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Abstract

Graphs can be used to represent many real world situations. In those
graphs, the community structures of the real world situations are embed-
ded. To uncover those structures, clustering algorithms are needed. Lou-
vain and Leiden are two common examples of such algorithms. Leiden is
an improvement of Louvain and brings with it a number of guarantees on
the clusterings it produces. One of them is that the communities Leiden
clusters are connected. Leiden produces clusterings of higher modularity
scores on all real world graphs examined. On most of them, the difference
is significant.
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1 Motivation

Many aspects of the real world can be represented by graphs. Road networks
with cities as nodes and roads as edges, social media with accounts as nodes and
following or “friendship” as edges and brain connectomes (“wiring diagrams”)
with neurons as nodes and synapses as edges are just three of the many exam-
ples [12]. Clustering nodes is a powerful tool that can uncover aspects of the
underlying real world situation. For instance, one can group Twitter users by
their opinion towards Covid-19 vaccines [18]. Louvain [2] and Leiden [16] are
two examples of widely used graph clustering algorithms. Louvain and Leiden
are key parts of the scanpy [19] python package which can be used to do sin-
gle cell analysis. Each community in the clustering of cells represents one cell
type. The clustering can then be used to determine marker genes for each cell
type [19].

In this thesis, I will introduce modularity and Constant Potts Model, two
common quality scores for graph clustrings. Then, I will examine closely the
Louvain and Leiden algorithms theoretically. Finally, I will apply them to graphs
in order to compare the modularity scores of their clusterings.

2 Related Work

Modularity is a quality score of how well a clustering represents the structure
of a graph. The graph clustering algorithm Louvain is, at its core, a greedy
algorithm trying to maximise the modularity score of the clustering [2]. The
Leiden algorithm is an improvement on Louvain which guarantees connectivity
of the communities. Leiden works also with the alternative quality measure
Constant Potts Model (CPM). Traag et al. use CPM to prove the guarantees
Leiden provides [16]. Hence, I will also introduce CPM. This section is organised
as follows. First, I will introduce modularity and CPM. Having introduced
Modularity, I can then examine Louvain. The shortcomings of Louvain then
motivate Leiden. Lastly I will go into the guarantees Leiden provides.

A clustering of the nodes of a graph is a partition of the nodes. One cluster
in a clustering, i.e. one of the sets that make up the partition, is also sometimes
called a community. Clustering and partition will be used interchangeably, as
they are in the papers I am referencing.

2.1 Modularity

I will first define the configuration model for producing random graphs, then
modularity. Lastly, I will discuss the Constant Potts Model (CPM) and show
some examples.

Definition 2.1 (Configuration model [7]). The configuration model constructs
a random graph G = (V,E) with a given degree distribution. It works as follows:
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1. Let k = (ki)i=1,...,n ∈ Nn be a sequence of natural numbers of length n
and even sum

n∑
i=1

ki = 2 ∗m with m ∈ N.

2. Initialise n nodes, V = {1, . . . , n}.

3. For each i ∈ {1, . . . , n} attach ki half-edges, or stubs, to node i. Let S be
the set of all stubs.

4. Until S = ∅:

(a) Consider any stub s ∈ S, choose uniformly at random any other stub
s′ ∈ S \ {s}.

(b) Pair s and s′ to form an edge e.

(c) Add e to the set of edges E.

(d) Remove s and s′ from the set of stubs S.

The resulting graph G is called the configuration model with degree sequence k.

Consider any pair of nodes x, y ∈ V . In the configuration model with degree
sequence k, any stub is connected uniformly at random to any other of the
2m − 1 remaining stubs. Furthermore, there are kx stubs attached to node x
and ky to y. Let (Ax,y)x,y∈V denote the adjacency matrix. Hence, the expected
number of edges going from x to y in the configuration model is:

E[Ax,y] =
kx · ky
2m− 1

.

Definition 2.2 (Modularity [3]). Let G = (V,E) be a graph, (Ax,y)x,y∈V its
adjacency matrix and P be a partition of G. Furthermore, m = |E| is the
number of edges in G and kx the degree of a node x ∈ V . The modularity of
the partition P is:

Q(P) =
1

2m

∑
C∈P

∑
x,y∈C

(
Ax,y −

kx · ky
2m

)
.

Modularity is a quality score that quantifies how well a partition represents
the structure of a graph. For each pair of nodes x, y ∈ C in a cluster C,
modularity compares how many edges go from x to y to the expected number
of edges going from x to y according to the configuration model with degree
sequence k = (kx)x∈V . Instead of using the expected value as calculated above,
modularity ignores the −1 in the denominator. Hence, the expected value that
modularity works with is:

E[Ax,y] ≈ kx · ky
2m

.

Modularity is a scalar in the range [− 1
2 , 1]. It is desirable to maximise

modularity. The minimum value of modularity is achieved when all edges are
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between communities and none are inside any community. For example, consider
a bipartite graph G = (V,E), with V = V1∪V2 and V1∩V2 = ∅, and E ⊆ V1×V2.
The clustering P = {V1, V2} of G has modularity − 1

2 . On the other hand,
consider the following theorem.

Theorem 2.3 (Connectivity and maximal modularity [3]). A partition of max-
imal modularity does not contain any disconnected communities.

Definition 2.4 (Modularity decision problem [3]). Let G be a graph and q ∈ R
be a number. The modularity decision problem asks whether there exists a
partition P with modularity bounded from below by q:

Q(P) ≥ q.

To see how hard maximising modularity is, consider the modularity decision
problem. Brandes, Delling, Gaertler, Görke, Hoefer, Nikolosky and Wagner
proved in their 2008 paper ”On Modularity Clustering” that the modularity
decision problem is NP-complete [3].

Another property of modularity is, that for any Graph G = (V,E), the
trivial partition P = {V }, where all nodes are in one cluster, has modularity
score of 0.

Proof. Let G = (V,E) be a graph of m = |E| edges. Let P = {V } be the trivial
partition of G.

Q(P) =
1

2m

∑
C∈P

∑
x,y∈C

(
Ax,y −

kx · ky
2m

)

=
1

2m

∑
x,y∈V

(
Ax,y −

kx · ky
2m

)
This follows from the fact that there is only one community C ∈ P which
contains all nodes C = V . Moving the summation into the brackets gives:

Q(P) =
1

2m

 ∑
x,y∈V

Ax,y −
∑
x,y∈V

kx · ky
2m

 .

The sum over the degrees of all nodes is
∑
x∈V kx = 2m. Furthermore, note that

the sum of all entries in the adjacency matrix A is 2m as each edge is counted
twice. Splitting the sum over the degrees into the parts on x and y gives:

Q(P) =
1

2m

(
2m−

∑
x∈V kx

∑
y∈V ky

2m

)
=

1

2m

(
2m− 2m · 2m

2m

)
=

2m

2m
−
(

2m

2m

)2

= 1− 1 = 0.
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Note that one can also introduce a resolution parameter γ ∈ [0, 1] in the
definition of modularity. The formula for modularity then becomes:

Q(P) =
1

2m

∑
C∈P

∑
x,y∈C

(
Ax,y − γ ·

kx · ky
2m

)
.

For γ = 1 this is equal to the previous definition of modularity. Lowering γ
reduces how much modularity penalises deviation from the configuration model.
For example, when γ is set to 0, the modularity of the trivial partition is not
0 any more, but 1. Hence modularity does not penalise the partition at all for
having no community structure.

Modularity can also be calculated for weighted graphs. In this case, m
denotes the total weight of all edges, kx denotes the total weight of all edges
incident to x and Ax,y denotes the weight of all edges going from x to y. The
unweighted modularity of an unweighted graph G, is equal to the weighted
modularity if all weights are set to 1 in G.

2.2 Constant Potts Model

The Constant Potts Model (CPM) is, like modularity, a quality measure for a
partition P of a graph G. CPM tries to maximise the number of edges inside
communities and minimise number of the edges between communities. I will
introduce two definitions of CPM.

Definition 2.5 (Original Constant Potts Model [15]). Let G = (V,E) be a
graph, A its adjacency matrix, P be a partition of G and let γ ∈ [0, 1]. The
Constant Potts Model Q of the partition P is:

Q(P) = −
∑
C∈P

 ∑
x,y∈C

Ax,y − γ · |C|2
 .

I include the original definition (Definition 2.5) as published by Traag, Van
Dooren and Nesterov in 2011 [15] for completeness, as their paper is referenced
by the Leiden paper [16]. This version of CPM compares the number of edges in
a community (

∑
x,y∈C Ax,y) with the possible number of edges (|C|2) multiplied

with a threshold γ ∈ [0, 1]. Here any edge is counted twice, once going from
x to y and once from y to x. The underlying model also counts self loops as
possible edges. Is is desirable to minimise this version of CPM.

