Approximate Distance Sensitivity Oracles in Subquadratic Space

Davide Bilò, Shiri Chechik, Keerti Choudhary, Sarel Cohen, Tobias Friedrich, Simon Krogmann, and Martin Schirneck

55th Symposium on Theory of Computing June 23, 2023

भारतीय प्रौद्योगिकी संस्थान दिल्ली Indian Institute of Technology Delhi

a.k.a. sensitivity data structures, algorithms for emergency planning, failure-prone graphs.

Maintain graph property P(G) (distances, connectivity, ...) under edge failures.

a.k.a. sensitivity data structures, algorithms for emergency planning, failure-prone graphs.

Maintain graph property P(G) (distances, connectivity, ...) under edge failures.

a.k.a. sensitivity data structures, algorithms for emergency planning, failure-prone graphs.

Maintain graph property P(G) (distances, connectivity, ...) under edge failures.

• Sensitivity: failures in batches, maximum number f is known.

a.k.a. sensitivity data structures, algorithms for emergency planning, failure-prone graphs.

Maintain graph property P(G) (distances, connectivity, ...) under edge failures.

- Sensitivity: failures in batches, maximum number f is known.
- Data structure: preprocess once, query when needed.

a.k.a. sensitivity data structures, algorithms for emergency planning, failure-prone graphs.

Maintain graph property P(G) (distances, connectivity, ...) under edge failures.

- Sensitivity: failures in batches, maximum number f is known.
- Data structure: preprocess once, query when needed. •

 $\subseteq E$ with |F| < f

🌥 P(G-**F**)

a.k.a. sensitivity data structures, algorithms for emergency planning, failure-prone graphs.

Maintain graph property P(G) (distances, connectivity, ...) under edge failures.

- Sensitivity: failures in batches, maximum number f is known.
- Data structure: preprocess once, query when needed.

This talk: P(G) = d(s, t) - (approximate) pairwise distances,

f-edge fault-tolerant distance sensitivity oracle (*f*-DSO).

Sensitivity f

• Sensitivity *f*: number of edge failures.

Sensitivity f

- Sensitivity *f*: number of edge failures.
- Stretch σ : returned value \hat{d} satisfies $d_{G-F}(s,t) \leq \hat{d}_{G-F}(s,t) \leq \sigma \cdot d_{G-F}(s,t).$

- Sensitivity *f*: number of edge failures.
- Stretch σ : returned value \widehat{d} satisfies $d_{G-F}(s,t) \leq \widehat{d}_{G-F}(s,t) \leq \sigma \cdot d_{G-F}(s,t).$
- Space: measured in $O(\log n)$ -bit machine words.

- Sensitivity *f*: number of edge failures.
- Stretch σ : returned value \hat{d} satisfies $d_{G-F}(s,t) < \widehat{d}_{G-F}(s,t) < \sigma \cdot d_{G-F}(s,t).$
- Space: measured in $O(\log n)$ -bit machine words.
- Query time.

- Sensitivity *f*: number of edge failures.
- Stretch σ : returned value \hat{d} satisfies $d_{G-F}(s,t) \leq \hat{d}_{G-F}(s,t) \leq \sigma \cdot d_{G-F}(s,t).$
- Space: measured in $O(\log n)$ -bit machine words.
- Query time.
- Preprocessing time.

- Sensitivity *f*: number of edge failures.
- Stretch σ : returned value \widehat{d} satisfies $d_{G-F}(s,t) \leq \widehat{d}_{G-F}(s,t) \leq \sigma \cdot d_{G-F}(s,t).$
- Space: measured in $O(\log n)$ -bit machine words.
- Query time.
- Preprocessing time.
- Input graphs: (un-)directed, (un-)weighted, ...

- Sensitivity *f*: number of edge failures.
- Stretch σ : returned value \hat{d} satisfies $d_{G-F}(s,t) \leq \hat{d}_{G-F}(s,t) \leq \sigma \cdot d_{G-F}(s,t).$
- Space: measured in $O(\log n)$ -bit machine words.
- Query time.
- Preprocessing time.
- Input graphs: (un-)directed, (un-)weighted, ...

