

Probabilistic Timed Graph Transformation Systems

Maria Maximova, Holger Giese, Christian Krause

19th July 2017

Probabilistic Behavior

Table of Contents

Probabilistic Timed Graph Transformation Systems

2 Modeling and Analysis of a Shuttle Example

3 Conclusion and Future Work

Table of Contents

Probabilistic Timed Graph Transformation Systems

Modeling and Analysis of a Shuttle Example

3 Conclusion and Future Work

Definition (Probabilistic Timed Graph Transformation System)

Definition (Probabilistic Timed Graph Transformation System)

 $S = (TG, G_0, v_0, \Pi, I, AP, prio)$ is a PTGTS if

• TG is a finite type graph including the type node Clock,

Definition (Probabilistic Timed Graph Transformation System)

- TG is a finite type graph including the type node Clock,
- G_0 is a finite initial graph over TG,

Definition (Probabilistic Timed Graph Transformation System)

- TG is a finite type graph including the type node Clock,
- G₀ is a finite initial graph over TG,
- v_0 : $ClockNodes(G_0) \to \mathbb{R}_0^+$ is the initial clock valuation,

Definition (Probabilistic Timed Graph Transformation System)

- TG is a finite type graph including the type node Clock,
- G₀ is a finite initial graph over TG,
- v_0 : $\mathit{ClockNodes}(G_0) o \mathbb{R}_0^+$ is the initial clock valuation,
- Π is a finite set of transformation rules,

Definition (Probabilistic Timed Graph Transformation System)

- TG is a finite type graph including the type node Clock,
- G₀ is a finite initial graph over TG,
- $v_0: \mathit{ClockNodes}(G_0) o \mathbb{R}_0^+$ is the initial clock valuation,
- Π is a finite set of transformation rules,
- I is a finite set of invariants,

Definition (Probabilistic Timed Graph Transformation System)

- TG is a finite type graph including the type node Clock,
- G₀ is a finite initial graph over TG,
- $v_0: ClockNodes(G_0) \to \mathbb{R}^+_0$ is the initial clock valuation,
- Π is a finite set of transformation rules,
- I is a finite set of invariants,
- AP is a finite set of atomic propositions,

Definition (Probabilistic Timed Graph Transformation System)

- TG is a finite type graph including the type node Clock,
- G₀ is a finite initial graph over TG,
- $v_0: ClockNodes(G_0) \to \mathbb{R}^+_0$ is the initial clock valuation,
- Π is a finite set of transformation rules,
- I is a finite set of invariants,
- AP is a finite set of atomic propositions,
- $prio: \Pi \to \mathbb{N}$ is a priority function.

Definition (Probabilistic Timed Graph Transformation System)

$$S = (TG, G_0, v_0, \Pi, I, AP, prio)$$
 is a $PTGTS$ if

- TG is a finite type graph including the type node Clock, GTS
- G_0 is a finite initial graph over TG,
- $v_0: \mathit{ClockNodes}(G_0) o \mathbb{R}_0^+$ is the initial clock valuation,
- Π is a finite set of transformation rules, GTS Time Prob
- *I* is a finite set of invariants.
- AP is a finite set of atomic propositions, GTS
- $\textit{prio}: \Pi \to \mathbb{N}$ is a priority function.

Time

Time

Definition (Probabilistic Timed Graph Transformation Rule)

 $R = (L, P, \mu, \phi, r_{\rm C})$ is a PTGT rule if

Definition (Probabilistic Timed Graph Transformation Rule)

 $R = (L, P, \mu, \phi, r_{C})$ is a *PTGT rule* if

• L is a common left-hand side graph,

Definition (Probabilistic Timed Graph Transformation Rule)

 $R = (L, P, \mu, \phi, r_{C})$ is a *PTGT rule* if

- L is a common left-hand side graph,
- P is a finite set of graph transformation rules ρ with $lhs(\rho) = L$,

Definition (Probabilistic Timed Graph Transformation Rule)

 $R = (L, P, \mu, \phi, r_{\rm C})$ is a *PTGT rule* if

- L is a common left-hand side graph,
- P is a finite set of graph transformation rules ρ with $\mathit{lhs}(\rho) = \mathit{L}$,
- $\mu \in Dist(P)$ is a probability distribution,

Definition (Probabilistic Timed Graph Transformation Rule)

 $R = (L, P, \mu, \phi, r_{\rm C})$ is a *PTGT rule* if

- L is a common left-hand side graph,
- P is a finite set of graph transformation rules ρ with $lhs(\rho) = L$,
- $\mu \in Dist(P)$ is a probability distribution,
- $\phi \in \Phi(ClockNodes(L))$ is a guard over nodes of the type Clock,

Definition (Probabilistic Timed Graph Transformation Rule)

 $R = (L, P, \mu, \phi, r_{C})$ is a *PTGT rule* if

- L is a common left-hand side graph,
- P is a finite set of graph transformation rules ρ with $lhs(\rho) = L$,
- $\mu \in Dist(P)$ is a probability distribution,
- $\phi \in \Phi(ClockNodes(L))$ is a guard over nodes of the type Clock,
- $r_C \subseteq ClockNodes(L)$ is a set of nodes of the type Clock to be reset.