Definition 2.6 (Leiden’s Constant Potts Model [16]). Let G = (V,E) be a
graph, P be a partition of G and let γ ∈ [0, 1]. Furthermore, let E(C) denote
the number of edges in a community C ∈ P. The Constant Potts Model Q of
the partition P is:

Q(P) =
∑
C∈P

E(C)− γ ·
(
|C|
2

)
.
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Traag, Waltman and van Eck use a slightly different definition of CPM
(Definition 2.6) in their paper on the Leiden algorithm [16]. In the rest of my
thesis, I will stay in line with the Leiden paper and use Definition 2.6 for CPM.

There are three changes to the original definition. First, there is no negative
sign in front, hence it is desirable to maximise this version of CPM. Second,
each edge is only counted once. Third, the underlying model does not count self
loops as possible edges.

Contrary to modularity, CPM does not scale its value with a factor of 1
m .

Hence, its value range is not bounded to a constant value, but depends on
the number of edges and nodes in the graph. For example, consider a graph
G = (V, ∅) with |V | = n nodes and no edges. For γ = 1, the trivial partition
P = {V } has CPM score of:

Q(P) =
∑
C∈P

E(C)− 1 ·
(
|C|
2

)
= 0−

(
|V |
2

)
= −n · (n− 1)

2
.

Claim 2.7. Let G = (V,E) be a graph and let E(R, T ) denote the number of
edges going from R to T for any pair of disjoint subsets of nodes R, T ⊆ V . If
a community C ∈ P has a partition R, T ⊂ C, for which it is better to split
the community into R and T , i.e. CPM increases by splitting C into R and T .
Then, the following holds:

E(R, T )

|R| · |T |
< γ.

Proof. Let G = (V,E) be a graph, P be a partition. Let C ∈ P be a community
with subsets R, T ⊂ C s.t. R ∪ T = C and R ∩ T = ∅. Consider the case that
CPM increases if C is split into R and T , i.e.

E(C)− γ
(
|C|
2

)
< E(R)− γ

(
|R|
2

)
+ E(T )− γ

(
|T |
2

)
Note that the number of edges in C equals the number of edges in R and T

plus the number of edges going from R to T :

E(C) = E(R) + E(T ) + E(R, T ).

This implies

E(R, T )− γ
(
|C|
2

)
< −γ

((
|R|
2

)
+

(
|T |
2

))
.

Also note that because R, T partition C, their sizes sum to:

|R|+ |T | = |C|.

8



Consider the difference:

γ

(
|C|
2

)
− γ

((
|R|
2

)
+

(
|T |
2

))
= γ

((
|C|
2

)
−
(
|R|
2

)
−
(
|T |
2

))
= γ

1

2
(|C|(|C| − 1)− |R|(|R| − 1)− |T |(|T | − 1))

= γ
1

2

(
|C|2 − |C| − |R|2 + |R| − |T |2 + |T |)

)
= γ

1

2

(
|C|2 − |R|2 − |T |2)

)
= γ

1

2

(
(|R|+ |T |)2 − |R|2 − |T |2)

)
= γ

1

2

(
|R|2 + |T |2 + 2|R| · |T | − |R|2 − |T |2)

)
= γ

1

2
(2|R| · |T |)

= γ · |R| · |T |

Hence,
E(R, T ) < γ · |R| · |T |

which in turn implies the statement

E(R, T )

|R| · |T |
< γ.

The factor γ ∈ [0, 1] works as a threshold between the edge density inside a
community and between communities. Claim 2.7 shows that it increases CPM
to split a community if there is a partition of it with a edge density lower than
γ between the two parts of the partition.

Like modularity, CPM can also be applied to weighted graphs. In this case,
E(C) does not denote the number of edges in the community C, but the total
weight of the edges in community C. Note that in the weighted case, the proof
of Claim 2.7 still holds as E(C) = E(R) + E(T ) + E(R, T ) is still true in the
weighted case.

2.3 Louvain

This section closely follows the work publishing the Louvain algorithm of Blon-
del, Guillaume, Lambiotte and Lefebvre [2]

Louvain is a graph clustering algorithm trying to maximise the modularity
Q of the clustering P. At its core it is a greedy algorithm. It was developed by
Blondel, Guillaume, Lambiotte and Lefebvre and is named after the location of
its authors, a city in Belgium. It was published in 2008 and was and still is one
of the most widely used algorithms in its class.
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Louvain takes as input an undirected graph G = (V,E), allowing for self
loops and multi-edges. Furthermore, it may take the weights of the edges, if
none are given, weights w are assumed to be 1 for all edges: w(x, y) = 1 for all
x, y ∈ V .

One key advantage of Louvain is that it does not need a number of com-
munities to find as an input. This allows users to apply it to graphs without
knowing anything about the structure it contains.

The communities Louvain finds are returned in a hierarchical structure. This
allows users to dive deeply into individual communities and recover significant
substructures that might not be visible on the highest level.

Louvain can take optional parameters depending on the implementation.
One such value is a resolution parameter for calculating the modularity. It
may also take a threshold value. If this is not given, Louvain runs until there
is no increase in modularity any more. If it is given, Louvain only runs until
the change in modularity gets smaller than the threshold. This can limit the
diminishing returns of a longer running time.

The general procedure of the algorithm goes as follows:

1. Start with the singleton partition, i.e. each node in its own community.

2. Repeat until no further increase in modularity happens (or the increase
falls below the threshold value):

(a) Modularity optimisation sequence (MOS): look at each node and
move it to the community which results in the biggest increase in
modularity (this is the greedy part of the algorithm).

(b) Community aggregation sequence (CAS): create a new graph based
on the clustering provided by the previous MOS (this is where the
hierarchical structure of the clustering comes from).

3. Return the clustering of the graph.

One iteration of MOS and CAS is called a pass. Each pass works on the
output of the previous pass. Passes are made until no increase in modularity
happens from one pass to the other. This is equivalent to saying that passes
are made until no change in the clustering happens. To see this, note that on
the one hand, the algorithm moves a node only if it leads to a strict increase
in modularity, hence if the modularity did not increase, there could not have
been a movement of a node. On the other hand, if there was no change in the
community, the modularity also stays the same.

2.3.1 Modularity Optimisation Sequence

The aim of the modularity optimisation sequence (MOS) is to improve the
modularity score of the current clustering of the graph. Roughly, this is done by
iterating through all nodes of the graph repeatedly and moving the considered
node to the community which brings the largest increase in modularity. A
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node is not moved if there is no community to move it to that would bring a
strict increase in modularity. The MOS stops when an entire check of all nodes
happens which does not result in any node movement.

The order in which the nodes are considered can have a big effect on the run
time of the algorithm. A priori Louvain has no way to decide on a good or even
optimal ordering. Hence, it uses a random ordering.

When looking at a node i, only the communities of i’s neighbours are con-
sidered, as moving a node to a community from which it is disconnected would
not bring an increase in modularity. Furthermore, moving node i from its com-
munity C to another community D is split into two steps: First it is moved to
an isolated community C ′ = {i} and then it is added to the new community D.

To calculate the change in modularity ∆Q when moving node i from com-
munity C to community D a couple of things are needed. Without loss of
generality, let the graph be weighted. Otherwise assume all weights to be 1.
The sum of the weights of the edges incident to node i is denoted ki. The sum
of the weights of edges going from nodes in community C to node i is denoted
by ki,in(C). The sum of the weights of all the edges in a community C, i.e. the
edges where both ends are in C, is denoted by Σtot(C). This includes the edges
incident to node i if i ∈ C even when considering to remove i from C. Similarly,
it does not include the edges incident to node i when considering moving i to
community D while i /∈ D.

Using this notation, removing node i from a community C gives

∆Q− = −ki,in(C)

2m
−
(Σtot(C)− ki

2m

)2

+
(Σtot(C)

2m

)2

−
( ki

2m

)2

which has to be calculated once and adding node i to a community D gives

∆Q+ =
ki,in(D)

2m
−
(Σtot(D) + ki

2m

)2

+
(Σtot(D)

2m

)2

+
( ki

2m

)2

which has to be calculated for each of the communities of i’s neighbours. Hence
the change in modularity when moving node i from communities C to D is

∆Q = ∆Q+ −∆Q−.

Note that ki,in(C) and ki,in(D) can be computed locally because only the
neighbours of i have to be considered, and Σtot(C) and Σtot(D) can be stored
and only updated if a node changes communities. Furthermore, ki and m are
constants for the whole running of the algorithm and hence can be computed
once and then stored for further use.

A node switches communities only if ∆Q+ > ∆Q−. If they are equal or
∆Q+ < ∆Q−, the node stays in its own community.

Once the algorithm detects that there is no possibility to increase modularity
by moving individual nodes, the MOS ends and the community aggregation
sequence (CAS) starts. Louvain detects this by checking if an entire run of all
nodes has occurred and not a single change happened.
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2.3.2 Community Aggregation Sequence

The motivation for the community aggregation sequence (CAS) is as follows.
No improvement to the partition P of the graph G is produced by the MOS
can be made by moving individual nodes. Instead, one can still try to increase
the modularity by merging entire communities. To allow that a new weighted
graph G′ is constructed. G′ is weighted even if G was unweighted.