Sensitivity f, space in $O(\log n)$ -bit words.

- Sensitivity *f*: number of edge failures.
- Stretch σ : returned value \hat{d} satisfies $d_{G-F}(s,t) \leq \hat{d}_{G-F}(s,t) \leq \sigma \cdot d_{G-F}(s,t).$
- Space: measured in $O(\log n)$ -bit machine words.
- Query time.
- Preprocessing time.
- Input graphs: (un-)directed, (un-)weighted, ...

Most *f*-DSOs in the literature take $\Omega(n^2)$ space.

[Duan & Ren STOC 2022] [Gu & Ren ICALP 2021] [Grandoni & Vassilevska Williams TALG 2020] [Chechik, Cohen, Fiat & Kaplan SODA 2017] [Weimann & Yuster JACM 2013] [Berstein & Karger STOC 2009] ...

June 23, 2023

Sensitivity f, space in $O(\log n)$ -bit words.

- Sensitivity *f*: number of edge failures.
- Stretch σ : returned value \hat{d} satisfies $d_{G-F}(s,t) \leq \hat{d}_{G-F}(s,t) \leq \sigma \cdot d_{G-F}(s,t).$
- Space: measured in $O(\log n)$ -bit machine words.
- Query time.
- Preprocessing time.
- Input graphs: (un-)directed, (un-)weighted, ...

Most *f*-DSOs in the literature take $\Omega(n^2)$ space.

[Duan & Ren STOC 2022] [Gu & Ren ICALP 2021] [Grandoni & Vassilevska Williams TALG 2020] [Chechik, Cohen, Fiat & Kaplan SODA 2017] [Weimann & Yuster JACM 2013] [Berstein & Karger STOC 2009] ...

Our goal: f-DSOs in $o(n^2)$ space.

Subquadratic Space

Sensitivity f, space in $O(\log n)$ -bit words,

Space lower bounds, even without failures (f = 0). [Thorup & Zwick JACM 2005]

• If G is undirected, any DSO must have space $\Omega(n^2)$ or stretch $\sigma \geq 3$.

Subquadratic Space

Sensitivity f, space in $O(\log n)$ -bit words, undirected graphs,

Space lower bounds, even without failures (f = 0). [Thorup & Zwick JACM 2005]

- If G is undirected, any DSO must have space $\Omega(n^2)$ or stretch $\sigma \geq 3$.
- If G is directed, any DSO must have space $\Omega(n^2)$ for arbitrary finite stretch.

Subquadratic Space

Sensitivity f, space in $O(\log n)$ -bit words, undirected graphs, $\widetilde{O}(\cdot)$ hides poly(log n) factors.

Space lower bounds, even without failures (f = 0). [Thorup & Zwick JACM 2005]

- If G is undirected, any DSO must have space $\Omega(n^2)$ or stretch $\sigma \geq 3$.
- If G is directed, any DSO must have space $\Omega(n^2)$ for arbitrary finite stretch.

Previous solutions (weighted graphs, any sensitivity f and integer $k \ge 1$).

• Chechik, Langberg, Peleg & Roditty. [Algorithmica 2012] Stretch (8k-2)(f+1), space $\widetilde{O}(fk n^{1+1/k})$, query $\widetilde{O}(f)$.

A CONTRACTOR OF CONTRACTOR OF

Subquadratic Space

Sensitivity f, space in $O(\log n)$ -bit words, undirected graphs, $\widetilde{O}(\cdot)$ hides poly(log n) factors.

Space lower bounds, even without failures (f = 0). [Thorup & Zwick JACM 2005]

- If G is undirected, any DSO must have space $\Omega(n^2)$ or stretch $\sigma \geq 3$.
- If G is directed, any DSO must have space $\Omega(n^2)$ for arbitrary finite stretch.

Previous solutions (weighted graphs, any sensitivity f and integer $k \ge 1$).

- Chechik, Langberg, Peleg & Roditty. [Algorithmica 2012] Stretch (8k-2)(f+1), space $\widetilde{O}(fk n^{1+1/k})$, query $\widetilde{O}(f)$.
- Fault-tolerant σ -spanner: subgraph $H \subseteq G$ s.t. for all $F \subseteq E$ with $|F| \leq f$ $d_{H-F}(s,t) \leq \sigma \cdot d_{G-F}(s,t)$.

