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Our application: brain tumor diagnostics and treatment
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Tumor diagnostics – common workflow

Step 0: Indication for diagnostics (screening, symptoms, etc.)

Step 1: Imaging

Step 2: Biopsy

Step 3: Surgery + immediate frozen section

Step 4: Histopathology
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Tumor diagnostics – common workflow

Step 0: Indication for diagnostics (screening, symptoms, etc.)
Unilateral loss of vision

03.02.23 HPI5



Tumor diagnostics – common workflow

Step 0: Indication for diagnostics (screening, symptoms, etc.)
Unilateral loss of vision
Step 1: Imaging
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Tumor diagnostics – common workflow

Step 0: Indication for diagnostics (screening, symptoms, etc.)
Unilateral loss of vision
Step 1: Imaging
Lesion at the optic nerve
Step 2: Biopsy
Difficult to reach location, risk of permanent damage to optic nerve
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Problem 1: we don‘t know what we‘re looking at
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Problem 2: no fine-needle biopsies
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Problem 2: no fine-needle biopsies
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We can‘t reach the tumor directly, but…
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What can we do with CSF?

1. Cytology (stain, identify & count cells)
2. Proteomics
3. Metabolomics
4. Cell-free DNA analysis
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We can‘t reach the tumor directly, but…
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• Very fast (initial results within minutes)
• Read length can be hundreds of kb
• Produces reads sequentially
• Not very accurate
• Can detect DNA modifications

Nanopore sequencing
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• Very fast (initial results within minutes)
• Read length can be hundreds of kb
• Produces reads sequentially
• Not very accurate
• Can detect DNA modifications

Nanopore sequencing
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Good:
• We can process while we sequence
• We can stop sequencing once we have

enough data
• Read length means we can distinguish

cellular/cell-free DNA
Bad:
• Few training data (but we can use

microarrays)
• Very shallow coverage
• Mutation calling is hard



• Of the 450,000 sites in our microarray
training data, as little as 1,000 are covered

So what‘s shallow?
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• Of the 450,000 sites in our microarray
training data, as little as 1,000 are covered

So what‘s shallow?
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• Of the 450,000 sites in our microarray
training data, as little as 1,000 are covered

So what‘s shallow?
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• Predictor missingness
• Relatively few training samples (~8000)
• n << p
• Many classes (~180)
• Severe class imbalance

Main problems with our project

03.02.23 HPI21



Building blocks for n << p; predictor missingness
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Bootstrap 
aggregation Embeddings Batch 

normalization

Feature 
encoding / 
Imputation

Training set
engineering

To prevent
overfitting

Reduces number of
predictors

Ideally helps to
minimize
differences
between predictor
sets

Keeps activations
in deep neural
networks constant
when input
activation varies

What to do with
missing values? 
Mean? 0.5?

Could make
predictor
missingness
informative

Reduction of
training set
features to
observed features

Needs repeated
training



Our journey through algorithms, part I: baseline
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Bootstrap 
aggregation

• Random forest: ~ 85% accuracy on tissue
samples



Our journey through algorithms, part II: multi-step

• Multi-step model
• Only uses CpGs from the sample to be

classified
• Joint embedding of sample and training set; 

selection of most similar classes
à retraining for every sample

• Second step: random forest classifier

è Accuracy on tissue samples: > 90% (Top1)
è with < 1000 CpGs: > 60%
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Training set
engineering

Embeddings

Bootstrap 
aggregation

Dongsheng
Yuan



Our journey through algorithms, part III: train once

• Multilayer Perceptron
• Full training set with random feature selection

each epoch
• Data encoded as: 

methylated(1)/unmethylated(-1)/missing(0)
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Short reminder: neural networks and encoding
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Short reminder: neural networks and encoding
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Short reminder: neural networks and encoding
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Short reminder: neural networks and encoding
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Our journey through algorithms, part III: train once

• Multilayer Perceptron
• Full training set with random feature selection

each epoch
• Data encoded as: 

methylated(1)/unmethylated(-1)/missing(0)
• Batch normalization to harmonize weights

with different predictor numbers

è Accuracy in tissue with >99% missing CpGs: > 
80% (Top1)
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Our journey through algorithms, part IV: the KISS 
principle

• Once initial results are in, hyperparameters
should be tuned

• In our case, the network kept suggesting fewer
layers

• And fewer layers…
• And fewer layers…
è Our newest model: linear regression…
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Our journey through algorithms, part IV: the KISS 
principle

• Once initial results are in, hyperparameters
should be tuned

• In our case, the network kept suggesting fewer
layers

• And fewer layers…
• And fewer layers…
è Our newest model: linear regression…
è Accuracy: > 90%
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What went wrong?

1. When we took over the project from collaborators, they were already using RFs
2. We tried to improve the solution, rather than working from the ground up
3. Either way, we probably wouldn‘t have tried linear regression – the problem

looked too complicated

Beware the deep learning trap: If there‘s an easy solution, complex machine learning
models will often give you reasonably good results. Starting with complex models can
leave you stuck with overcomplicated pipelines.
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Remaining issues: liquid biopsies

• Liquid biopsies generally contain less tumor DNA than
solid tumor biopsies

• The proportion is dependent on size, proliferation, and 
apoptosis of the tumor

è Tuning the sensitivity of the tumor based on imaging

… if we manage to get access to enough samples for which we
have both
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Translating multi-modal data
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Autoencoder Foo Wei 
Ten
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Translating multi-modal data
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Autoencoder

e.g. gene expression

encoder decoder



Translating multi-modal data
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Autoencoder

e.g. gene expression

Metadata, e.g. tumor type



Translating multi-modal data
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Autoencoder

e.g. gene expression

Metadata, e.g. tumor type



Translating multi-modal data

03.02.23 HPI39

Gene expression

Chromatin accessibility

è Similar to a multi-layered
non-linear consensus NMF

è Can be used similarly: 
decoder layers capture
compentents, e.g. gene sets



Translating multi-modal data
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Summary

1. Low amounts of training data and high missingness don‘t necessarily doom a ML 
project
• If redundancy is high (DNA methylation) or there is a constant structure (medical

imaging)
2. Start simple*
3. Real-world data are noisy, incomplete, and hard to get à if possible, try to use

methods where samples don‘t have to match
4. When planning a ML project, ~80% of the time is used for data curation even if the

data exist already

* Starting complex can give you an idea whether there is something in the data
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