
detects and automatically suggests corrections for 
animations that would break the simulated structure, thereby 
ensuring that the physical structure will function as desired. 
As a last step, TrussFormer generates all connectors and 
hinges that users print on their desktop 3D printer and 
exports the actuator specifications.  

In the future, we plan to investigate how to conserve energy 
by incorporating springs and dampers into our system and 
taking advantage of resonant frequencies.  
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