A CONTRACTOR OF CONTRACTOR OF

Subquadratic Space

Sensitivity f, space in $O(\log n)$ -bit words, undirected graphs, $\widetilde{O}(\cdot)$ hides poly(log n) factors.

Space lower bounds, even without failures (f = 0). [Thorup & Zwick JACM 2005]

- If G is undirected, any DSO must have space $\Omega(n^2)$ or stretch $\sigma \geq 3$.
- If G is directed, any DSO must have space $\Omega(n^2)$ for arbitrary finite stretch.

Previous solutions (weighted graphs, any sensitivity f and integer $k \ge 1$).

- Chechik, Langberg, Peleg & Roditty. [Algorithmica 2012] Stretch (8k-2)(f+1), space $\widetilde{O}(fk n^{1+1/k})$, query $\widetilde{O}(f)$.
- Fault-tolerant σ -spanner: subgraph $H \subseteq G$ s.t. for all $F \subseteq E$ with $|F| \leq f$ $d_{H-F}(s,t) \leq \sigma \cdot d_{G-F}(s,t)$.

Stretch 2k-1, space $O(f^{1/2}k^{O(1)}n^{1+1/k})$, query time \approx space. [Bodwin, Dinitz & Robelle SODA 2022]

Constant sensitivity f, space in $O(\log n)$ -bit words, undirected unweighted graphs, unique shortest paths, $\widetilde{O}_{\varepsilon}(\cdot)$ hides poly(log n, $1/\varepsilon)$ factors.

Theorem

Our Result

Let $0 < \alpha < 1/2$ and $\varepsilon > 0$. For any constant f, there is an f-DSO for undirected, unweighted graphs with unique shortest paths that has stretch $3 + \varepsilon$, space $\widetilde{O}_{\varepsilon}(n^{2-\frac{\alpha}{f+1}}) \cdot O_{\varepsilon}(\log n)^{f+1}$, and query time $O_{\varepsilon}(n^{\alpha})$.

Constant sensitivity f, space in $O(\log n)$ -bit words, undirected unweighted graphs, unique shortest paths, $\widetilde{O}_{\varepsilon}(\cdot)$ hides poly(log n, $1/\varepsilon)$ factors.

Theorem

Our Result

Let $0 < \alpha < 1/2$ and $\varepsilon > 0$. For any constant f, there is an f-DSO for undirected, unweighted graphs with unique shortest paths that has stretch $3 + \varepsilon$, space $\widetilde{O}_{\varepsilon}(n^{2-\frac{\alpha}{f+1}}) \cdot O_{\varepsilon}(\log n)^{f+1}$, and query time $O_{\varepsilon}(n^{\alpha})$.

Related result w/ different techniques: [Bilò, Choudhary, Friedrich, Krogmann & Sch. WADS 2023⁺] For any $f = o(\log n / \log \log n)$, there is an f-DSO for undirected, weighted graphs that has stretch 2k-1, space $O(n^{1+\frac{1}{k}+\alpha+o(1)})$, and query time $O(n^{1+\frac{1}{k}-\frac{\alpha}{k(f+1)}})$.

 $\text{Constant sensitivity } f, \text{ space in } O(\log n) \text{-bit words, undirected unweighted graphs, unique shortest paths, } \widetilde{O}_{\mathcal{E}}(\cdot) \text{ hides poly}(\log n, 1/\varepsilon) \text{ factors.}$

Based on the *f*-DSO by Chechik, Cohen, Fiat & Kaplan. [SODA 2017]

• Stretch $1 + \varepsilon$, space $O(n^2) \cdot O_{\varepsilon}(\log n)^{f+1}$, query time $\widetilde{O}(1)$.