Each community C ∈ P in the partition produced by the previous MOS
becomes a node in the new graph. To each node in the new graph, a self-loop
` is added. The weight of the loop, denoted w(`, `), is set to the sum of the
weights of the edges inside the community:

w(`, `) =
∑
x,y∈C

w(x, y).

If G is unweighted, w(`, `) is twice the number of edges inside the community,
as in the sum above, each edge weight is summed twice: once as w(x, y) and
once as w(y, x). An edge between two nodes i and j is added, if there are edges
in G between the corresponding communities C and D in P. The weight of this
edge is the sum of the weights of the edges between C and D if G is weighted,
else it is the number of edges between the communities

w(i, j) =
∑

x∈C,y∈D
w(x, y).

Note that even if Louvain gets as input an unweighted graph, after the first
pass (i.e. one run of MOS and CAS) it will work with a weighted graph. This is
not a problem as Louvain treats any unweighted graph as a weighted graph with
weight 1 for all edges. Furthermore, note that one does not have to consider
the case that there are no edges between two communities, because to Louvain
a edge with weight zero is the same as having no edge at all.

2.3.3 Summary

To summarise and visualise how Louvain works, consider Figure 1. It starts
out on the input shown in the bottom left. The input is an unweighted graph
of 16 nodes. Note that in the two top left graphs, the numbers represent node
id’s while in the other two graphs they represent edge weights. The first mod-
ularity optimisation sequence clusters the nodes in 4 communities. These get
aggregated in the CAS.

As there were 4 communities found by the MOS, there are 4 nodes in the
new graph. Consider the edge of weight 3 connecting the red and light blue
nodes in the new graph. In the original graph there were three edges going from
the red community to the light blue community ((8, 11), (10, 11), (10, 13)) hence
in the new graph the edge going from the red node to the light blue node has
weight 3.

Furthermore, there is only one edge inside the light blue community going
from node 11 to node 13 and the self loop on the light blue node after the CAS
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Figure 1: Overview of how Louvain works [2]

has weight 2. This edge gets counted twice, once going from 11 to 13 and once
going from 13 to 11.

This is one example where Louvain starts out working on an unweighted
graph and after the first pass works with weighted graphs. In the second pass,
the green and the dark blue community get merged and the red and the light
blue community get merged. This also highlights how there exists a hierarchy
of clusterings. On the second level, nodes 10 and 13 are in the same community,
on the first they are in different communities.

2.3.4 Discussion

The fact that ∆Q can be computed locally, while modularity is a global property,
makes Louvain feasible in the first place. It cannot be highlighted enough how
important that is. Every time a node i is considered, for each community of i’s
neighbours ∆Q has to be calculated, hence at most the degree ki of i times.

The maximum number of passes the algorithm possibly has to make is the
number of nodes the input graph has. To show this, note that the algorithm
stops if there is no change between two passes. Hence, in the worst case, at least
one node has to be moved. Each Modularity Optimisation Sequence (MOS)
starts with the nodes in the singleton partition. At this point, moving one node
surely reduces the number of clusters by one. The algorithm starts the first
MOS with a community for each node i ∈ V in the input graph G = (V,E),
hence Louvain ends after at most |V | = n passes.

Experiments show that only a low number of passes is needed to achieve
stability. Most of the work is done in the first MOS which also takes most of

13



Figure 2: Summary of the experiments run by Blondel et al. [2]. Rows represent
different algorithms, “Our algorithm” is Louvain, the data in the cells is the
modularity score / running time. CNM [4], PL [11] and WT [17] are other
clustering algorithms. Empty cells mean a running time of more than 24 hours.

the time. Hence, later passes do not add significantly to the run time [2].
Figure 2 summarises the experiments run by Blondel et al [2]. It shows

that Louvain can reach higher modularity scores while running several orders of
magnitude faster. This enormous speed-up opens up the possibility to cluster
Graphs that before were too large and would run for too long. Even 2.5 hours
for clustering a graph with 118 million nodes and one billion edges is rather
fast compared to the larger than the 24 hour cut-off of the other algorithms.
When looking at the Web nd.edu graph, Louvain reaches only a marginally
higher modularity score than the CNM algorithm, but it is 1678 times faster
than CNM.

One issue is the first run of MOS. Here, a lot of time is spent checking if
nodes can be moved to other communities, even though there was no change in
their neighbourhood. Which is redundant and causes time to be wasted. This
issue was later addressed by Leiden [16].

One other of the main issue of Louvain is that it can cluster arbitrarily
badly connected communities and even disconnected communities [16]. This can
happen because if a community becomes disconnected in the MOS, it cannot
split up after a CAS because it gets reduced to a single node. To see how
the MOS might create a disconnected community, consider Figure 3. Node 0
is the the connecting node of the two parts in the red community. As this is
much strongly connected to the rest of the network, it will be moved to the
blue community. Now the red community is disconnected. Louvain cannot
split up the red community in two, as it moves only single nodes. Moving any
single node of the red community results in a decrease of modularity, hence it
will not happen. So the community remains disconnected. This also happens
with significant frequency in real world graphs [16]. These two issues led to the
development of Leiden.
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Figure 3: Example of a graph where Louvain clusters a disconnected community.
The thickness of the edges represents the weight. The number in the node is their
ID. The background shading represents the community nodes belong to [16].

2.4 Leiden

This section follows closely the work of Traag, Waltman and van Eck [16].
Leiden is a graph clustering algorithm trying to maximise the modularity

of the partition. It was proposed by Traag, Waltman and van Eck and is, like
Louvain, named after the location of its authors. In general, Leiden works quite
similarly to Louvain, as it solves the same problem, has similar input/output
interfaces, but does that with a few refinements over Louvain, running faster
while returning better results.

Leiden takes as input a graph with weighted or unweighted and undirected
edges. It allows for self-loops and multi-edges. As Louvain, if the input graph
is unweighted, it will assume all edge weights to be one and after the first
aggregation sequence it continues working with a weighted graph.

There is one last optional input: an initial partition of the nodes. Louvain
always starts with the singleton partition and by default Leiden does so, too.
When a partition is given, Leiden starts the first node movement sequence by
initialising the nodes in the given partition. This allows to iterate the algorithm,
i.e. let it run with the default singleton partition as a start, and feed the output
partition back as an input for another run of the algorithm.

Leiden does not require a number of clusters to find as input, allowing it to
be used, as Louvain, on graphs without any prior knowledge and no optimisation
for the number of clusters searched.

Leiden returns a clustering of the nodes of the input graph. This is different
to Louvain, which returns a hierarchy of clusters.

While Leiden works similarly to Louvain, it refines both modularity opti-
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misation sequence (MOS) and community aggregation sequence (CAS). Each
sequence gets a little tweak resulting in significant speed and quality improve-
ments. Furthermore, it introduces a third step, the partition refinement step
(PRS) in between, refining the partition found before aggregating the graph.

The general structure of the Leiden algorithms is as follows:

1. If there is a partition given as input, start with that, else start with the
singleton partition.

2. Repeat until there is no change in the partition from one iteration to the
next:

(a) MoveNodesFast (MNF): Each node is moved repeatedly to the neigh-
bouring community which gives the greatest increase in modularity.
This is similar to Louvain’s modularity optimisation sequence. MNF
returns a partition P.

(b) RefinePartition step (RPS): This is where the biggest difference
to Louvain comes from. It is an entire new step taking the partition
P produced in MNF and refining it to improve its quality outputting
Prefined. In particular, this is the step that makes sure that communi-
ties cannot be disconnected. RPS returns another partition Prefined.

(c) AggregateGraph step (AGS): A new graph G′ is created based on
the refined partition Prefined returned from the RPS. On top of that,
the partition P from the MNF is turned into a partition for the new
graph G′. This will be the starting partition for the next MNF.
Overall, this step is similar to the community aggregation sequence
of Louvain.

3. Return clustering of the vertices of the input graph.

A pass is one run of the MNF, RPS and AGS. Each pass creates one level
in the hierarchy of clusters. This is very similar to Louvain. One big difference
is that Louvain then returns the hierarchy of clusters, while Leiden returns a
clustering on the nodes of the original graph. Due to the repeated aggregation
of the graph Leiden works on, still a hierarchy of clusters arises. To see how
Leiden goes from that hierarchy of partitions to one on the original nodes, I
need to introduce the flattening operation.

Definition 2.8 (Flattening [16]). The flattening operation for a set S is defined
as

flat(S) =
⋃
s∈S

flat(s)

where flat(s) = s if s is not a set itself. A set that has been flattened is called
a flat set.

The flattening operation for a partition P is defined as

flat∗(P) = {flat(C) | C ∈ P}
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the set of the flattened communities. A partition that has been flattened is
called a flat partition.

Note the subtle difference between the flattening of a set and the flattening
of a partition. Consider any set of sets S. The flattening flat(S) of a set S
keeps “extracting” the elements s ∈ S until it returns non-set elements. On the
other hand, the flattening flat(P) of a partition P preserves the structure of the
partition. In particular, the flattening of a set is a set of elements, while the
flattening of a partition is a set of sets.

