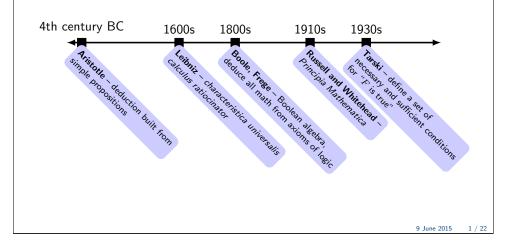


Heuristic Optimization

The SATISFIABILITY problem

Quest throughout history to establish an **effective process** (e.g., a *mechanical process*) for human reasoning.



Heuristic Optimization

The SATISFIABILITY problem

In the 20th century, the advent of computers inspired mathematicians to

- try to understand what people do when they create proofs
- reduce logical reasoning to some canonical form that can be implemented by an algorithm

UNIVAC (www.computerhistory.org)

Given a statement \boldsymbol{S} in some well-defined logical syntax

- is there an algorithm to prove \boldsymbol{S} is true (or false)?
- what is the complexity of such an algorithm?

Heuristic Optimization

SATISFIABILITY: A formal definition

A propositional logic formula is built from

- variables that can take on one of two values (true/false) x, y, z, \ldots
- operators $\{\land,\lor,\neg\}$
 - conjunction (logical AND), e.g., $x \wedge y$
 - disjunction (logical OR), e.g., $x \lor y$
 - negation (logical NOT), e.g., $\neg x$
- *parentheses* that can group expressions, e.g., $(x) \land (\neg x \lor y)$

A formula F is said to be *satisfiable* if it can be made true by assigning appropriate logical values (true or false) to its variables.

Problem: given a formula, *F*, decide whether *F* is satisfiable.

Many applications: theoretical computer science, complexity theory, algorithmics, cryptography and artificial intelligence.

HP

Heuristic Optimization

SATISFIABILITY: Basics

A well-formed Boolean expression can be described by the grammar:

```
\begin{array}{l} \langle expr \rangle ::= \langle variable \rangle \\ | \langle expr \rangle \land \langle expr \rangle \\ | \langle expr \rangle \lor \langle expr \rangle \\ | \langle (expr \rangle) \\ | \neg \langle expr \rangle \end{array}
```

The *assignment* of a Boolean variable v is a binding to a value in $\{0, 1\}$.

If all variables in an expression are bound, the evaluation can be done recursively:

E	F	$E \wedge F$	$E \vee F$	(E)	$\neg E$	
0	0	0	0	0	1	
0	1	0	1	0	1	
1	0	0	1	1	0	
1	1	1	1	1	0	

Heuristic Optimization

Definitions

Two Boolean formulas E and F on n Boolean variables are said to be *equivalent* if $\forall x \in \{0,1\}^n$, F[x] = E[x]. In this case we write $F \equiv E$

A *literal:* a variable v or its negation $\neg v$. A *clause:* a disjunction of literals, e.g., $(x_1 \lor \neg x_2 \lor \neg x_3 \lor \cdots \lor x_i)$

A formula F is said to be in *conjunctive normal form* (CNF) when F is written as a conjunction of clauses.

Lemma

For every well-formed formula F, there is a formula E such that (1) E is in CNF, and (2) $F \equiv E$.

CNF form is much easier to work with!

Definitions

The assignment of n Boolean variables can be represented as $x \in \{0, 1\}^n$.

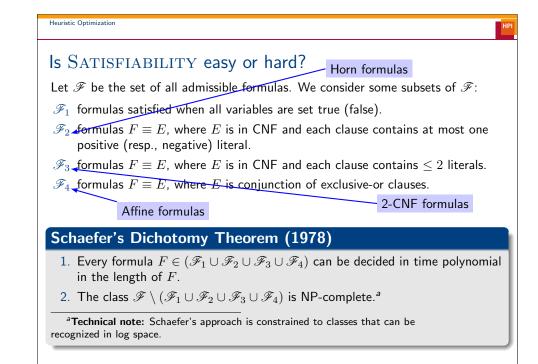
Let F be a formula on n variables. We write $F[x] \in \{0,1\}$ as the evaluation of F under the assignment $x \in \{0,1\}^n$.

Given a Boolean expression F on n Boolean variables, we say an assignment $x\in\{0,1\}^n$ satsifies F if F[x]=1.

Example

$$F = (\neg x_1 \lor x_2) \land \neg x_1 \land (\neg x_3 \lor \neg x_1 x = (0, 0, 0), F[x] = 1 x = (1, 0, 1), F[x] = 0$$

9 June 2015 5 / 22



4 / 22

Resolution for first-order logics

 $1958 \; \text{Martin Davis \& Hilary Putnam developed a resolution procedure for first-order logic (quantifiers allowed)}$

Herbrand's theorem: if a first-order formula is *unsatisfiable* then it has some ground formula in *propositional logic* (quantifier-free) that is unsatisfiable.