Example for a PTGT Rule

Example for a PTGT Rule

$$\begin{aligned} &\textit{fail} = \left(L_1, P_1, \mu_1, \phi_1, r_{C_1}\right) \, \text{with} \\ &P_1 = \{\rho_1^0, \rho_1^1\} \\ &\mu_1 = \{(\rho_1^0, 0.1), (\rho_1^1, 0.9)\} \\ &\phi_1 = (c \geq 2) \\ &r_{C_1} = \{c\} \end{aligned}$$

Definition (Probabilistic Timed Graph Transformation Invariant)

 $\Theta = (G, \phi)$ is a PTGT invariant if

- $\Theta = (G, \phi)$ is a PTGT invariant if
 - *G* is a graph,

- $\Theta = (G, \phi)$ is a *PTGT invariant* if
 - G is a graph,
 - $\phi \in \Phi(ClockNodes(G))$ is an invariant formula over nodes of the type Clock.

- $\Theta = (G, \phi)$ is a PTGT invariant if
 - G is a graph,
 - $\phi \in \Phi(ClockNodes(G))$ is an invariant formula over nodes of the type Clock.

- $\Theta = (G, \phi)$ is a *PTGT invariant* if
 - G is a graph,
 - $\phi \in \Phi(ClockNodes(G))$ is an invariant formula over nodes of the type Clock.

$$\Theta_{fail}:$$
 $S_{failed} = S_{failed} = S_{f$

$$\Theta_{\mathit{fail}} = (\mathit{G}, \phi) \; \mathsf{with} \; \phi = (\mathit{c} \leq 5)$$

• APs set the appropriate labels to the PTGTS states.

- APs set the appropriate labels to the PTGTS states.
- An AP is of the form $(G, \phi = true)$ for a graph G.

- APs set the appropriate labels to the PTGTS states.
- An AP is of the form $(G, \phi = true)$ for a graph G.
- APs do not influence the semantics of PTGTS.

- APs set the appropriate labels to the PTGTS states.
- An AP is of the form $(G, \phi = true)$ for a graph G.
- APs do not influence the semantics of PTGTS.
- APs are used to state PTCTL properties.

- APs set the appropriate labels to the PTGTS states.
- An AP is of the form $(G, \phi = true)$ for a graph G.
- APs do not influence the semantics of PTGTS.
- APs are used to state PTCTL properties.

M. Maximova, H. Giese, C. Krause (ICGT'17)

- APs set the appropriate labels to the PTGTS states.
- An AP is of the form $(G, \phi = true)$ for a graph G.
- APs do not influence the semantics of PTGTS.
- APs are used to state PTCTL properties.

 $AP_{failed} = (G, \phi)$ with $\phi = true$

$$\left(\boxed{ \begin{bmatrix} \frac{L_1}{\text{x} : \textit{Node}} \\ \textit{failed} = \textit{false} \end{bmatrix}}, \left\{ c \mapsto 0 \right\} \right) \xrightarrow{3.5} \left(\boxed{ \begin{bmatrix} \frac{L_1}{\text{x} : \textit{Node}} \\ \textit{failed} = \textit{false} \end{bmatrix}}, \left\{ c \mapsto 3.5 \right\} \right)$$

Table of Contents

Probabilistic Timed Graph Transformation Systems

2 Modeling and Analysis of a Shuttle Example

3 Conclusion and Future Work

- prob = 90%Connection failure:
- prob = 10%

prob = 90% ● Connection failure: prob = 10%

· Connection successful:

· Connection successful:

Connection failure:

prob = 90%

prob = 10%

2-4 min

 $2 \min$

M. Maximova, H. Giese, C. Krause (ICGT'17)

· Connection successful:

Connection failure:

prob = 90%

prob = 10%

2-4 min

 $2 \min$

Atomic proposition collision

Atomic proposition collision

State space for the topology with 3 conflict nodes

Result: No collisions are possible.

What is the maximal probability that a shuttle executes an emergency brake?

What is the maximal probability that a shuttle executes an emergency brake?

State spaces for topologies with 2–6 conflict nodes generated by HENSHIN

What is the maximal probability that a shuttle executes an emergency brake?

- State spaces for topologies with 2–6 conflict nodes generated by HENSHIN
- State spaces exported to PRISM

What is the maximal probability that a shuttle executes an emergency brake?

- State spaces for topologies with 2–6 conflict nodes generated by HENSHIN
- State spaces exported to PRISM
- Property for braking behavior in PRISM notation: Pmax =? [F ,, brake"]

Atomic proposition brake

Result: For a desired worst case probability (y-axis) and a communication service quality (x-axis) we can determine the minimal required number of conflict nodes.

Table of Contents

Probabilistic Timed Graph Transformation Systems

2 Modeling and Analysis of a Shuttle Example

3 Conclusion and Future Work

Conclusion

Future Work

- Extension of PTGTSs to interval probabilities (and therefore to IPTA)
- Extension of PTCTL to path properties to specify structure dynamics
- Extension of PRISM to verify path properties of PTGTSs

Thank You For Your Attention