If you apply the set flattening to a (possibly hierarchical) partition P of the
nodes in a graph G = (V,E), you loose the partition information and get back
the set of nodes V :

flat(P) = V 6= Pflat = flat∗(P).

Coming back to Leiden, the flattening operation for partitions is used by
Leiden to turn the hierarchical partition of the nodes V of the input graph
into a flat partition. This way Leiden can flatten the hierarchy created by its
iterative structure and return a partition on the nodes of the input graph.

Next, I will go into the details of the three steps that make up Leiden:
MoveNodesFast, RefinePartition and AggregateGraph.

2.4.1 MoveNodesFast

The MoveNodesFast (MNF) step tries to maximise the modularity of the clus-
tering of the current graph. This step is quite similar to the modularity opti-
misation sequence of Louvain (see Section 2.3.1). In the MNF, each vertex is
considered repeatedly and moved to the neighbouring community which gives
the highest increase in modularity. This is done until no further improvement
is possible.

The MNF takes as input two objects. The graph G = (V,E) whose partition
it tries to optimise, and an initial partition Pin. This will be the starting point.
As mentioned before, Leiden takes a partition as an input. This partition is
used here in the first pass. If Leiden is given no partition, it starts with the
singleton partition as does Louvain. In later passes the MNF will start with an
input partition which comes from the AggregateGraph step, see Section 2.4.3.

The MNF starts by initializing a queue Q with all nodes v ∈ V added to it
in random order. The MNF removes a node i from Q and considers the com-
munities of i’s neighbours. Then, it calculates the change in modularity ∆Q for
each of the possible communities the same way as in Louvain (see Section 2.3.1).
Node i is then moved to the community C ′ that results in the largest positive
change in modularity. If there is no community which results in a positive
change in modularity, the node is not moved. Lastly, if the node was moved,
all its neighbours which are not already in the queue Q, and are not in i’s new
community C ′ are added to the queue:

Q.add({j ∈ V | (i, j) ∈ E, j /∈ Q, j /∈ C ′}).
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The MNF keeps checking nodes until the queue Q is empty. This is when
the MNF ends. This cut-off leads to Leiden having less computational steps
than Louvain, as it only adds those nodes to the queue for which the movement
of node i might result in a better community for them to be in. On the other
hand, Louvain keeps repeatedly checking all nodes until not a single movement
occurred. So if one node is moved, Louvain will check again at least all other
nodes one more time.

2.4.2 RefinePartition

The RefinePartition step (RPS) takes the partition P of the graph G = (V,E)
as produced by the MNF and refines it. This makes sure the partition follows
certain quality aspects, like connectedness of communities. A community C is
connected if the subgraph of G induced by C is connected. The RPS presents
the biggest change from Louvain because no similar step is part of Louvain.

The MNF starts by initialising the refined partition Prefined with the single-
ton partition on the nodes V :

Prefined = SingletonPartition(V ).

It then iterates through all the communities C ∈ P and refines them. As each
node is in one and only one of the communities in the partition P, each node
will be looked at most once when its community gets refined.

To explain how the refinement of a single community works, I need to intro-
duce the recursive size of a set:

Definition 2.9 (Recursive size [16]). The recursive size of a set S is defined as

‖S‖ =
∑
s∈S
‖s‖ ,

where ‖s‖ = 1 if s is not a set itself.

This makes it possible to count the individual elements, i.e. non-set items,
in a set of sets. For example, let S = {{x, y}, {y, z}}. Then the recursive set
size of S is:

‖S‖ = ‖{{x, y}, {y, z}}‖
= ‖{x, y}‖+ ‖{y, z}‖
= (‖x‖+ ‖y‖) + (‖y‖+ ‖z‖)
= (1 + 1) + (1 + 1)

= 4.

Note the difference between the size of the flattening of a set S (see Defini-
tion 2.4) and its recursive set size. The flattening of S is

flat(S) = {x, y, z}.
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Hence the size of the flattening is 3 which is lower than the recursive size of
S. This happens because the flattening operation produces a set, hence there
cannot be duplicate elements. On the other hand, the recursive size counts each
element in each of the sets, hence there may be duplicates. The two might be
equal if S does not contain any element more than once, as is the case for the
hierarchy of partitions as produced by Louvain. Hence, the recursive set size is
an upper bound on the size of the flattening of the set:

‖S‖ ≥ |flat(S)|.

Having introduced the recursive set size, I can now explain the refinement
of a single community C. It works as follows: Consider only those nodes in the
community C that are well connected to the rest of the community. The set of
those nodes is denoted R. R is defined as:

R = {i | i ∈ C,w(i, C \ {i}) ≥ γ · ‖i‖ · (‖C‖ − ‖i‖)}.

I will now explain what each term means. To decide whether a node i is well
connected to the rest of its community, i.e. part of R or not, the threshold d for
the weight of edges going from i to the rest of C is calculated:

d = γ · ‖i‖ · (‖C‖ − ‖i‖).

The underlying assumption is that one unweighted edge corresponds to an edge
of weight 1. Here, the recursive set size is needed, as the algorithm might have
done already a number of passes, and the nodes of the original input graph are
“buried” in a hierarchy of sets. The product of the recursive size of i and the
recursive size of C minus the recursive size of i gives the possible number of
edges between i and the rest of the community. This product gets scaled with a
factor γ ∈ [0, 1] giving d. When discussing the guarantees of Leiden in Section 3
I will go into more detail what this γ means. Then d gets compared to the
actual weight of the edges going from i to the rest of C, denoted w(i, C \ {i}).
If there is more than or as expected much weight of edges going from i to the
rest of the community, it is deemed well-connected and part of R.

The RPS now considers each of the nodes in R one by one. If node i, which is
currently considered, is not any more in a singleton community in Prefined it will
be skipped. If it is still in a singleton community, it means it is up for merging
with any of the other communities. Consider the set T of all communities in
the refined partition Prefined which are a subset of C and are well-connected to
the rest of C. This is defined similarly, where w(D,C \D) refers to the weight
of the edges going from D to the rest of C:

T = {D | D ∈ Prefined, D ⊆ C,w(D,C \D) ≥ γ · ‖D‖ · (‖C‖ − ‖D‖)}.

Node i will be merged randomly to any of the communities in T which
results in a non-negative change in modularity ∆Q. The probability for each
community in T is proportional to the increase in modularity. If node i was
moved, Prefined gets updated accordingly.
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Note the crucial difference to Louvain and the MNF of Leiden, instead of
moving node i to the community with the highest increase of modularity, it is
moved randomly to any one of the communities that does not decrease modu-
larity. This is the reason why Leiden is not strictly greedy. I will discuss the
implications of this and why this is necessary in Section 3.1.

After all communities are split up and merged back together into well con-
nected parts, the refined partition is returned by the RPS. This triggers the
AggregateGraph step.

Note that RPS does not move nodes with the freedom of the MNF step. It
can only move a node i into communities that are subsets of the community i
was part of, in the partition produced by MNF. Hence, RPS can not move nodes
to any other community, it only splits up existing communities along lines of
weak connectedness, resulting in well connected communities.

2.4.3 AggregateGraph

The AggregateGraph step (AGS) takes the results of the previous MNF and
RPS and turns them into a new graph for the MNF of the next pass to work
on. This is quite similar to the Community Aggregation Sequence of Louvain
(see Section 2.3.2). The main difference is that AGS does not use the partition
of MNF to create the new graph, but the refined partition of RPS.

AGS creates a new graph G′ = (V ′, E′) based on the graph G = (V,E) of
this previous pass. Each community C in the refined partition P becomes a
node in the new graph:

V ′ = {C | C ∈ Prefined}.

To each node i ∈ V ′ in the new graph a self loop ` is added. The weight of `
is twice the total weight of the edges in community C ∈ Prefined corresponding
to node i. To each pair of nodes (i, j) ∈ V ′ an edge gets added. The weight of
that edge equals the sum of the weights of the edges between the communities
in Prefined corresponding to nodes i and j.

Lastly, the AGS takes the original partition P as produced by the MNF and
creates a partition P ′ for the new graph G′. Each community in P ′ corresponds
to a community in P. Nodes in V ′ are in the same community in P ′ if their
corresponding communities in Prefined are subsets of the same community in P.
Hence, a community C ′ of the new partition P ′ corresponding to the community
C ∈ P is of the form:

C ′ = {Crefined | Crefined ⊂ C,Crefined ∈ Prefined}

P ′ is then used by the MNF of the next pass as the initial partition.