Davis-Putnam procedure

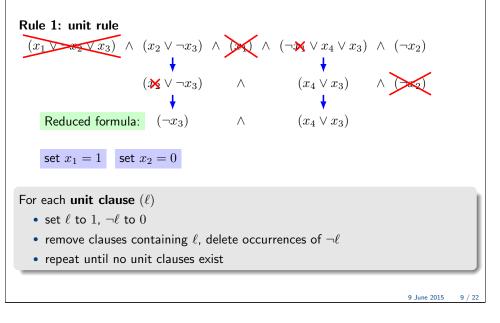
- 1. Generate all propositional ground instances
- 2. Check if each instance F is satisfiable

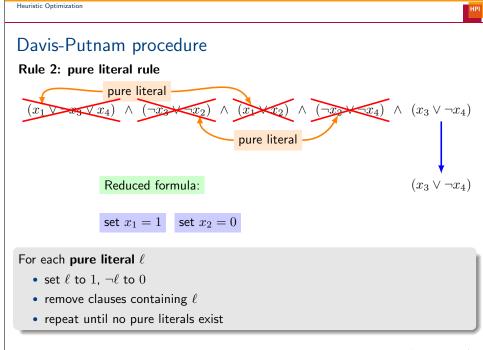
The main innovation is in (2), where we must solve SATISFIABILITY

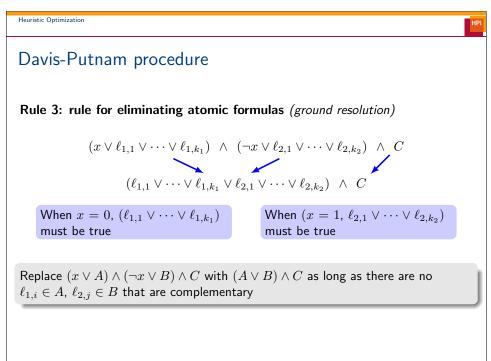
Given a propositional logic formula F in CNF, assign variables using three *reduction rules*.

9 June 2015 8 / 22

Davis-Putnam procedure







Heuristic Optimization

Using memory wisely

In 1962, Loveland and Logemann tried to implement DP procedure on an IBM 704, but found that it used too much RAM.

L&L insight: keep a stack for formulas in external storage (tape drive) so the formulas in RAM don't get too large.

Rule 3a: splitting rule

From $(x \lor A) \land (\neg x \lor B) \land C$, create a pair of separate formulas^a

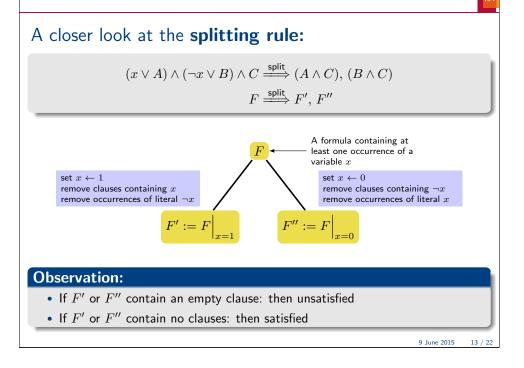
 $(A \wedge C), (B \wedge C).$

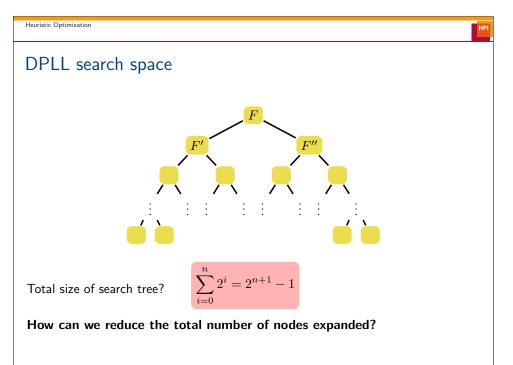
Recursively check $(A \wedge C)$ and $(B \wedge C)$ for satisfiability.

^awhere A, B and C don't contain any occurrences of the variable x

9 June 2015 12 / 22

Heuristic Optimization Davis-Putnam-Logemann-Loveland (DPLL) Davis-Putnam procedure with Logemann-Loveland enhancement (splitting rule) $\mathsf{DPLL}(F)$ **Input**: A set of clauses F**Output**: A truth value if F is a consistent set of literals then return true; **if** *F* contains an empty clause **then return** false ; for each unit clause (ℓ) in F do $F \leftarrow \texttt{unit-propagate}(\ell, F);$ end for each pure literal ℓ in F do $F \leftarrow \text{pure-literal-assign}(\ell, F);$ end $\ell \leftarrow \text{choose-literal}(F);$ return $\mathsf{DPLL}(F \land \ell) \lor \mathsf{DPLL}(F \land \neg \ell);$





DPLL heuristics: Branching policies

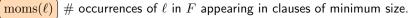
Pick a good variable on which to branch

Come up with a *scoring function* $score(\ell)$ that gives a value for picking a variable that makes ℓ true.

