Homework 3 – “Heuristic Optimization”

This homework is due **Wednesday, May 13, 12:45**. This homework is to be submitted at the mailbox titled “Heuristic Optimization” at the reception desk of the main building.

We use the following definitions on O-notation: Let $g : \mathbb{N} \to \mathbb{R}^+$ be a mapping from the natural numbers to the positive real numbers. We let

$$O(g) = \{ f : \mathbb{N} \to \mathbb{R}^+ | \exists c > 0 \exists n_0 \in \mathbb{N} \forall n \geq n_0 : f(n) \leq c \cdot g(n) \}.$$

Furthermore, we let

$$\Omega(g) = \{ f : \mathbb{N} \to \mathbb{R}^+ | \exists c > 0 \exists n_0 \in \mathbb{N} \forall n \geq n_0 : g(n) \leq c \cdot f(n) \}.$$

Finally, we let $\Theta(g) = O(g) \cap \Omega(g)$. For any set of functions A and any function f we write $f = A$ instead of $f \in A$.

For any set of functions A we can define operations on this set as follows.

$\forall r : A + r = \{ f + r | f \in A \}$;

$\forall r : r \cdot A = \{ rf | f \in A \}$;

$2^A = \{2^f | f \in A \}.$

Note that when A is a set of functions with positive range, then $-A$ is not, but 2^{-A} is. If there is some n_0 such that something holds for all n larger than n_0, we also say that this something holds “for n large enough”.

Exercise 4 Show the following claims.

(a) Let $f : \mathbb{N} \to \mathbb{R}^+$. Suppose that there is a $c \in (0, 1)$ (the open interval from 0 to 1) such that, for all n large enough, $f(n + 1) \leq cf(n)$. Then $f = 2^{-\Omega(n)}$.

(b) There is an f with $f = 2^{-\Omega(n)}$ such that there is no $c \in (0, 1)$ such that, for all n large enough, $f(n + 1) \leq cf(n)$.

(c) Let $f, g : \mathbb{N} \to \mathbb{R}^+$. If, for all n large enough, $f(n) \leq g(n)$, then $2^f = O(2^g)$.

(d) Let $f, g : \mathbb{N} \to \mathbb{R}^+$. If $2^f = O(2^g)$, then $f = O(g)$.

(e) There are $f, g : \mathbb{N} \to \mathbb{R}^+$ such that $f = O(g)$ but **not** $2^f = O(2^g)$.