2.4.4 Summary

To summarise how Leiden works consider Figure 4. Level 1 represents the first
pass, Level 2 the second pass. Further passes have been omitted. The thickness
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Figure 4: Overview of how Leiden works [16]

of the edges represents their weight, the self loops are represented by the size of
the nodes. The input graph is represented in a). Leiden starts with a singleton
partition. After the first MNF 3 communities arise as shown in b). The node
colour represents the community of the node. Then, the red and the green
communities get split up by the RPS into two smaller communities each, while
the blue community is not split up by the RPS. The background shading in c)
represents the partition as produced by the MNF. Graph c) gets aggregated by
the AGS and results in graph d). Note that the two top nodes are both coloured
red, i.e. in the same community, and the two bottom nodes are both coloured
green, representing the green community from the first MNF. This is then the
input graph and partition for the second pass of the algorithm.

2.4.5 Improvements on Louvain

The most obvious drawback of Louvain was that it could create disconnected
communities. This gets addressed by Leiden in the RefinePartition step
(RPS). Badly connected, in particular disconnected, communities get split up
into (well-)connected components.

The RPS also introduces a step which is not strictly greedy. When refining a
community C, C is first split up completely into the singleton partition. Then,
the nodes in the community C get merged. A node considered for merging is not

21



merged greedily to the community that gives the highest increase in modularity.
Instead, it is merged randomly to one of the communities that results in a non-
negative change in modularity. The probability for each of the communities
is proportional to the increase of modularity. Hence, a node is more likely to
be merged into a community that gives a higher yield. By avoiding a strictly
greedy merging and implementing a non-decreasing modularity merging allows
Leiden to reach optimal partitions. I will discuss in detail why this is necessary
and how this is achieved in Section 3.

Another advantage of Leiden over Louvain is that Leiden does the movement
of nodes more efficiently by reducing the number of times the MoveNodesFast

(MNF) of Leiden checks if it can move a node. While Louvain keeps checking
all nodes until it encounters an iteration over all nodes where not a single node
moves, Leiden keeps track of the nodes that have to be checked. A node has to
be checked again only if its neighbourhood has been modified. Hence, if a node
is moved, its neighbours outside its new community have to be checked again.
These get added to the queue of nodes to check, while not adding any node that
is already in the queue.

Furthermore, after the first pass, the following MoveNodesFast (MNF) does
not start from the singleton partition, as does Louvain. Instead, it starts from a
partition based on the result of the previous MNF. Consider a community which
got split up in the RPS, all parts are turned into nodes of the aggregated graph
for the next part. These nodes are put in one community. If a community did
not get split up in the refinement step, it is put into its own community.

Leiden provides a number of guarantees which Louvain does not. I will
discuss this in detail in Section 3.

3 Guarantees of Leiden

Leiden provides a number of guarantees which are summarised in Table 1. I will
define and prove these in this section. Furthermore, I will formalize and discuss
the implications of the greediness of Louvain and compare that to Leiden. This
section follows closely the supplementary information to the paper presenting
Leiden by Traag et al. [16].

While Louvain and Leiden are published with modularity as the quality
score they try to maximise, Traag et al. provide the proofs of the guarantees
based on the Constant Potts Model (CPM). See Section 2.2 for its definitions
and discussion. Note that CPM takes a threshold parameter γ ∈ [0, 1] (see
Definition 2.6). This is the same γ that the guarantees depend on.

Traag et al. claim that the proofs can be extended to modularity by re-
defining the base case of the recursive set size (see Definition 2.4.2). Instead of
‖i‖ = 1 if i is not a set itself, set ‖i‖ = ki to the degree ki of node i.

As I explained before, it is possible to iterate Leiden, i.e. using the output
partition from one run of Leiden as input for another run of Leiden. Louvain can
be slightly altered to also take an input partition, hence opening the possibility
for iterating Louvain. This is done by Traag et al. [16].

22



Table 1: Overview of guarantees of Louvain and Leiden [16].

When Guarantee Louvain Leiden
Each iteration γ-separation X X

γ-connectivity X
Stable iteration Node optimality X X

Subpartition γ-density X
Asymptotically stable Uniform γ-density X
iteration Subset optimality X

The guarantees of Leiden and Louvain come at different points in time when
iterating the algorithm. When a guarantee occurs at “each iteration”, it is true
for any output of the algorithms. A “stable iteration” is one where the output
partition of the algorithm equals the input it got, i.e. the algorithm did not
change the partition

P = Leiden(G,P).

A stable iteration for Leiden does not mean that the next iteration will also
be stable. This arises due to the randomness in the RefinePartition step.
But, there will be a time when Leiden cannot make any further adjustments to
a partition (see Lemma 3.1). This is called “asymptotically stable iteration”.
Any asymptotically stable iteration is also a stable iteration.

Lemma 3.1 ([16]). Let G = (V,E) be a graph, P0 be a flat partition of G and
Pt+1 = Leiden(G,Pt) represent the sequence of partitions arising from iterating
Leiden. There exists a time τ such that Pτ = Pt for all t ≥ τ .

3.1 Greediness

Both Louvain and Leiden move nodes greedily during their node movement
parts, the Modularity Optimization Sequence (MOS) for Louvain and Move

NodesFast (MNF) for Leiden. As Louvain does not move nodes in any other
step of the algorithm, it makes it a greedy algorithm. While Leiden also
moves nodes greedily in the MNF, it does not move them greedily during the
RefinePartition step (RPS). To discuss the implications of this let me intro-
duce some notation and definitions.

Notation. For a graph G = (V,E), a node i ∈ V , a partition P of G, and a
community C ∈ P, let

P(i 7→ C)

denote the partition that results from moving node i to the community C. Note
that P(i 7→ C) = P if i ∈ C. Furthermore, let

Q(P)

denote the quality score Q of a partition P. Lastly, let

∆Q(P (i 7→ C))
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denote the change in quality score arising from moving node i to community C
starting from the partition P. Here C ∈ P ∪ {∅} may be any community in P
or an empty community. It means moving i to a new community. This can be
generalised to a set S ⊂ V of nodes: P(S 7→ C) and ∆Q(P (S 7→ C)).

Definition 3.2 (Move sequence [16]). Let G = (V,E) be a graph, and let
P0, . . . ,Pτ be a sequence of partitions of G. A sequence of partitions P0, . . . ,Pτ
is called a move sequence if for each time t = 0, . . . , τ − 1 there exists a node
i ∈ V and a community C ∈ Pt ∪ {∅} such that Pt+1 = Pt(i 7→ C).

Definition 3.3 (Non-decreasing move sequence [16]). A move sequence P0, . . . ,Pτ
is called non-decreasing if the quality score Q of the partitions Pi does not de-
crease from one step to the next, i.e. for all t = 0, . . . , τ − 1:

Q(Pt+1) ≥ Q(Pt).

Definition 3.4 (Greedy move sequence [16]). A move sequence P0, . . . ,Pτ is
called greedy if in each step t = 0, . . . , τ −1 the node i which is moved, is moved
to a community which maximises the change in quality score:

Pt+1 = Pt(i 7→ C) s.t. C = arg max
D∈Pt∪∅

∆Q(Pt(i 7→ D)).

Note that any greedy move sequence is also non-decreasing, as a node can
always be left in its own community, resulting in no change in quality score.
Also note that whether a move sequence depends on the order of nodes moved.
If at time t a different node is moved, the result of the arg max may be different.

Having defined greedy and non-decreasing move sequences, I can now say
that each pass of Louvain follows a greedy move sequence. This move sequence
starts with the singleton partition and ends with the output partition. On the
other hand, each pass of Leiden produces a non-decreasing move sequence. It
starts with the input partition, if given, else with the singleton partition. It
ends with the output partition.

There are graphs for which a greedy move sequence cannot reach an optimal
partition. Figure 5 shows such a graph. Any greedy move sequence reaches
the partition shown in a). Greediness always moves nodes 0 and 1 together
in one community because the edge between them has more weight than the
edges going from 0 to the blue community or from 1 to the green community.
Reaching the optimal partition, as shown in b), would require that 0 and 1 are
not in the same community. This shows that Louvain cannot guarantee reaching
the optimal partition.

On the other hand, Leiden does not produce a greedy move sequence. It
produces a non-decreasing move sequence. Theorem 3.5 shows that any optimal
partition can be reached by a non-decreasing move sequence. This means that
Leiden can always reach an optimal partition. Leiden also does this eventually
as I will discuss in Section 3.6. Note that Theorem 3.5 does not imply Leiden
reaches an optimal partition in polynomial time.
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Figure 5: This graph is an example where a greedy move sequence optimising
CPM with resolution γ = 1 cannot reach the optimal partition Subfigure b).
The thick edges have weight 3, the thin have weight 3

2 . The number in the
nodes are their ID. Subfigure a) shows the partition that is reached by any
greedy move sequence and Subfigure b) shows the optimal partition [16].

Theorem 3.5 (Optimal move sequence [16]). Let G = (V,E) be a graph, and
let P∗ be an optimal partition of G. Then there exists a non-decreasing move
sequence P0, . . . ,Pτ which starts with the singleton partition P0 = {{i} | i ∈ V }
and ends with the optimal partition Pτ = P∗ and has length τ = |V | − |P∗|.