 $\text{Constant sensitivity } f, \text{ space in } O(\log n) \text{-bit words, undirected unweighted graphs, unique shortest paths, } \widetilde{O}_{\mathcal{E}}(\cdot) \text{ hides poly}(\log n, 1/\varepsilon) \text{ factors.}$

Based on the *f*-DSO by Chechik, Cohen, Fiat & Kaplan. [SODA 2017]

- Stretch $1 + \varepsilon$, space $O(n^2) \cdot O_{\varepsilon}(\log n)^{f+1}$, query time $\widetilde{O}(1)$.
- One fault-tolerant tree (FT-tree) for every pair of vertices.

 $\text{Constant sensitivity } f, \text{ space in } O(\log n) \text{-bit words, undirected unweighted graphs, unique shortest paths, } \widetilde{O}_{\mathcal{E}}(\cdot) \text{ hides poly}(\log n, 1/\varepsilon) \text{ factors.}$

Based on the f-DSO by Chechik, Cohen, Fiat & Kaplan. [SODA 2017]

- Stretch $1 + \varepsilon$, space $O(n^2) \cdot O_{\varepsilon}(\log n)^{f+1}$, query time $\widetilde{O}(1)$.
- One fault-tolerant tree (FT-tree) for every pair of vertices.
- FT(s, t) queried with set F gives exact distance d_{G-F}(s, t)
 if the shortest s-t-path in G F satisfies some technical condition.

Constant sensitivity f, space in $O(\log n)$ -bit words, undirected unweighted graphs, unique shortest paths, $\widetilde{O}_{\mathcal{E}}(\cdot)$ hides poly(log $n, 1/\varepsilon$) factors.

Based on the f-DSO by Chechik, Cohen, Fiat & Kaplan. [SODA 2017]

- Stretch $1 + \varepsilon$, space $O(n^2) \cdot O_{\varepsilon}(\log n)^{f+1}$, query time $\widetilde{O}(1)$.
- One fault-tolerant tree (FT-tree) for every pair of vertices.
- FT(s, t) queried with set F gives exact distance d_{G-F}(s, t)
 if the shortest s-t-path in G F satisfies some technical condition.
- Query procedure works around the condition \Rightarrow stretch $1 + \varepsilon$.

 $\text{Constant sensitivity } f, \text{ space in } O(\log n) \text{-bit words, undirected unweighted graphs, unique shortest paths, } \widetilde{O}_{\mathcal{E}}(\cdot) \text{ hides poly}(\log n, 1/\varepsilon) \text{ factors.}$

Based on the f-DSO by Chechik, Cohen, Fiat & Kaplan. [SODA 2017]

- Stretch $1 + \varepsilon$, space $O(n^2) \cdot O_{\varepsilon}(\log n)^{f+1}$, query time $\widetilde{O}(1)$.
- One fault-tolerant tree (FT-tree) for every pair of vertices.
- FT(s, t) queried with set F gives exact distance d_{G-F}(s, t)
 if the shortest s-t-path in G F satisfies some technical condition.
- Query procedure works around the condition \Rightarrow stretch $1 + \varepsilon$.

Constant sensitivity f, space in $O(\log n)$ -bit words, undirected unweighted graphs, unique shortest paths, $\widetilde{O}_{\mathcal{E}}(\cdot)$ hides poly(log $n, 1/\varepsilon$) factors.

Cannot afford $\Omega(n^2)$ FT-trees.

• Integer parameter $L = \omega(\log n)$: uniform set B of $\widetilde{O}(n/L)$ vertices.

Constant sensitivity f, space in $O(\log n)$ -bit words, undirected unweighted graphs, unique shortest paths, $\widetilde{O}_{\mathcal{E}}(\cdot)$ hides poly $(\log n, 1/\varepsilon)$ factors.

- Integer parameter $L = \omega(\log n)$: uniform set B of $\widetilde{O}(n/L)$ vertices.
- W.h.p. if d_{G-F}(s, t) > L for any F ⊆ E with |F| ≤ f, the shortest s-t-path in G - F is hit by some sampled vertex.

Constant sensitivity f, space in $O(\log n)$ -bit words, undirected unweighted graphs, unique shortest paths, $\widetilde{O}_{\mathcal{E}}(\cdot)$ hides poly $(\log n, 1/\varepsilon)$ factors.

