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Figure 1: Left: Dashboard accessed from a tablet computer, which summarizes project specific performance indicators (metrics) and links
them to software maps. Right: Software map with code metrics mapped to ground area, height, and color, rendered in real-time in the browser.

Abstract

Software maps — linking rectangular 3D-Treemaps, software sys-
tem structure, and performance indicators — are commonly used
to support informed decision making in software-engineering pro-
cesses. A key aspect for this decision making is that software maps
provide the structural context required for correct interpretation of
these performance indicators. In parallel, source code repositories
and collaboration platforms are an integral part of today’s software-
engineering tool set, but cannot properly incorporate software maps
since implementations are only available as stand-alone applica-
tions. Hence, software maps are ’disconnected’ from the main body
of this tool set, rendering their use and provisioning overly compli-
cated, which is one of the main reasons against regular use. We
thus present a web-based rendering system for software maps that
achieves both fast client-side page load time and interactive frame
rates even with large software maps. We significantly reduce page
load time by efficiently encoding hierarchy and geometry data for
the net transport. Apart from that, appropriate interaction, layout-
ing, and labeling techniques as well as common image enhance-
ments aid evaluation of project-related quality aspects. Metrics pro-
visioning can further be implemented by predefined attribute map-
pings to simplify communication of project specific quality aspects.
The system is integrated into dashboards to demonstrate how our
web-based approach makes software maps more accessible to many
different stakeholders in software-engineering projects.

CR Categories: 1.3.7 [Computer Graphics]: Three-Dimensional
Graphics and Realism—Virtual Reality D.2.2 [Software Engineer-
ing]: Design Tools and Techniques—Computer-aided software en-
gineering; D.2.7 [Software Engineering]: Distribution, Mainte-
nance, and Enhancement—Documentation;

Keywords:  3D-Treemaps, Software Visualization, Computer
Aided Analysis, Decision Making, Web Integration, WebGL

1 Introduction

For a sustainable software engineering process in large software
projects, a number of prerequisites exist. These include good re-
source management, collaboration, code management, prioritiza-
tion, reviews, and decision making as well as architecture- and fea-
ture planning. Up-to-date knowledge of the software project, its
processes, and, in particular, its source code are further key ele-
ments [Eisenbarth et al. 2003]. It is imperative to use additional
services and platforms to support and ease this collaborative pro-
cess [Triimper and Dollner 2012]. In fact, most available collabo-
ration platforms provide visualization for various aspects related to
development, e.g., branching, summary of development activities,
status related charts, source code diffs and many more.

With increasing projects size, however, management overhead in-
creases and an additional issue arises: Companies struggle with es-
sential information gaps between management and development,
which hinder informed decision making [Poole 2003]. Such gaps
include clearly communicating quality standards (management to
development), and, vice versa, reasoning why a specific amount
of resources is required for a given development task. Visualizing
these facts using traditional plain lists and charts is hard because of
the exploratory nature of the underlying questions and problems: It
enforces an iterative refinement of and re-focusing within a mas-
sive amount of facts. Fortunately, powerful various visualization
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Figure 2: Exemplary development cycle within larger software en-
gineering processes. Software maps as integrated part of collabo-
ration platforms, which the development process relies on, aid as-
sessment and verification.

techniques are available to help bridge this gap and to provide ad-
ditional up-to-date information, which jointly aid exploring code
quality, estimating benefits, and decisions making. Among others,
code cities [Wettel and Lanza 2007] or software maps [Bohnet and
Déllner 2011] are frequently used in this context. We here focus on
software maps, which are 3D-Treemaps that provide a hierarchy-
preserving layout and spatial context for code artifacts (code units)
and metrics. Each treemap item represents a code unit (at vary-
ing abstraction levels) with at least three visual variables (height,
ground area, color) that metrics can be mapped to.

While stand-alone applications for software maps, which allow ar-
bitrary metric mappings, exist, their daily use in software engineer-
ing projects is significantly limited by several circumstances: First
and foremost, being stand-alone applications, they are disconnected
from the remainder of the preexistent tool set, so they impose an
unnecessary usage overhead (e.g., context switches, data synchro-
nization) on its users. Second, provisioning such application as
per-computer stand-alone installation is complex, and, especially in
industry contexts, requires the application to comply to company-
specific security regulations etc. Third, to enable any analysis bene-
fits, specific knowledge not only about metrics is required, but also
about how to express quality aspects as metric mappings [Kitchen-
ham and Pfleeger 1996], which currently have to be configured per
installation. This can (partially) be alleviated by providing man-
agers and developers with (initial) training that focus on the com-
pany’s individual engineering process(es), its requirements, and re-
lated quality issues [Broy et al. 2006; Deissenboeck et al. 2009].
Last, stand-alone applications cannot be integrated in web mashups,
which further limits their use.