Proof. This is proven by Traag et al. in the supplementary information to the
Leiden paper [16]. Let P∗ be an optimal partition of a graph G = (V,E) and
P0, . . . ,Pτ be a move sequence starting at the singleton partition

P0 = {{i} | i ∈ V }.

To see how to construct the move sequence for a single community, consider any
C ∈ P∗. Chose any node i ∈ C as the starting point. Then move each of the
other nodes j ∈ C \ {i} into the community of i. Why is this always possible
without decreasing CPM? Traag et al. prove this by contradiction.

Assume there is a time t = 0, . . . , τ − 1 in the move sequence P0, . . . ,Pτ
where there exist only nodes i for which moving i to the current state C ∈ Pt−1

of its optimal community C∗ ∈ P∗ decreases CPM:

∆Q(Pt−1(i 7→ C)) < 0. (1)

Let S = C∗ \ C be the nodes that still have to be moved to C to produce the
optimal community C∗ at time t. Inequality 1 implies that for all i ∈ S there
is less weight of the edges going from i to C than the model of CPM expects it
to. By Claim 2.7:

w(i, C) < γ · ‖i‖ · ‖C‖ .
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Remember that
‖S‖ =

∑
i∈S
‖i‖ .

is the definition of the recursive set size. Hence, the sum over all i ∈ S gives

w(S,C) =
∑
i∈S

w(i, C) <
∑
i∈S

γ · ‖i‖ · ‖C‖ = γ · ‖S‖ · ‖C‖ .

On the other hand, by optimality of C∗,

w(S,C) ≥ γ · ‖S‖ · ‖C‖ .

Otherwise C would already be an optimal community. Hence there is a con-
tradiction, and it is always possible to move a node to its desired community
without decreasing CPM.

After |C|−1 steps the community C exists in the current partition and is in
its desired form. Construct the entire move sequence by joining the sequences
for each of the communities C ∈ P∗. Hence, this move sequence will start at
the singleton partition and end at the optimal partition P∗.

Note that not all nodes have to be moved because the communities don’t
start out empty, but each community C of the optimal partition P∗ already has
a node in it from the start. Hence |P∗| many nodes do not have to be moved.
The rest of the nodes have to be moved once. Hence the length of the move
sequence is:

τ =
∑
C∈P∗

|C| − 1 = |V | − |P∗|.

3.2 γ-Separation

Definition 3.6 (γ-separation [16]). A pair of communities C,D ∈ P of a par-
tition P is γ-separated if merging the two communities does not increase the
CPM score Q:

∆Q(P(C 7→ D)) ≤ 0.

Note that P(C 7→ D) = P(D 7→ C). Hence ∆Q(P(C 7→ D)) = ∆Q(P(D 7→ C)).
A community C ∈ P is γ-separated if C is γ-separated with respect to all D ∈ P.
A partition P is γ-separated if all communities C ∈ P are γ-separated.

The intuition to γ-separation links back to Claim 2.7. Let C,D ∈ P be
two γ-separated communities. Hence, merging them would not increase the
modularity. By Claim 2.7 this means that

E(C,D)

|C| · |D|
≤ γ.

Hence the density of nodes between the two communities is lower than γ.

26



Theorem 3.7. Let G = (V,E) be a graph and Pt be a flat partition of G.
Then Pt+1 = Leiden(G,Pt) is γ-separated.

This theorem is proven by Traag et al. [16], I will explain the main idea
behind it. Recall that Leiden aggregates the graph it works on in each pass. It
stops when the MoveNodesFast (MNF) does not move any nodes. Hence, no
increase in CPM can be achieved by moving a node in the graph at the current
level of aggregation. A node in the aggregate graph represents a community
in the output partition. Hence the previous statement is equivalent to saying
merging two communities does not increase, i.e. they are γ-separated.

3.3 γ-Connectivity

Definition 3.8 (γ-connectivity [16]). A set of nodes S, subset of a community
S ⊆ C ∈ P, is γ-connected if ‖S‖ = 1 or S can be partitioned into two sets R
and T such that E(R, T ) ≥ γ · ‖R‖ · ‖T‖ and R and T are γ-connected.
A community C ∈ P is γ-connected if S = C is γ-connected.
A partition P is γ-connected if all communities C ∈ P are γ-connected.

Due to the recursive nature of the definition of γ-connectivity it is not
straight forward to give an intuition for it. In a way, it is the opposite of
γ-separation. γ-separation requires for a pair of communities, i.e. a disjoint
pair of sets of nodes, that

E(C,D)

‖C‖ · ‖D‖
≤ γ.

γ-connectivity requires for a disjoint part of sets of nodes that

E(C,D)

‖C‖ · ‖D‖
≥ γ.

Hence, for a γ-connected community C that splits into R and T . The converse
of Claim 2.7 implies that CPM does not increase if community C is split into R
and T .

Consider the extreme case of γ = 0. Any subset S of nodes of any graph is
0-connected. This holds as E(R, T ) ≥ 0 is a non-negative function. Hence, any
partition R, T of S will have 0 or more edges going from R to T .

On the other hand, any complete graph Kn is 1-connected. This holds as
any partition into set R, T of Kn has the maximum number of edges between
them, hence E(R, T ) = ‖R‖ ‖T‖ .

To show the limitations of γ-connectivity let me introduce dumbbell graphs.

Definition 3.9 (Dumbbell graph). Let n ∈ N be a natural number. A dumbbell
graph Dn is a graph that consists of two complete graphs Kn of n nodes that
are connected by a single edge.

Claim 3.10 (Dumbbell graph is 1
3 -connected). Let n ∈ N. Let Dn be a dumb-

bell graph, then Dn is 1
3 -connected.
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Proof. I will do this proof by induction on n, the size of the complete graphs Kn

that make up Dn. Let n = 1. D1 is a graph with two nodes and edge between
them, hence a complete graph of size 2. It can be partitioned into two subsets
R and T each having one node in them, and one edge between them. Hence,

E(R, T ) = 1 ≥ 1

3
=

1

3
· 1 · 1 = γ ‖R‖ ‖T‖

This shows that D1 is 1
3 -connected. In fact it is 1-connected.

Let n ≥ 2 and assume Dn−1 is 1
3 -connected. Let x, y be the two nodes that

are the endpoints of the edges that connects the two Kn that make up Dn.
Set R to one node from one of the Kn, but neither x nor y. Set T to the

rest of the nodes. R has n − 1 edges going to the rest of the Kn it was taken
from, and none to the other. Hence

E(R, T ) = n− 1 ≥ 2

3
n− 1

3
=

1

3
· 1 · (2n− 1) = γ ‖R‖ ‖T‖ .

So there is a partition of Dn into R, T where ‖R‖ = 1 and E(R, T ) ≥ γ·‖R‖·‖T‖.
It remains to show that T is 1

3 -connected.
T is made up of one Kn and one Kn−1. Set R′ to one node from the Kn

which is neither x nor y. Set T ′ to the rest of nodes. Note that T ′ = Dn−1.
Again, there are n−1 edges going from the node in R to the rest of the Kn and
none to the Kn−1. Hence,

E(R′, T ′) = n− 1 ≥ 2

3
n− 2

3
=

1

3
· 1 · (2n− 2) = γ ‖R‖′ ‖T‖′ .

So there is a partition of T into two subsets R′, T ′ where the edge threshold is
met, ‖R‖ = 1 and by induction assumption T ′ = Dn−1 is 1

3 -connected. Hence,
T is 1

3 -connected. Hence, Dn is 1
3 -connected.

Claim 3.10 shows an extreme case of γ-connectivity where there is only
one partition of the set of nodes with high enough edge density between them.
Especially the edge density between the two Kn that make up a dumbbell graph
can be arbitrarily low (namely 1

n2 ) while it is still 1
3 -connected.

Theorem 3.11 (γ-connectivity [16]). Let G = (V,E) be a graph, let P be
a flat partition of G, and let P ′ = Leiden(G,P) be the output of the Leiden
algorithm. Then P ′ is γ-connected.

Traag et al. prove this inductively over `, the pass number. They show that
each community in the partition as produced by the pass is γ-connected. The
part of Leiden that ensures γ-connectivity is the RefinePartition step (RPS).
The RPS makes sure that only well-connected communities are produced. This
also formalizes what “well-connected” means: γ-connected.
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3.4 Subpartition γ-Density

Definition 3.12 (Subpartition γ-density [16]). A set of nodes S, subset of a
community S ⊆ C ∈ P, is subpartition γ-dense if the following two conditions
are satisfied:

1. Moving S to its own community does not increase the CPM score:

∆Q(P(S 7→ ∅)) ≤ 0,

2. ‖S‖ = 1 or S can be partitioned into two sets R and T such that E(R, T ) ≥
γ · ‖R‖ · ‖T‖ and R and T are subpartition γ-dense.

A community C ∈ P is subpartition γ-dense if S = C is subpartition γ-dense.
A partition P is subpartition γ-dense if all communities C ∈ P are subpartition
γ-dense.