- Integer parameter $L = \omega(\log n)$: uniform set B of $\widetilde{O}(n/L)$ vertices.
- W.h.p. if d_{G-F}(s, t) > L for any F ⊆ E with |F| ≤ f, the shortest s-t-path in G - F is hit by some sampled vertex.
- Build FT-trees only for vertex pairs in $B \times V \Rightarrow \widetilde{O}(n^2/L)$ trees.
 - Implement FT-trees in subquadratic space.

Constant sensitivity f, space in $O(\log n)$ -bit words, undirected unweighted graphs, unique shortest paths, $\widetilde{O}_{\mathcal{E}}(\cdot)$ hides poly(log n, $1/\varepsilon)$ factors.

- Integer parameter $L = \omega(\log n)$: uniform set B of $\widetilde{O}(n/L)$ vertices.
- W.h.p. if d_{G-F}(s, t) > L for any F ⊆ E with |F| ≤ f, the shortest s-t-path in G - F is hit by some sampled vertex.
- Build FT-trees only for vertex pairs in $B \times V \Rightarrow \widetilde{O}(n^2/L)$ trees.
 - Implement FT-trees in subquadratic space.
- Need a solution for small distances $d_{G-F}(s,t) \leq L$.

Constant sensitivity f, space in $O(\log n)$ -bit words, undirected unweighted graphs, unique shortest paths, $\widetilde{O}_{\mathcal{E}}(\cdot)$ hides poly(log n, $1/\varepsilon)$ factors.

- Integer parameter $L = \omega(\log n)$: uniform set B of $\widetilde{O}(n/L)$ vertices.
- W.h.p. if d_{G-F}(s, t) > L for any F ⊆ E with |F| ≤ f, the shortest s-t-path in G - F is hit by some sampled vertex.
- Build FT-trees only for vertex pairs in $B \times V \Rightarrow \widetilde{O}(n^2/L)$ trees.
 - Implement FT-trees in subquadratic space.
- Need a solution for small distances $d_{G-F}(s, t) \leq L$.
- Naively stitching together small paths $\Rightarrow O_{arepsilon}(n^{1+o(1)}/L)$ query time.
 - Improve this to $O_{\varepsilon}(L^{f-1+o(1)})$.

Constant sensitivity f, space in $O(\log n)$ -bit words, undirected unweighted graphs, unique shortest paths, $\widetilde{O}_{\mathcal{E}}(\cdot)$ hides poly(log n, $1/\varepsilon)$ factors.

Cannot afford $\Omega(n^2)$ FT-trees.

- Integer parameter $L = \omega(\log n)$: uniform set B of $\widetilde{O}(n/L)$ vertices.
- W.h.p. if d_{G-F}(s, t) > L for any F ⊆ E with |F| ≤ f, the shortest s-t-path in G - F is hit by some sampled vertex.
- Build FT-trees only for vertex pairs in $B \times V \Rightarrow \widetilde{O}(n^2/L)$ trees.

- Implement FT-trees in subquadratic space.

- Need a solution for small distances $d_{G-F}(s, t) \leq L$.
- Naively stitching together small paths $\Rightarrow O_{arepsilon}(n^{1+o(1)}/L)$ query time.
 - Improve this to $O_{\varepsilon}(L^{f-1+o(1)})$.

Setting $L = O_{\varepsilon}(n^{\frac{\alpha}{t+1}})$ gives $\widetilde{O}_{\varepsilon}(n^{2-\frac{\alpha}{t+1}})$ trees and $O_{\varepsilon}(n^{\alpha})$ query time.

Constant sensitivity f, space in $O(\log n)$ -bit words, undirected unweighted graphs, unique shortest paths, $\widetilde{O}_{\mathcal{E}}(\cdot)$ hides poly(log n, $1/\varepsilon)$ factors.

Cannot afford $\Omega(n^2)$ FT-trees.

- Integer parameter $L = \omega(\log n)$: uniform set B of $\widetilde{O}(n/L)$ vertices.
- W.h.p. if d_{G-F}(s, t) > L for any F ⊆ E with |F| ≤ f, the shortest s-t-path in G - F is hit by some sampled vertex.
- Build FT-trees only for vertex pairs in $B \times V \Rightarrow \widetilde{O}(n^2/L)$ trees.
 - Implement FT-trees in subquadratic space.
- Need a solution for small distances $d_{G-F}(s,t) \leq L$.
- Naively stitching together small paths $\Rightarrow O_{arepsilon}(n^{1+o(1)}/L)$ query time.
 - Improve this to $O_{\varepsilon}(L^{f-1+o(1)})$.