To overcome these drawbacks, we suggest integrating software-
map related use cases into the (web-based) software engineering
tool set, including tools such as collaboration platforms, frame-
works, or web-interfaces of source code repositories (Figure 2).
Hence, we connect software maps to existing collaboration plat-
forms by a web-based implementation that also centralizes metrics
configuration. Our system delivers fast loading times and interac-
tive frame rates to ensure that the visualization does not interfere
with the exploratory nature of the targeted use cases. We achieve
this by (1) introducing a method for efficient data provisioning, us-
ing JSON and Typed Arrays, for interactive visualization of soft-
ware maps and 3D-Treemaps in general, including color encoding,
normal generation, and geometry retrieval; (2) an image-based ren-
dering pipeline implemented in JavaScript and WebGL that uses
stylization techniques specialized on the visual exploration of code
metrics through software maps, (3) an importance-based LOD-
filtering for labeling, and (4) a set of interaction techniques specifi-

cally combined to support the given use case. The system is acces-
sible through WebGL-enabled [Marrin 2013] browsers, available
on stationary and various types of mobile computers (e.g., tablets,
notebooks, light desktop or office computers, etc. — Figure 1). We
demonstrate that our system scales up to real-world data, and eval-
uate its performance (provisioning, rendering) for integrated con-
sumer graphics hardware.

2 Related Work

Visualization of data is in many aspects of high importance, pro-
viding meaningful insights for diverse groups of information con-
sumers [Langelier et al. 2005; Biirger and Hauser 2007]. As such,
attributed 3D-Treemaps were suggested for software analysis, in
the form of Code Cities [Wettel and Lanza 2007] or more recently
as software maps [Bohnet and Déllner 2011]. The later focus-
ing on aiding software engineering processes by monitoring certain
source code aspects through metrics. Similarly, integrating soft-
ware maps with the common software-engineering tool set was sug-
gested [Triimper and Déllner 2012], but focuses on using software
maps as additional front-end for recommendation systems.

The generation of treemap layouts, and thereby the provision of
a spatial context to source code artifacts, various algorithms have
emerged (e.g., [Johnson and Shneiderman 1991]) for which an ex-
cellent resources for further exploration is available [Schulz 2011].
For software maps we build on the strip treemap algorithm [Beder-
son et al. 2002] that among others, was recently evaluated and im-
proved [Tak and Cockburn 2012]. While designing our web-based
visualization and its data encoding, we evaluated state-of-the-art
technologies [Behr et al. 2010; Behr et al. 2012], but neither fitted
our needs for exclusively rendering software maps; E.g., the addi-
tional latency introduced by requiring multiple requests to access
distributed precision data over multiple textures seems inappropri-
ate, and requires further investigation for various use cases. Sim-
ilarly, progressive (or LOD based) data provisioning [Alliez and
Desbrun 2001] is impractical, unless it is desired to provide geome-
try data per hierarchy level and thereby allowing stepwise software
map refinement.

Concerning efficient rendering of software maps or 3D-Treemaps
in general, a technique utilizing geometry shaders was recently pro-
posed [Trapp et al. 2013]. In WebGL, however, geometry shaders
are not yet available, so we use basic rendering via attribute arrays.
The suggested techniques as unsharp masking [Luft et al. 2006],
edge-enhancement [Nienhaus and Dollner 2003], or use of camera
lights, are directly integrated into our deferred rendering. In addi-
tion, screen space ambient occlusion techniques, e.g., [McGuire
2010], increase the perceived software maps plasticity, aiding per-
ception through better item and module differentiation and depth
cues. Due to the limitations of WebGL, several tricks for data en-
coding into attribute arrays or G-Buffers (e.g., for texture encoding
ids and depths), similar to [Jung et al. 2013], are necessary.