Subpartition γ-density is an expansion on γ-connectivity. When partitioning
a community C into the two sets R and T , splitting the community C into R
and T must not increase the quality function. Furthermore, this must also hold
recursively for R and T . This shows how subpartition γ-density directly implies
γ-connectivity. Next, I will explore if the converse holds as well

Consider a γ-connected community C. When splitting C into subsets R and
T as specified for γ-connectivity, Claim 2.7 implies that moving R or T to their
own community does not decrease CPM. Hence Condition 1 of the definition of
subpartition γ-density is satisfied. Due to the recursive nature of subpartition
γ-density, this must also hold for the partitions of R and T . γ-connectedness of
C implies γ-connectedness of R as well, hence there is a partition of R into R′

and T ′ with
E(R′, T ′) ≥ γ ‖R′‖ ‖T ′‖ .

This does not imply that moving R′ or T ′ out of C into their own communities
does not decrease CPM. Hence, this shows that while it might seem like γ-
connectivity implies subpartition γ-density, it does not.

Theorem 3.13 (γ-connectivity [16]). Let G = (V,E) be a graph, and P be a
flat partition of G. Let P ′ = Leiden(G,P) be the output of Leiden for G and
P. If this is a stable iteration, i.e. P ′ = P, then P ′ is subpartition γ-dense.

Traag et al. prove this by induction on the pass level `. The RPS then makes
sure that each community is subpartition γ-dense. The recursiveness arises from
the number of passes Leiden does.

Note that subpartition γ-density implies that moving any node to a new
community does not increase CPM. This is not the same as node optimality, as
discussed below.
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3.5 Node optimality

Definition 3.14 (Node Optimality [16]). A community C ∈ P is node optimal
if moving any node i ∈ C to any community D ∈ P does not increase the quality
score Q:

∆Q(P(i 7→ D)) ≤ 0.

A partition P is node optimal if all communities C ∈ P are node optimal.

Theorem 3.15 (Node optimality [16]). Let G = (V,E) be a graph, and P be
a flat partition of G. Let P ′ = Leiden(G,P) be the output of Leiden for G and
P. If this is a stable iteration, i.e. P ′ = P, then P ′ is node optimal.

Traag et al. prove this by contradiction. Suppose there is a node which can
be moved to a better community, i.e. moving it there increases CPM. Then
MoveNodesFast does so. This is a contradiction to the fact that P is a stable
partition, i.e. the algorithm does not do a movement of nodes. Note that this
argument also applies to Louvain.

3.6 Subset Optimality

Definition 3.16 (Subset optimality [16]). A community C ∈ P is subset opti-
mal if moving any subset S ⊆ C of C to a different community D ∈ P or a new
community D = ∅ does not increase the quality score Q:

∆Q(P(S 7→ D)) ≤ 0.

A partition P is subset optimal if all communities C ∈ P are subset optimal.

Definition 3.17. Let G = (V,E) be a graph, P0 be a flat partition of G and
(Pt)t∈N be a sequence of partitions defined recursively:

Pt+1 = Leiden(G,Pt).

This represent the sequence of partitions arising from iterating Leiden. A par-
tition Pτ is called asymptotically stable if Pt = Pτ for all t ≥ τ , i.e. τ is an
asymptotically stable iteration of Leiden.

Theorem 3.18 (Subset optimality [16]). Let G be a graph, and let P be a flat
partition of G. If P is asymptotically stable, then P is subset optimal.

As stated above, note that subset optimality is not the same as optimality.
Subset optimality is the closest guarantee Leiden has to optimality. Traag et al.
prove this by contradiction. Let P asymptotically stable. If P were not subset
optimal, there would be a move sequence for the RPS to change the partition.
The probability of the RPS following that move sequence is non-zero. Hence,
the would eventually do so with probability 1. Here the probabilistic part of
Leiden is essential.

30



3.7 Uniform γ-Density

Definition 3.19 (Uniform γ-density [16]). A community C ∈ P is uniformly
γ-dense if moving any subset S ⊆ C to a new community does not increase the
quality score Q:

∆Q(P(S 7→ ∅)) ≤ 0.

A partition P is uniformly γ-dense if all communities C ∈ P are uniformly
γ-dense.

Uniform γ-density is a restriction on subset optimality where a subset of
a community can only be moved to a new community, instead of any other
community. Hence, if a partition is subset optimal, it is also uniformly γ-dense.
Traag et al. present uniform γ-density as a corollary to subset optimality (see
Theorem 3.18).

3.8 Summary

Let me summarise the guarantees of Leiden and list again which implies which.
Note that subset optimality is not the same as optimality. Optimality im-
plies subset optimality, but not the other way round. Subset optimality is the
strongest of all the guarantees, it implies γ-separation, node optimality and uni-
form γ-density. Uniform γ-density in turn implies subpartition γ-density, which
implies γ-connectivity which implies connectivity, if γ > 0. It is not enough to
only prove subset optimality, as it occurs only in asymptotically stable itera-
tions, and the other guarantees (except uniform γ-density) occur before that,
at different stages.

4 Design

The purpose of my software is to automate the process of clustering graphs using
Louvain and Leiden and in order to compare the two algorithms. This process
starts with an input graph file and produces a clustering of this graph visualised
in a plot, or modularity scores of multiple clusterings shown in a chart. At the
press of a button the software should do all the work and export the desired
data, graphs and charts to predefined locations. In this section, I will explain
how the design for my software arose and what thoughts and ideas went into
creating it.

In general, I followed an iterative design approach, starting from a rough
sketch of the software with pen and paper. I successively refined the design as
I worked out the necessary features for the software. The final design of the
software is shown as a UML2.0 class diagram in Figure 6.

The first step was to get an overview of possible inputs and decide which
graphs I wanted to work with. For that I went to an online graph repository
“Network Repository” [12] and selected 20 graphs. My aim was to cover sizes,
i.e. number of nodes and edges, of various orders of magnitude, and cover several
fields of study where the graphs come from. Furthermore, some graphs have
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Table 2: Name, number of nodes and edges of graphs clustered as determined by
my code. Except graph 5 [12] which was too large for my computing resources.

Graph Number of Nodes Number of Edges

1 fly 1781 33641
2 cat 65 1139
3 mouse-1 29 44
4 mouse-2 193 214
5 bnu 696300 14320000
6 gene-cx 4413 108818
7 gene-ht 2570 13691
8 gene-lc 4227 39484
9 email-eu 32430 54397
10 email-tarragona 1133 5451
11 power-bus 1138 2596
12 power-usa 4941 6594
13 matrix-11 87804 2565054
14 matrix-13 94893 3260967
15 ship-1 140385 1707759
16 ship-5 179104 2200076
17 youtube 1134890 2987624
18 dblp 317080 1049866
19 wikipedia 1791489 28511807
20 email-gt 1005 25571

weighted edges while some have unweighted edges. Table 2 shows the sizes of
those graphs as determined by my code, the names were chosen by me. Note
that Graph 5 was too large to be processed by my computing resources (Intel
Core i7-7700HQ a quad-code running at 2.8 GHz with 16 GB of RAM running
Windows 10 with WSL Ubuntu) and thus the numbers are as reported on the
Network Repository [12] and not as determined by my code.

After having selected the graphs to cluster, the next step is to decide how to
parse their data. As the graphs from the network repository come in different
file formats, a core part of the pipeline is designing a set of parsers for each file
type. To facilitate code reuse, the design follows the Template Method design
pattern [13]. All common code is implemented in the abstract the Parser base
class that provides the interface to parse a given graph file. Each concrete
parser inherits from that (see Figure 6) and only the parse method has to
be implemented. This allows my implementation to follow the “Don’t repeat
yourself” (DRY) software engineering best practice. The rough procedure of
each of the parsers is the same. They have to open the file, read the data (this
is where they differ), produce the graph object and close the file. The Template
Method Pattern lets me keep the parts of the algorithm that stay the same,
leaving only the parse method that varies depending on the file format.
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main

-instance : ModularityCollector

+instance() : ModularityCollector

+add_partition()

+plot_partitions(destination_path)

+generate_summary_table(destination_path) 

ModularityCollector

+unweighted_pipeline()

+weighted_pipeline()

+pipeline_median()

+pipline_median_multithreading()

+visualize_graph()

Pipelines

+run()

+get_partition()

LouvainThread

+run()

+get_partition()

LeidenThread

+export(graph, path)

-create_lines()

Export

-create_lines()

LouvainExport

-create_lines()

LeidenExport

+parse_dict(partition, graph)

+parse_tree(path, graph)

CommunityParser

+parse_to_igraph(path) : graph

-parse()

Parser

-parse()

TxtParser

-parse()

GeneParser

-parse()

MtxParser

-parse()

MtxWeightedParser

-parse()

UngraphParser

Figure 6: UML2.0 class diagram showing the design of my software.