Setting $L = O_{\varepsilon}(n^{\frac{\alpha}{t+1}})$ gives $\widetilde{O}_{\varepsilon}(n^{2-\frac{\alpha}{t+1}})$ trees and $O_{\varepsilon}(n^{\alpha})$ query time.

Short Distances

 $\text{Constant sensitivity } f, \text{ space in } \mathcal{O}(\log n) \text{-bit words, undirected unweighted graphs, unique shortest paths, } \widetilde{\mathcal{O}}_{\mathcal{E}}(\cdot) \text{ hides poly}(\log n, 1/\varepsilon) \text{ factors.}$

Task: f-DSO whenever real distance is $d_{G-F}(s, t) \le L$ (arbitrary answer if $d_{G-F}(s, t) > L$).

Short Distances

Constant sensitivity f, space in $O(\log n)$ -bit words, undirected unweighted graphs, unique shortest paths, $\widetilde{O}_{\varepsilon}(\cdot)$ hides poly(log $n, 1/\varepsilon$) factors.

Task: *f*-DSO whenever real distance is $d_{G-F}(s, t) \le L$ (arbitrary answer if $d_{G-F}(s, t) > L$).

Exact distances: Weimann & Yuster [TALG 2013] graphs.

• Create $\widetilde{O}(L^f)$ copies of G,

Short Distances

Constant sensitivity f, space in $O(\log n)$ -bit words, undirected unweighted graphs, unique shortest paths, $\widetilde{O}_{\varepsilon}(\cdot)$ hides poly $(\log n, 1/\varepsilon)$ factors.

Task: *f*-DSO whenever real distance is $d_{G-F}(s, t) \leq L$ (arbitrary answer if $d_{G-F}(s, t) > L$).

• Create $\widetilde{O}(L^f)$ copies of G, in each one fail any edge with probability 1/L.

Short Distances

Constant sensitivity f, space in $O(\log n)$ -bit words, undirected unweighted graphs, unique shortest paths, $\widetilde{O}_{\mathcal{E}}(\cdot)$ hides poly $(\log n, 1/\varepsilon)$ factors.

Task: *f*-DSO whenever real distance is $d_{G-F}(s, t) \le L$ (arbitrary answer if $d_{G-F}(s, t) > L$).

- Create $\widetilde{O}(L^f)$ copies of G, in each one fail any edge with probability 1/L.
- W.h.p. if $d_{G-F}(s,t) \leq L$, a G_i has $E(G_i) \cap F = \emptyset$ and $d_{G_i}(s,t) = d_{G-F}(s,t)$.

Short Distances

Constant sensitivity f, space in $O(\log n)$ -bit words, undirected unweighted graphs, unique shortest paths, $\widetilde{O}_{\mathcal{E}}(\cdot)$ hides poly $(\log n, 1/\varepsilon)$ factors.

Task: *f*-DSO whenever real distance is $d_{G-F}(s, t) \le L$ (arbitrary answer if $d_{G-F}(s, t) > L$).

- Create $\widetilde{O}(L^f)$ copies of G, in each one fail any edge with probability 1/L.
- W.h.p. if $d_{G-F}(s,t) \leq L$, a G_i has $E(G_i) \cap F = \emptyset$ and $d_{G_i}(s,t) = d_{G-F}(s,t)$.

Problems.

• How to find the copy *G_i* efficiently?

Short Distances

Constant sensitivity f, space in $O(\log n)$ -bit words, undirected unweighted graphs, unique shortest paths, $\widetilde{O}_{\mathcal{E}}(\cdot)$ hides poly $(\log n, 1/\varepsilon)$ factors.

Task: *f*-DSO whenever real distance is $d_{G-F}(s, t) \le L$ (arbitrary answer if $d_{G-F}(s, t) > L$).