The problem space of labeling 3D-Treemaps is similar to the la-
beling of geovirtual 3D environments, hence, several works can be
found. We especially relate to the labeling approach introduced
by [Hagedorn et al. 2007]. Labeling of empty spaces (i.e., due
to padding) between modules as in [Maass and Déllner 2007] is
not used, since a meaningful orientation and unambiguous place-
ment of labels seems not possible. Though not implemented, the
layouting by [Lii and Fogarty 2008] seems promising for better la-
bel placement in software maps. Recently suggested approaches to
overcome occlusion of labels in 3D navigation maps [Vaaraniemi
et al. 2012], might similarly enhance perceptibility of labels in 3D-
Treemaps.
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Figure 3: The user interface of our web front-end, composed using
HTMLS5 and CSS, comprises the following Ul elements: The soft-
ware map visualization itself as centerpiece offers a large area for
exploration, a color legend for providing a context to the software-
map’s color mapping, and in the upper right the selection of prede-
fined perspectives. For each of the three metrics some of the most
important code units are listed below the visualization, enabling
batch-highlighting individual code units in the software map.

3 Concept and Design

For our system, two instruments build orthogonal entry points for
any subsequent exploratory analysis: (1) perspectives and (2) dash-
boards, which are outlined next.

1. A perspective is a named, predefined set of metric mappings
for software maps, by which for each of the three available vi-
sual attributes of the treemap items (resp. code units) — color,
height, and ground area — a metric can be selected. Such
perspectives are defined in the context of a software project
and allow for analyzing different aspects of the code base.
Additionally, time or revision parameters, labeling configura-
tion, and further parameters are specified. Other perspectives
can be selected at run-time, triggering a reconfiguration of the
software map.

Since each perspective focuses on a specific set of metrics
(or code aspect), expert users (i.e., lead developers and archi-
tects) typically reconfigure the software map multiple times
(by selecting other perspectives) during an exploration ses-
sion to correlate those aspects. Expert analysis with software
maps is a highly iterative and exploratory process that is ex-
ecuted for building up and verifying hypotheses by examin-
ing orthogonal aspects of the code base [Triimper and Déllner
2012]. Hence, fast perspective switching is an essential non-
functional requirement for any system implementing software
maps to ensure good user experience.

2. A dashboard provides an overview of best or worst perform-
ers for a number of preselected metrics. Our implementation
displays (1) lists of important code units, whose importance is
given by predefined metrics (or perspectives) that are relevant
to the individual software engineering process, and (2) up-
to-date snapshots of all available perspectives using a default
camera position. The snapshots enable direct jumps to related
perspectives for further exploration. Further, (3) circular sta-
tus indicators (inspired by a bootstrap template [creativeLabs
2013]) give additional visual cues for specific metrics and fur-

ther improve fast inspection and software map selection.

In contrast to perspectives, dashboards typically function as
entry point for managers to gain quick overview of key per-
formance indicators (KPIs), and occasionally lead to in-depth
analysis of those aspects by means of individual perspectives.

In this paper, we only briefly outline the usage of entry point 2,
dashboards, and focus on the use of entry point 1, perspectives.
Hence, users begin their interactive exploration session by select-
ing a perspective. Subsequently, the software map is updated by
handling layout changes, rendering the 3D-Treemap, coloring and
labeling relevant code units.

A perspective is generally defined by selecting three metrics from
a multitude of code metrics. Here, metrics can be either common
code metrics (e.g., lines of code) or project-specific metrics (e.g.,
aggregated metrics or style guide specifics). When a metric is as-
signed to one of the treemap attributes, specific mapping parameters
are configured. For color mapping either a discrete or continuous
color scheme is required. Height mapping is accomplished through
a scale function with a predefined maximum height. Area mapping,
is also specified by an arbitrary scale function, controlling the code
units relative base area. In addition to defining the mapping, various
kinds of filters can be applied, e.g., for viewing all items touched
by a certain author or team or all revisions referencing a certain
bug. All in all, defining perspectives is an expert task that requires
a good understanding of available metrics and the respective aspect
of the code base that is to be modeled by such perspective.

Once a perspective is defined and applied, we continue by ren-
dering the software map and handling user interaction with it.
For our first prototypes we evaluated several WebGL Engines:
ThreelS, Scenel]S and PhiloGL. ThreeJS and ScenelJS would’ve
needed much customization, and matching our performance needs
in their rendering pipeline would’ve caused similar effort as our
custom implementation. Due to ScenelS’s scene graph and draw
list implementation, no interactive frame rates where achieved for
rather small software maps. Finally, PhiloGL, as a easily extensible,
fast, and lightweight engine, seems to fit best for this task.

