Heuristic Optimization
Lecture 1

Algorithm Engineering Group
Hasso Plattner Institute, University of Potsdam

14 April 2015

Optimization

Goal:
- Find $z \in X$ such that $f(z) \leq f(x)$ for all $x \in X$ (minimization)
- Find $z \in X$ such that $f(z) \geq f(x)$ for all $x \in X$ (maximization)

Optimization examples

Linear programming
- X is the set of all vectors $x \in \mathbb{R}^n$ with $Ax \leq b$ and $x \geq 0$
- $f(x) = c^\top x$
- **Goal:** find $x \in X$ such that $f(x)$ is minimal

Example: Schedule production levels of a product to minimize total cost subject to resource constraints.
- Simplex algorithm
- Interior point methods

Convex optimization
- X is the set of all vectors $x \in \mathbb{R}^n$ with some constraints,
- $f(t x + (1-t)y) \leq tf(x) + (1-t)f(y)$ for all $0 \leq t \leq 1$.
- **Goal:** find $x \in X$ such that $f(x)$ is minimal

Example: Find the receiver location among a set of interfering transmitters that maximizes signal to noise ratio.
- Subgradient method
- Cutting plane method
Optimization examples

Find the shortest route between two cities

- \(X \) is the set of feasible paths
- \(f \) measures the length of a path
- **Goal**: find \(x \in X \) such that \(f(x) \) is minimal

Example: Navigation software.

- Dijkstra’s algorithm
- Bellman-Ford

The black-box scenario

Suppose we know nothing (or almost nothing) about the function

- \(f(x) \) measures some complex (e.g., industrial) process
- \(f(x) \) value depends on the result of an expensive simulation
- process of assigning \(f \)-values to \(X \) is noisy/unpredictable

How should we approach these problems?

Heuristic Optimization

Approaches

- Take a best guess at a good solution and “live with it”
- Try each possible solution and keep the best
- **Start with a good guess and then try to improve it iteratively**

Heuristic Optimization

- Can be inspired by *human problem solving*
 - Common sense, rules of thumb, experience
- Can be inspired by *natural processes*
 - Evolution, annealing, swarming behavior
- Typically rely on a source of *randomness* to make decisions
- General purpose, robust methods
- Easy to implement
- **Can be challenging to analyze and prove rigorous results**

Some success stories

NASA

- communication antennas on ST-5 mission (evolutionary algorithm)
- deployed on spacecraft in 2006

Some success stories

Boeing
- 777 GE engine: turbine geometry evolved with a genetic algorithm

Oral B
- Cross-action toothbrush design optimized by Creativity Machine (evolutionary algorithm)

Nutech Solutions
- Improved car frame for GM (genetic algorithms, neural networks, simulated annealing, swarm intelligence)

BMW
- Optimized acoustic and safety parameters in car bodies (simulated annealing, genetic and evolutionary algorithms)

Hitachi
- Improved nose cone for N700 bullet train (genetic algorithm)

Some success stories

Merck Pharmaceutical Company
- discovered first clinically-approved antiviral drug for HIV (Isentress) using AutoDock software (uses a genetic algorithm)

REFERENCE:

Heuristics

Assumptions
1. Solutions encoded as length-n bitstrings (elements of $\{0, 1\}^n$),
2. want to maximize some $f: \{0, 1\}^n \rightarrow \mathbb{R}$.

Random Search
Choose x uniformly at random from $\{0, 1\}^n$;
while stopping criterion not met do
 Choose y uniformly at random from $\{0, 1\}^n$;
 if $f(y) \geq f(x)$ then $x \leftarrow y$;
end

Random(ized) Local Search (RLS)
Choose x uniformly at random from $\{0, 1\}^n$;
while stopping criterion not met do
 $y \leftarrow x$;
 Choose i uniformly at random from $\{1, \ldots, n\}$;
 $y_i \leftarrow (1 - y_i)$;
 if $f(y) \geq f(x)$ then $x \leftarrow y$;
end

Local Optima

How to deal with local optima?
- Restart the process when it becomes trapped (ILS)
- Accept disimproving moves (MA, SA)
- Take larger steps (EA, GA)
Simple Randomized Search Heuristics

Metropolis Algorithm

Choose \(x \) uniformly at random from \(\{0, 1\}^n \);

while stopping criterion not met do

\[
y \leftarrow x;
\]

Choose \(i \) uniformly at random from \(\{1, \ldots, n\} \);

\[
y_i \leftarrow (1 - y_i);
\]

if \(f(y) \geq f(x) \) then \(x \leftarrow y \);

else \(x \leftarrow y \) with probability \(e^{(f(x)-f(y))/T} \);

end

Method developed for generating sample states of a thermodynamic system (1953)

- \(T \) is fixed over the iterations

Simulated Annealing

Choose \(x \) uniformly at random from \(\{0, 1\}^n \);

while stopping criterion not met do

\[
y \leftarrow x, t \leftarrow 0;
\]

Choose \(i \) uniformly at random from \(\{1, \ldots, n\} \);

\[
y_i \leftarrow (1 - y_i);
\]

if \(f(y) \geq f(x) \) then \(x \leftarrow y \);

else \(x \leftarrow y \) with probability \(e^{(f(x)-f(y))/T_t} \);

\[
t \leftarrow t + 1;
\]

end

Heating and controlled cooling of a material to increase crystal size and reduce their defects.

- High temperature \(\Rightarrow \) many random state changes
- Low temperature \(\Rightarrow \) system prefers “low energy” states (high fitness)
- Idea is to carefully settle the system down over time to its lowest energy state (highest fitness) by cooling
- \(T_t \) is dependent on \(t \), typically decreasing.

Evolutionary Algorithms

- Allow larger jumps
- Long (destructive) jumps should be rare

\((1+1)\) EA

Choose \(x \) uniformly at random from \(\{0, 1\}^n \);

while stopping criterion not met do

\[
y \leftarrow x;
\]

foreach \(i \in \{1, \ldots, n\} \) do

- With probability \(1/n \), \(y_i \leftarrow (1 - y_i) \);

end

if \(f(y) \geq f(x) \) then \(x \leftarrow y \);

end