Some scoring functions:

 $\max(\ell)$ # occurrences of ℓ in F.

Idea: Picking ℓ to maximize $\max(\ell)$ satisfies as many clauses as possible.

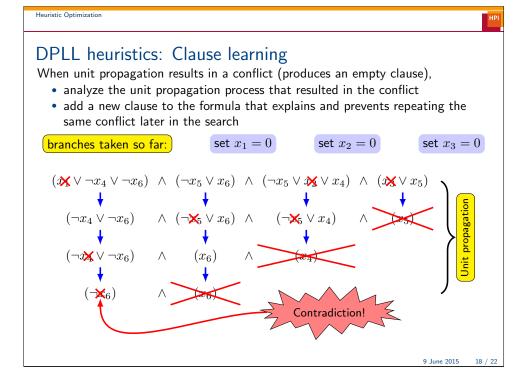


Idea: reducing minimum clauses can lead to a unit-propagation sooner or reveal a contradiction faster

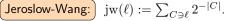
 $\max(\ell) := \max(\ell) + \operatorname{moms}(\neg \ell).$

Idea: satisfy as many clauses as possible, create as many minimum-size clauses as possible

9 June 2015 16 / 22



DPLL heuristics: Branching policies

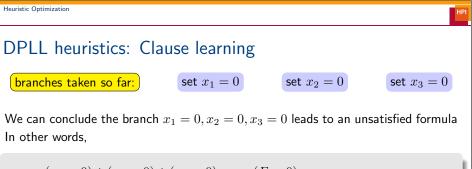


Idea: exponential weighting: smaller clauses have more weight than larger ones.

of unit propagations triggered by setting $\ell = true$. $up(\ell)$

adaptive learning: adapt branching rule during execution

9 June 2015 17 / 22



$$(x_1 = 0) \land (x_2 = 0) \land (x_3 = 0) \implies (F = 0)$$

$$\equiv (F = 1) \implies \neg ((x_1 = 0) \land (x_2 = 0) \land (x_3 = 0)) \qquad \text{(contrapositive)}$$

$$\equiv (F = 1) \implies (x_1 = 1) \lor (x_2 = 1) \lor (x_3 = 1)$$

So in order for F to be satisfied, $(x_1 \lor x_2 \lor x_3)$ must be true.

Learned clause: $F' := F \land (x_1 \lor x_2 \lor x_3)$

Note: many very sophisticated procedures for analyzing the structures of contradictions exist.

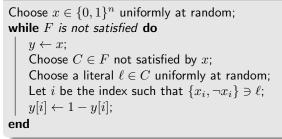
9 June 2015 19 / 22

A local search algorithm

DPLL: construct an assignment from scratch

Another approach: start from a complete assignment. While not satisfied, make some small change. Repeat.

Random local search algorithm for SATISFIABILITY



```
9 June 2015 20 / 22
```

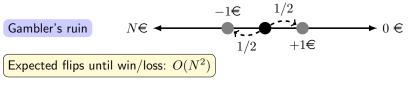
Heuristic Optimization

How efficient is the random local search algorithm?

Theorem. (Papadimitriou, 1991)

Let $F\in\mathscr{F}_3$ (formulas that have at most two literals per clause). If F is satisfiable, then the local search algorithm finds the satisfying assignment in $O(n^2)$ time in expectation.

Proof sketch.



- Let $x^* :=$ satisfying assignment, x := be the current assignment.
- For any clause $C \in F$ not satisfied by x, at least one of the values x[i] doesn't match the value in $x^*[i]$.
- Probability to pick that variable $\geq 1/2$.
- Move closer to x^{\star} with probability $\geq 1/2$ (further away w/ prob. $\leq 1/2$). \Box

9 June 2015 21 / 22

Hurrisci Optimization k-CNF formulas What about k-CNF formulas for k > 2? Run local search algorithm, starting from a new random solution every O(n) steps. **Theorem. (Schöning, 1991)** Let F be a k-CNF formula. If F is satisfiable, then the (restarting) local search algorithm finds the satisfying assignment in T steps where T is within a polynomial factor of $(2(1 - 1/k))^n$. For 3-CNF formulas: $(1.333)^n$ Current best-known bound¹ for 3-SAT: $O(1.308^n)$