The presented system, however, utilizes no third parties for ren-
dering nor for generalized scene graph management. The WebGL
canvas is integrated into HTML and also supports alpha blending,
therefore allowing to place other, arbitrary HTML elements before
or behind the visualization. This is used to display a color legend
and text labels for code units without the need to render them within
the software map’s virtual 3D space.

In the following sections we focus on server-side data provision-
ing, through efficient geometry and hierarchy data encoding, for
browser based rendering. For this OpenCTM [Geelnard 2013] was
evaluated as a carrier format, but, especially for our data, a more
efficient data encoding is obtainable. The visualization process is
presented in more detail, G-Buffers encoding schemes are provided,
and adjustments made to treemap layouting and labeling, as well as
interaction specifics are described.

4 Software-Map Data Provisioning

A software map, as a representation of a tree, consists of modules
as nodes and items as leafs, both represented as boxes. Modules
represent directories or similar project structuring entities. Items
represent individual code units. The height of an item is defined by
the relative value of its assigned metric value whereas the height of
a module is constant. The generic terms module and item are pre-
ferred to avoid confusion with project specific language and struc-
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Figure 4: This section shows various features of our visualization
within the browser. In the upper part, importance-based, sepa-
rate labeling of code units and modules is applied. In the center,
a tooltip containing detailed information like exact metric values
and differences, metric names, and the code units path or name.
In addition, highlighting of user picked code units, visible as green
code units both either item tables and visualization, is shown. In
this case, the android project is shown, for which attributes like,
e.g., McCabe’s complexity, real lines of code, coverage, or num-
ber of developers can be visualized. For example, the ActivityMan-
agerService stands with its high nesting level and RLoc count. It
turns out that this item is regularly manipulated by many different
developers and thus, could be considered as a potential quality risk.

ture conventions. Software projects based on ABAP! for exam-
ple, have no file structure but are based on tables and development
objects or classes. Most C++ projects in contrast, are file based
projects with classes; commonly one principle class per header and
source pair.

For the representation of the software map two data structures are
used: a JSON-based [JSON 2006] hierarchy and binary geometry
data represented by typed arrays [Khronos Group 2012]. Both are
transmitted via AJAX requests in a compressed way (HTTP com-
pression, i.e., GZIP [GZIP 1996]). This reduces the transmitted
data by up to 65% (Table 1).

4.1 Hierarchy Data

The hierarchy is a JSON structure, where the keys are item ids and
the values arrays with information about these items (Figure 5). The
first entry is the box geometry index; A pointer into the render ge-
ometry that is used for highlighting (i.e., to look up where in the
color array the color for this specific item is stored so it can be ex-
changed for the highlight color) and interactive exploration. The
third entry is the item name. To assemble the full item path (e.g.,
for the tooltip), the second entry, parent id, is used to recursively
query the hierarchy and concatenate the item/module names.

Entries 4 to 9 are only present for items. They are the metric values
and differences (between the last and current metric set) for the
three mapping dimensions and are shown in tooltips (Figure 4).

The complete hierarchy can become quite big, especially item/mod-
ule names take up much space (Table 1). To be able to show some-
thing quickly, we transmit the hierarchy in two parts. The first one
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is sent together with the so-called report. The report contains meta
information like project name, number of items, authors, revisions,
the name of the perspective, metric names and explanations, and
the ids of all labeled items and modules. The hierarchy part of the
report contains information about the n (i.e., 20) top items per met-
ric and all labeled items and modules. The second part contains the
whole hierarchy, the already transmitted items excluded. Once re-
port and geometry are loaded, top item tables (Figure 3) and labels
on the software map can be displayed.

4.2 Geometry Data

The camera navigation is restricted to the upper hemisphere, mak-
ing bottom faces unnecessary. Even without the camera restriction,
a single bottom face for the software map’s root module would be
sufficient. Concerning attribution, the following attribute-geometry
relations need to be taken into account: per-vertex, per-face, and
per-box. They need to be provided for the indexed vertices, yield-
ing 30 indices per box and 20 vertices with attributes. For render-
ing, we primarily need color, diff threshold, and id per box, normal
per face, height per vertex, as well as a top vertex classification flag
per vertex for diff rendering (binary height).