- Create $\widetilde{O}(L^f)$ copies of G, in each one fail any edge with probability 1/L.
- W.h.p. if $d_{G-F}(s,t) \leq L$, a G_i has $E(G_i) \cap F = \emptyset$ and $d_{G_i}(s,t) = d_{G-F}(s,t)$.

Problems.

- How to find the copy G_i efficiently?
- The copies take $\Omega(L^{f-1}m)$ space.

 $\text{Constant sensitivity } f, \text{ space in } O(\log n) \text{-bit words, undirected unweighted graphs, unique shortest paths, } \widetilde{O}_{\mathcal{E}}(\cdot) \text{ hides poly}(\log n, 1/\varepsilon) \text{ factors.}$

Height parameter h.

• Every inner node has $L^{f/h}$ children;

 $\text{Constant sensitivity } f, \text{ space in } O(\log n) \text{-bit words, undirected unweighted graphs, unique shortest paths, } \widetilde{O}_{\mathcal{E}}(\cdot) \text{ hides poly}(\log n, 1/\varepsilon) \text{ factors.}$

- Every inner node has $L^{f/h}$ children;
- Take edges of parent, re-insert any edge of G w/prob $1 L^{-1/h}$.

 $\text{Constant sensitivity } f, \text{ space in } O(\log n) \text{-bit words, undirected unweighted graphs, unique shortest paths, } \widetilde{O}_{\mathcal{E}}(\cdot) \text{ hides poly}(\log n, 1/\varepsilon) \text{ factors.}$

- Every inner node has L^{f/h} children;
- Take edges of parent, re-insert any edge of G w/prob $1 L^{-1/h}$.

Constant sensitivity f, space in $O(\log n)$ -bit words, undirected unweighted graphs, unique shortest paths, $\widetilde{O}_{\varepsilon}(\cdot)$ hides poly $(\log n, 1/\varepsilon)$ factors.

. . .

- Every inner node has $L^{f/h}$ children; h+1 levels $\Rightarrow O(L^{f+(f/h)})$ nodes. ٠
- Take edges of parent, re-insert any edge of G w/prob $1 L^{-1/h}$.

Constant sensitivity f, space in $O(\log n)$ -bit words, undirected unweighted graphs, unique shortest paths, $\widetilde{O}_{\varepsilon}(\cdot)$ hides poly $(\log n, 1/\varepsilon)$ factors.

- Every inner node has $L^{f/h}$ children; h + 1 levels $\Rightarrow O(L^{f+(f/h)})$ nodes.
- Take edges of parent, re-insert any edge of G w/prob $1 L^{-1/h}$.
- Leaves: same probabilities as Weimann & Yuster, no independence.

Constant sensitivity f, space in $O(\log n)$ -bit words, undirected unweighted graphs, unique shortest paths, $\widetilde{O}_{\varepsilon}(\cdot)$ hides poly(log n, $1/\varepsilon)$ factors.

×

Height parameter h.

Queried with F: follow any child that has no edge of $F \Rightarrow \text{time } O(hL^{f/h})$. •

Constant sensitivity f, space in $O(\log n)$ -bit words, undirected unweighted graphs, unique shortest paths, $\widetilde{O}_{\varepsilon}(\cdot)$ hides poly $(\log n, 1/\varepsilon)$ factors.

. . .

- Queried with F: follow any child that has no edge of $F \Rightarrow \text{time } O(hL^{f/h})$.
- Reaching a leaf: correct copy with probability $1/c^h$ for c > 0. •

Constant sensitivity f, space in $O(\log n)$ -bit words, undirected unweighted graphs, unique shortest paths, $\widetilde{O}_{\varepsilon}(\cdot)$ hides poly $(\log n, 1/\varepsilon)$ factors.

- Queried with F: follow any child that has no edge of $F \Rightarrow \text{time } O(hL^{f/h})$.
- Reaching a leaf: correct copy with probability $1/c^h$ for c > 0.
- Repeat in $\widetilde{O}(c^h)$ independent trees for high probability.

Constant sensitivity f, space in $O(\log n)$ -bit words, undirected unweighted graphs, unique shortest paths, $\widetilde{O}_{\varepsilon}(\cdot)$ hides poly(log n, $1/\varepsilon)$ factors.