The Pipelines class is the central piece of my software. This is where the
different experiments are defined. A pipeline gets a graph to cluster, parses
it with the appropriate parsers. It then clusters the graph using Louvain and
Leiden. Finally it returns the graph and the two partitions, as produced by the
algorithms, which can then be fed to the visualization pipeline to plot the
graphs and show the communities as node colourings. The pipelines offer the
automation I set out to reach.

5 Implementation

The software is implemented in Python 3. The main reason for choosing Python
is its versatility and readability. Furthermore, Traag et al. published an imple-
mentation of the Leiden algorithm as a Python package [14]. While Blondel et
al. [2] published an implementation of the Louvain algorithm in C++, this im-
plementation ended up not working as expected, returning the trivial partition
for the largest graphs. While interfacing C++ form Python is possible, in the
end I opted to use the Python implementation of Louvain by Aynaud [1].

To run the software, make sure you have a Python interpreter version 3.8.10

or higher and the following list of packages installed with the given version:

� python-louvain 0.16 [1]

� leidenalg 0.9.1 [14]

� igraph 0.10.2 [5]

� matplotlib 3.6.2 [8]

� networkx 2.8.8 [6]
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Figure 7: Modularity scores of Louvain (blue) and Leiden (orange) for selected
graphs. The graphs from left to right: fly, cat, mouse-1, mouse-2, gene-cx,
gene-ht, gene-lc, email-eu, email-tarragona, power-bus, power-usa,
matrix-11, matrix-13, ship-1, ship-5, youtube, dblp, email-gt.

� pandas 1.5.2 [10]

It is a matter of executing the command python3 main.py and the software
starts clustering the graphs. In the graph settings.py file, I specify the details
for each graph to cluster. Change the details here if needed.

Note that the Leiden algorithm as implemented in the leidenalg pack-
age [14] is slightly different compared to the version that was published by Traag
et al. [16]. leidenalg allows the choice of other quality scores to try to max-
imise, not only modularity and CPM. To achieve that, the RefinePartition

step is slightly different. When merging subsets of communities, leidenalg

does not check if the subset in question is sufficiently well connected to the
rest of the community. Hence, subpartition γ-density is not guaranteed by this
implementation. The other guarantees still hold [14].

6 Discussion

To compare the modularity scores achieved by Louvain and Leiden, consider
Figure 7. For each of the 19 graphs I worked with, it shows the modularity
score of the clustering as produced by Louvain and Leiden. Figure 7 shows that
Leiden consistently outperforms Louvain. Only for graphs mouse-1, mouse-2
and gene-cx Louvain comes very close to Leiden. In all the other cases, Leiden
clearly outperforms Louvain. This confirms the findings of Traag et al. [16].

The graph where Leiden achieves the biggest improvement on Louvain is
the fly graph. Figure 8 (Appendix B) shows the partition by Louvain and
Figure 9 shows the partition by Leiden. The colours of the nodes represent
the communities they belong to. Leiden achieves a modularity of 0.2660 while
Louvain achieves a modularity of 0.2043. The position of each node is the same
in both plots. For example, the three orange nodes in the top right corner of
the Louvain plot represent the same nodes as the three dark blue nodes in the
top right corner of the Leiden plot.
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On limitation of my implementation is its inflexibility. If I were to do this
project again, I would use Jupyter notebooks [9]. The main bottleneck I en-
countered was the amount of time needed to cluster the graphs. Every time
my program terminates, it discards the clusterings. Hence, when developing
and debugging, I would cluster the same graphs over and over again. Jupyter
notebooks would have allowed me to keep the clusterings and only re-run a part
of the code. One thing I would keep the same is the design of the parsers.

What stood out to me was how readily available graphs are on the inter-
net. The Network Repository hosts over 3000 graphs from more than 30 areas.
Biological, economical and citation networks are three examples [12]. On the
other hand, what was really difficult to find, was how these graphs were created,
i.e. what real world situation they portray, what the nodes represent, and how
edges are created or weighted.

One issue I had to deal with was selecting colours for the different commu-
nities. An upper bound on how many clusters Louvain or Leiden can find for a
graph G = (V,E) is |V |. In graphs I looked at, only a low number of clusters
were present. Yet, finding 21 easily distinguishable colours, as it was necessary
for the visualisation of the fly Leiden clustering (see Figure 9 in Appendix B),
was not trivial. The largest colour palette of the matplotlib package [8] has
only 20 colours. My solution is to combine multiple colour palettes. To my
regret, the colour palettes I used are not colour blind friendly.

7 Conclusion and Future Work

There are many possible ways to cluster graphs. Louvain and Leiden are two of
them. When comparing them on real world graphs, Leiden achieves significantly
higher modularity scores on most of them. Furthermore, Leiden also provides
more guarantees for the clustering it produces than Louvain. γ-separation and
γ-connectivity are guaranteed for each clustering produced by Leiden. Node
optimality is guaranteed for stable iterations and subset optimality is guaranteed
for asymptotically stable iterations.

When iterating Leiden it is not possible to tell when an asymptotically stable
iteration is reached, but it is clear when a stable iteration is reached. One open
question for future work is how often Leiden has to be iterated to reach such a
stable partition on real world graphs. Moreover, whether the run time of later
iterations of Leiden is as long as the first iteration of Leiden remains another
open questions.

The modularity score of the trivial partition, i.e. all nodes of the graph in one
community, is zero. Hence, the trivial partition is highly undesirable for Louvain
and Leiden. What happens when the desired result is one community containing
all nodes. How would Louvain and Leiden cluster a real-world graph which
represents only one community? Would they uncover substructures? These
questions represent further alleys to be explored in future work.
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A Notation

Unless otherwise stated, this is the notation used in my thesis.

� G = (V,E) is a graph with nodes V and edges E

� n = |V | is the number of nodes

� m = |E| is the number of edges

� Q is the quality function modularity (unless explicitly stated otherwise)

� ∆Q is the change in Q

� ki is the sum of weights of edges incident on node i ∈ V for weighted
graphs, else it is the degree of node i

� ki,in = ki,in(C) is the sum of weights of edges of community C incident
on node i ∈ V for weighted graphs, else it is the number of edges of
community C incident on node i ∈ V

� P denotes a partition

� C ∈ P is a community

� w(e) is the weight of an edge e ∈ E, also denoted w(x, y) for pairs of nodes
x, y ∈ V

� Σin = Σin(C) =
∑
x,y∈C w(x, y) is the sum of the weights of edges inside

of the community C

� A pass in the algorithm Louvain is one run of the modularity optimisation
sequence MOS and community aggregation sequence CAS

� A pass in the algorithm Leiden is one run of the MoveNodesFast, RefinePartition
and AggregateGraph steps.
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B Visualisation of graph clustering

Figure 8: Louvain clustering of graph “fly”. The colours of the nodes represent
their community belonging.
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Figure 9: Leiden clustering of graph “fly”. The colours of the nodes represent
their community belonging.
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Computer Science, Springer, pp. 284–293.

[12] Rossi, R. A., and Ahmed, N. K. The network data repository with
interactive graph analytics and visualization. In Proceedings of the Twenty-
Ninth AAAI Conference on Artificial Intelligence (2015).

[13] Shvets, A. Refactory guru: Design patterns. https://refactoring.

guru/design-patterns, 2021.

[14] Traag, V. leidenalg 0.9.1. https://github.com/vtraag/leidenalg, 2022.

[15] Traag, V. A., Van Dooren, P., and Nesterov, Y. Narrow scope for
resolution-limit-free community detection. 016114.

[16] Traag, V. A., Waltman, L., and van Eck, N. J. From louvain to
leiden: guaranteeing well-connected communities. 5233. Number: 1 Pub-
lisher: Nature Publishing Group.

[17] Wakita, K., and Tsurumi, T. Finding community structure in mega-
scale social networks: [extended abstract]. In Proceedings of the 16th in-
ternational conference on World Wide Web, WWW ’07, Association for
Computing Machinery, pp. 1275–1276.

39

https://refactoring.guru/design-patterns
https://refactoring.guru/design-patterns
https://github.com/vtraag/leidenalg


[18] Wang, G., and Kwok, S. W. H. Using k-means clustering method with
doc2vec to understand the twitter users’ opinions on COVID-19 vaccina-
tion. In 2021 IEEE EMBS International Conference on Biomedical and
Health Informatics (BHI), pp. 1–4. ISSN: 2641-3604.

[19] Wolf, F. A., Angerer, P., and Theis, F. J. SCANPY: large-scale
single-cell gene expression data analysis. 15.

40


	Motivation
	Related Work
	Modularity
	Constant Potts Model
	Louvain
	Modularity Optimisation Sequence
	Community Aggregation Sequence
	Summary
	Discussion

	Leiden
	MoveNodesFast
	RefinePartition
	AggregateGraph
	Summary
	Improvements on Louvain


	Guarantees of Leiden
	Greediness
	-Separation
	-Connectivity
	Subpartition -Density
	Node optimality
	Subset Optimality
	Uniform -Density
	Summary

	Design
	Implementation
	Discussion
	Conclusion and Future Work
	Notation
	Visualisation of graph clustering