In WebGL, vertex index buffers are currently limited to 16-bit in-
dices. Thus, a maximum of 65k vertices or 3 276 modules and items
can be rendered per draw call. Because software maps are usually
significantly larger, they are rendered in chunks with a maximum of
65 520 vertices each. Chunks do not need to have the same number
of boxes, and a predefined ordering, providing more regular, con-
tinuous chunks as, e.g., rectangular shaped patches could be benefi-
cial for frustum culling. Contrarily, chunks are filled up in sequence
as emerged by the hierarchy, keeping the number of required draw
calls to a minimum and forego time consuming server or client-side
reorganization of geometry data.

Since each chunk represents a sequence of boxes, the indexing re-
mains the same for each chunk; Generating only one chunk and
using it for all draw calls saves memory on the GPU. During ren-
dering, normals, binary heights, and indices once, and re-bind the
arrays for vertices, colors, and ids are bound for every draw call
with a different offset (a multiple of the chunk size). The various
attribute relations demand a quad based triangle definition, result-
ing in a large redundancy for per box and per face attributes (Figure
6). Furthermore, indices need to be provided for drawing of single
triangles, resulting in 6 indices per quad.

"4814": [ // item id

4631, // box geometry index
4756, // parent id
"java" // item/module name
] 4
"4848": [
4710,
4814,

"PackageManagerService.java",

13, 0, // color value, difference
162, -4, // height value, difference
6807, 1 // area value, difference

}

Figure 5: An exemplary excerpt of a JSON file, providing hierarchy
and metrics information for the software map visualization.
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Figure 6: Drawing a software map chunk accesses a constant index array, two static arrays containing constant vertex attributes (normal as
face attribute and binary height as vertex attribute), and chunk specific attribute arrays that contain vertex data and other box attributes. The
illustration shows the memory size (one byte per block) and exemplary content of the arrays for the first box’s second face of a chunk.

For the geometry, we transmit compact versions of the arrays used
for rendering by a binary AJAX request (response type Array-
Buffer). Due to the regular structure of the axis-aligned boxes,
indices, normals and binary heights, need not to be transmitted,
but can be generated on the client instead. There are four arrays
remaining: vertices, colors, ids, diff thresholds. They are stored
consecutively and are each preceded by their length (int). During
loading, typed views into the received array buffer are created for
processing the data. Vertices are transferred as Float32Array, con-
taining bounding box information (IIf and urb) only. From this the
full box geometry of 20 vertices (4 vertices per face, 5 faces) is cre-
ated. Colors and IDs are transferred as Uint8Arrays, diff thresholds
as Intl6Array. They contain the values for each box in the same
order as in the vertex array. Since one box has 20 vertices, the data
has to be replicated to new arrays, duplicating each date 20 times
consecutively. Figure 6 illustrates the content and memory footprint
of all generated attribute arrays.

5 Software-Map Rendering

With image-based rendering and deferred stylization, imagery is
generated by rendering attributed geometry into textures using
render-to-texture while concurrently filling G-Buffers [Saito and
Takahashi 1990]. Rendering to multiple targets, however, is not
available with WebGL yet (though an extension is in the works:
WebGL _draw_buffers), limiting rendering of a single pass to a sin-
gle G-Buffer. Another limitation in WebGL is, that the support
for floating point textures is optional. Therefore float values (like
depth) have to be encoded in four 8-bit channels (RGBA). This sec-
tion describes how G-Buffer data is encoded and used for styliza-
tion and exploration of large software maps.

5.1 Efficient Data Encoding

To enable the application of various image-based stylizations, a ba-
sic set of two common G-Buffers is provided. The first contains col-
ors and normals (rgbn-buffer), the second linearized depths (depth-
buffer). Box identities are rendered to a third G-Buffer (id-buffer),
that is mandatory for image-based interaction (i.e., hovering).

The rgbn-buffer contains color and normal information, all of
which is encoded by four 4 unsigned bytes. The color calculation
uses various vertex attributes and uniforms. Color, diff threshold,
binary height, highlight status, highlight and mouse over colors,
as well as a procedural texturing are exclusively processed in this
pass. Factors that are considered for color calculation are described
in more detail in the following subsection. Since only axis aligned,
five-sided boxes are rendered for the software map, only five
distinct normals are required. These are encoded by indices as
follows: £2 — +x, £1 — £z, and 0 — +y. The normal index is
stored as an unsigned byte, which is provided as normalized float

in [0; 1] within shaders. Although no dynamic access to constant
arrays within shaders is possible in WebGL, this scheme allows for
efficient decoding without branching:

vec3 decodeNormal (in float i)

{

i -—= 2;
float a = sign(i);
return vec3(i - a, 1 - a x a, 2 » a - 1i);

The parameter i is expected in [0;4] and encodes the normal of a
single software-map face via signed indices {—2, —1,0, 41, +2}.
Its value specifies the vertex component and its sign the normal
direction.