. ×× ×

Set $h = \sqrt{f \ln L}$.

• $\widetilde{O}(L^{o(1)})$ trees, each with $L^{f+o(1)}$ nodes.

 $\text{Constant sensitivity } f, \text{ space in } O(\log n) \text{-bit words, undirected unweighted graphs, unique shortest paths, } \widetilde{O}_{\mathcal{E}}(\cdot) \text{ hides poly}(\log n, 1/\varepsilon) \text{ factors.}$

Set $h = \sqrt{f \ln L}$.

- $\widetilde{O}(L^{o(1)})$ trees, each with $L^{f+o(1)}$ nodes.
- Query time is $\widetilde{O}(L^{o(1)})$.

 $\text{Constant sensitivity } f, \text{ space in } O(\log n) \text{-bit words, undirected unweighted graphs, unique shortest paths, } \widetilde{O}_{\mathcal{E}}(\cdot) \text{ hides poly}(\log n, 1/\varepsilon) \text{ factors.}$

Set $h = \sqrt{f \ln L}$.

- $\widetilde{O}(L^{o(1)})$ trees, each with $L^{f+o(1)}$ nodes.
- Query time is $\widetilde{O}(L^{o(1)})$.
- Still one leaf alone has $\Omega(m/L)$ edges.

Constant sensitivity f, space in $O(\log n)$ -bit words, undirected unweighted graphs, unique shortest paths, $\widetilde{O}_{\varepsilon}(\cdot)$ hides poly(log n, $1/\varepsilon$) factors.

Replace the leaves with Thorup & Zwick [JACM 2005] distance oracles ۰ \Rightarrow stretch 2k - 1, size $O(k n^{1+1/k})$, query O(k).

Constant sensitivity f, space in $O(\log n)$ -bit words, undirected unweighted graphs, unique shortest paths, $\widetilde{O}_{\varepsilon}(\cdot)$ hides poly $(\log n, 1/\varepsilon)$ factors.

- Replace the leaves with Thorup & Zwick [JACM 2005] distance oracles \Rightarrow stretch 2k - 1, size $O(k n^{1+1/k})$, query O(k).
- Replace inner nodes with spanners
 - \Rightarrow total space of all sampling trees $\widetilde{O}(L^{f+o(1)}n^{1+1/k})$.

Summary

- Distance sensitivity oracle for constant *f* with stretch 3 + ε, space Õ_ε(n^{2-α}/_{ℓ+1}) · O_ε(log n)^{f+1}, and query time O_ε(n^α).
- Distance sensitivity oracle for distances ≤ L with stretch 2k − 1, space Õ(L^{f+o(1)}n^{1+1/k}), and query time Õ(L^{o(1)}).

Summary

June 23, 2023

- Distance sensitivity oracle for constant f with stretch $3 + \varepsilon$, space $\widetilde{O}_{\varepsilon}(n^{2-\frac{\alpha}{f+1}}) \cdot O_{\varepsilon}(\log n)^{f+1}$, and query time $O_{\varepsilon}(n^{\alpha})$.
- Distance sensitivity oracle for distances $\leq L$ with stretch 2k 1, space $\widetilde{O}(L^{f+o(1)}n^{1+1/k})$, and query time $\widetilde{O}(L^{o(1)})$.

Open Problems

- Reduce the query time to $poly(\log n, 1/\varepsilon)$.
- Extend solution to weighted graphs.

Summary

June 23, 2023

- Distance sensitivity oracle for constant f with stretch $3 + \varepsilon$, space $\widetilde{O}_{\varepsilon}(n^{2-\frac{\alpha}{f+1}}) \cdot O_{\varepsilon}(\log n)^{f+1}$, and query time $O_{\varepsilon}(n^{\alpha})$.
- Distance sensitivity oracle for distances ≤ L with stretch 2k − 1, space Õ(L^{f+o(1)}n^{1+1/k}), and query time Õ(L^{o(1)}).

Open Problems

- Reduce the query time to $poly(\log n, 1/\varepsilon)$.
- Extend solution to weighted graphs.

Thanks!