The id-buffer provides an unsigned 24-bit integer identity per
box, encoded by three bytes. It is used for fast object picking
and further enables enhancement of various stylizations (i.e, edge
enhancement). The depth-buffer stores linearized depth values
within the range [0;1] and is encoded by three bytes as well.
Encoding of 32-bit floats to three single-byte channels, and vise
versa, can be done within the shader as follows:

vec3 float2vec3i(const in float f£f)

{

return vec3 (

floor ( f * 256.0) / 255.0,
floor (fract (f * 256.0) * 256.0) / 255.0,
floor (fract (f * 65536.0) * 256.0) / 255.0);

}

float vec3i2float (const in vecd v)

{

return v[0] * 255.0 / (256.0)
+ v[1] » 255.0 / (256.0 * 256.0)
+ v[2] * 255.0 / (256.0 * 256.0 * 256.0);

To enhance human perception of the software-map hierarchy and to
facilitate visually distinction of individual code units, a composition
of various stylization techniques can be applied (Figure 7): Static
lighting, edge enhancements through contour lines [Nienhaus and
Déllner 2003], and either unsharp masking [Luft et al. 2006] or any
efficient screen space ambient occlusion (SSAO).

Static lighting, often uses a distance light at the cameras position
[Trapp et al. 2013]. For software maps, we suggest to fixate the
camera at a constant altitude. This yields a constant, view inde-
pendent coloring of the software-map’s top faces (i.e., all horizon-
tal faces), and further reduces the overall light variation for verti-
cal faces due to camera movement. Colors remain stable for top



Figure 7: A composition of various stylization techniques supported by our rendering pipeline. The segments on the right show treemaps
rendered with unsharp masking (b), edge enhancement (c), and static lighting (d). All three techniques are combined in the first segment (a).

faces and can be adjusted to exactly match the color scheme (visual
matching of colors of vertical faces becomes also more accurate).

For edge enhancement, contours generated from normal, color, and
id buffers are used to add colored contour lines to all visible edges
of each box. Depth-buffer unsharp masking increases depth cues
and the overall visual quality. Alternatively, SSAO can be used,
which further increases the perceived plasticity of the software map.
In Figure 4, unsharp masking was used, compared with a more ex-
pensive SSAO used in Figure 7. Illumination that affects satura-
tion or hue (e.g., color bleeding as result of global illumination) is
not recommended, since they obviously distort the perceptual color
mapping and thereby hinder accurately reading metrics encoded in
color.

It is often difficult to discern the basic structure of the code base
(i.e., the root modules) even with basic padding applied to the
treemap layout. To alleviate this, we increase the border between
root modules and color it differently (i.e., darker, with neither sat-
uration nor hue change - Figure 7). Since the interesting modules
may not be at the top hierarchy level, we can adjust the hierarchy
level that is considered the root level.

5.2 Interactive Exploration

A meaningful exploration of software maps requires interactions
and displaying of information to be aligned to one another and
highly adjusted to the targeted use cases. This section discusses
technical details of labeling, highlighting and hovering, tooltips
provisioning, and difference visualization, that is the visual empha-
sis of metric changes.

Small textual annotations of software map artifacts are commonly
referred to as labels. The process of controlled label placement is
labeling. We provide multiple ways to find or identify a code unit
within the software map: Labeling of top items, labeling of root (or
similarly discernible) modules, highlighting via batch selection in
top item lists, and provision of tooltips for individual items (Figure
4, with black/blue labels in the figure referring to item and module
labels). The labeling of software maps is similar to the labeling of
geovirtual 3D-environments, since both feature a two dimensional
spatial context enriched with height information.

Item labels are connected to their boxes via poles; if they over-
lap, labels farther away from the camera are moved upwards. We
therefore rely on a technique that places labels such that they avoid
occluding one another [Hagedorn et al. 2007]. Module labels work
slightly different as they are not connected via a pole. Instead, the
mental connection to the labeled module is achieved by placing it in
the center of the module. Also, we hide module labels if they would
be moved more than half of its height since the mental identification

with the labeled module can easily get lost if it is not centered prop-
erly. To ensure that labels of large modules are not hidden by labels
of smaller modules, we sort the labels by module area in descend-
ing order before rendering. While the number of shown item labels
is a system setting, the number of shown module labels is view-
dependent, i.e., labels for smaller modules can be made visible by
zooming in.

The camera navigation for software maps is based on and thus sim-
ilar to common terrain navigation (e.g., Google Earth). It supports
panning, zooming, and rotation, wherein the first two require depth
buffer access for fulfilling individual constraints.

When a user starts panning, the initial intersection point is used as
a reference point and required to remain exactly below the mouse
cursor. This is contrary to intersecting with the ground plane, since
panning can be initiated by picking a side face at arbitrary height,
necessitate a correct panning speed. The first click of the interac-
tion is used to access the depth-buffer and to retrieve the related
object-space position pg. This point is our constraint for panning,
which means that for every mouse position there has to be an ap-
propriate positioning for the software map, so that the point under
the cursor remains po. With this point and the up normal we build a
plane, that defines the panning space. For panning, a ray is created,
pointing from the screen pixel into the view frustum. This ray then
is converted to object space and used to intersect with the plane at
p. The delta of po and p is the translation required for our con-
strained panning. We further require at least one single fragment of
the software map to be at the viewport’s center by constraining the
software-map’s center to its own bounding box.

Rotation is applied around the software map central y-axis, since
we found users to be disturbed when rotation is around y-aligned
axes centered at the initial intersection points. Furthermore, verti-
cal rotation is restricted by a minimum angle to a range above the
horizon, and a minimum angular distance to the up vector. This
prevents the software map to be seen from below or upside down.

For zooming, the camera should move in respect to the pointed
software-map position. This is done by scaling the distance be-
tween the pointed position in the scene (again via depth-buffer) and
the camera position. Since the software-map’s center needs to be
constrained to the ground plane, a temporary center is calculated
based on the initial intersection with the ground plane and then used
to obtain the new viewray-groundplane intersection as new center.
With that, zooming can be deliberately used to pan and scale to-
wards a module or items top or side face. This approach allows
fast transitions to arbitrary places of interest by zooming only, thus
increasing navigation efficiency. For mobile use, i.e., devices with
touch enabled displays, a simple mapping of common touch ges-
tures is used (pinch is simultaneously used for rotation and zoom).



Two other aspects of software map exploration are hovering and
highlighting. The first causes a recolouring of the hovered item or
module for the time being hovered. The second can be applied for
multiple items, by batch-selecting items in the top item lists. The
item’s basic color is retrieved from the color attribute and replaced
by the hover color, if the item is hovered. Additionally, if the com-
pare threshold attribute contains a valid value, a procedural texture
(i.e., horizontal stripes) is applied to mark the difference between
the current and the old metric value (yellow stripes as in Figure 4).
Finally, double clicking items browses the linked source code and
tooltips are used to provide more detailed information for an item.

6 Discussion and Results

The presented visualization is applicable to similar techniques like
CodeCities [Wettel and Lanza 2007] and scales up to real-world
software projects containing up to 90k code units (Table 1). Al-
though large code bases might contain more code units, applying a
one-to-one mapping from code units to treemap items is not useful
then: Visual clutter (e.g., too small individual items, occlusion) be-
gins to increase drastically, which generally renders software maps
unusable. Hence, pre-filtering of input data — to reduce the number
of code units to approx. 100k — has to take place anyway, so that
the scalability of our system is sufficient even for larger code bases.

The precision of the depth buffer varies through out different hard-
ware platforms, on some systems resulting in tiny discontinuities,
causing visual artifacts on depth-buffer-based post processing (un-
sharp masking, SSAO).

To ensure the highest possible compatibility while providing good
performance on powerful machines like desktop computers with
dedicated graphics cards, it will become necessary to provide a
baseline functionality based on WebGL 1.0 with optional optimized
code paths that make use of the available extensions if they are
available. For example, with WebGL_depth_texture we could skip
the depth pass and use the depth buffer from the color pass for
SSAO. Reducing the number of geometry passes from two to one
is very useful, since for large projects (> 50k items) the render-
ing speed is geometry-bound. With OES_element_index_uint we
could increase the chunk size to a few million vertices. The chun-
ked rendering code would remain active (for systems without this
extension), but effectively only one chunk would be rendered.

Android Customer Project
Code Units # 30853 90089
Vertices # 617060 1801780
Triangles # 308530 900 890
geometry.bin 964 KiB 2815 KiB
compressed™ 404 KiB /19 ms /3 ms 1175KiB/56 ms/ 11 ms
compression ratio 0.42 0.42
report.json 4 KiB 16 KiB
compressed™ 2KiB/0ms/0ms 7KiB/0ms/0ms
compression ratio 0.51 0.45
hierarchy.json 1513 KiB 5429 KiB
compressed™ 480 KiB /21 ms /6 ms 1587 KiB /70 ms / 19 ms
compression ratio 0.32 0.29
GPU Memory 12.082 MiB 34.679 MiB

*gzip (zlib) compression level 1, with compress and decompress times.

Table 1: Enlisted are file sizes of all files required for the visualiza-
tion. System: Intel Xeon CPU E5-1620 0 at 3.6 GHz.

Android  Customer Project
Transmission at 1.5 Mbps (synthetic):
Geometry + Report 5.04s 14.75 s
Hierarchy 7.88's 28.28 s
Transmission at 7.6 Mbps (synthetic):
Geometry + Report 1.00 s 291s
Hierarchy 1.55s 5.58s
Local initialization on i5-3337U:
Interface 0.24 s 0.24 s
Geometry + Report 0.48s 2.13s
Hierarchy 1.11s 4.27s
Averaged frame rendering time:
Intel HD Graphics 4000 5.62 ms 28.06 ms
Intel Core i5-3337U at 1.80 GHz (WIN)
NVIDIA GeForce GT 650M 1.92 ms 13.62 ms
Intel Core i7 at 2.80 GHz (OS X)
NVidia GTX 680 2.20 ms 16.04 ms

Intel Xeon W3530 at 2.80 GHz (WIN)

Table 2: Enlisted are transmission, initialization, and average
times per frame for rendering software maps of the two previous
projects. Transmission and initialization times were measured sep-
arately, since the software map is available for interaction with
geometry and report data provided, except for tool tips. Local
initialization times were measured with Google Chrome’s tracing
capability, the influence of the tracing itself are ignored. The
frame times were averaged across 1000 frames of continuous re-
draw with no interaction (by default, redraw is only triggered on
interaction). Chrome 26.0.1410.64 was used as browser (WebKit
537.31, JavaScript V8 3.16.14.11). The resolution of the website
1024 x 1280 and for the OpenGL canvas 976 x 732 pixel. For
Windows, ANGLE was utilized by chrome, which surprisingly per-
formed faster than direct OpenGL rendering.

Concerning rendering performance, we measured transmission, ini-
tialization and frame rendering times on three platforms: one ultra-
book, one mac book pro, and one workstation. For all devices,
interactive frame rates have been met and transmission and initial-
ization delays are reasonable fast within our use-cases (Table 2).

7 Conclusion and Future Work

We have presented a web-based system for the interactive display
and analysis of large software maps. We achieve this technical
scalability by efficiently encoding the data transferred to the client
and by optimized usage of vertex attribute arrays. We further ad-
dress visual scalability of the software-map rendering by applying
an importance-based LOD-filtering for labels that annotate treemap
items. A combination of interaction techniques for easy manipula-
tion of the camera as well as details-on-demand features for query-
ing additional properties of individual treemap items are provided.

Introducing filtering for modules, metrics, developers, code units
etc. on the client side would be beneficial for the visualization’s
exploratory nature. Layouting and configurable attribute mapping
allowing for arbitrary metric-mapping parametrization from within
the browser could increase the scope of web-based software-map
analysis further. Concerning data provisioning, we found that
general-purpose storage containers (e.g., [Behr et al. 2010], [Behr
etal. 2012], [Jung et al. 2013]) can be useful in most rendering sce-
narios, however they do not provide the efficiency of our approach
(two vertices per box, various attributes, decoupled hierarchy, etc.).

The availability of a web-based software-map implementation now



allows for connecting software maps to collaboration platforms,
such as Github?, which improves user experience and lowers the ac-
cess barrier. With the centralized provisioning of (predefined) per-
spectives, users can now collaboratively re-use perspectives with-
out being forced to define any themselves. We hope, more APIs
promoting interactive web-based software maps or similar visual-
izations become available, making software visualization more ac-
cessible and supporting today’s software engineering processes.
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