
(Strong) aPAKE Revisited:

Capturing Multi-User Security and Salting

Dennis Dayanikli Anja Lehmann

Hasso Plattner Institute | University of Potsdam

Conference Collision

■ First security proof of SRP (v6a)

Most widely deployed aPAKE protocol
Apple Homekit, 1Password, Telegram, AWS

■ Weird design from 1998 (to circumvent patents)
complicated security analysis

■ Security proof in state-of-the-art aPAKE model

This talk: current aPAKE model is too weak

2

■ Passwords still predominant form of user authentication – convenient! No key needed

■ Storing hashes only, provides (some) protection in case of server compromise

Password-based Authentication (Status Quo)

username, 𝑝𝑤𝑑’ checks that ℎ𝐴𝑙𝑖𝑐𝑒 == 𝐻(𝑠, 𝑝𝑤𝑑′) ?

Username Hash

Alice wb3822Ujsd4

Bob b5kMsa8dsbn

Carol 77peCu52Kry

stores only (salted) password hashes ℎ

3

■ But: Passwords are send in clear to the server (via TLS) at every login!

Ideally: password-based authentication without the need for plaintext passwords …

LinkedIn, Twitter, Github lost millions of plaintext passwords due to accidental logging

85% of users re-use their passwords: a single bad server/ phishing attack is fatal

■ Asymmetric Password Authenticated Key Exchange (aPAKE), invented in the 90s

■ Enables secure pwd-based authentication between client and server

Main feature: client doesn’t reveal pwd during login

(Strong) Asymmetric PAKE

4

𝑝𝑤𝑑

or any offline-attackable information thereof
important as passwords have low entropy

𝑝𝑤𝑓𝑖𝑙𝑒𝐴

𝑘 𝑜𝑟 ⊥ 𝑘 𝑜𝑟 ⊥

■ Offline attacks only possible after compromise of pwd-file, precomputation is possible

■ Strong aPAKE: no precomputation attacks before server compromise

Username PW-File

Alice 𝑝𝑤𝑓𝑖𝑙𝑒𝐴

Bob 𝑝𝑤𝑓𝑖𝑙𝑒𝐵

Carol 𝑝𝑤𝑓𝑖𝑙𝑒𝐶

If 𝑝𝑤𝑑 correct, create fresh
session key 𝑘, else return ⊥

aPAKE

■ Won the IETF (a)PAKE competition in 2020, currently undergoing standardization by IRTF

■ Provably secure in Universal Composability framework … but only for a single user

OPAQUE: First Strong aPAKE [JKX‘18]

5

𝓕(𝐬)𝐚𝐏𝐀𝐊𝐄
Ideal functionality ℱ(s)aPAKE assumes that

server only manages a single user

Username PW-File

Alice 𝑝𝑤𝑓𝑖𝑙𝑒𝐴

Username PW-File

Alice 𝑝𝑤𝑓𝑖𝑙𝑒𝐴

Bob 𝑝𝑤𝑓𝑖𝑙𝑒𝐵

Carol 𝑝𝑤𝑓𝑖𝑙𝑒𝐶
.

Real world: one server & many users

■ Single-user setting simplifies analysis

■ Multi-user version follows from UC Framework

→ Protocol is secure under self-composition

ℱ(𝑠)𝑎𝑃𝐴𝐾𝐸

ℱ(𝑠)𝑎𝑃𝐴𝐾𝐸

ℱ(𝑠)𝑎𝑃𝐴𝐾𝐸

ℱ(𝑠)𝑎𝑃𝐴𝐾𝐸

But: only if all protocol copies are independent

 → server is not allowed to keep state across instances

OPAQUE | Single-User Protocol (Core Idea)

6

Authenticated Key Exchange

Auth. based on 𝑠𝑘𝐶 and 𝑠𝑘𝑆

If Auth OK, return random 𝑘

Else return ⊥

𝑠𝑘𝐶 , 𝑝𝑘𝑆 𝑝𝑘𝐶 , 𝑠𝑘𝑆

𝑘 or ⊥

𝑐
𝑠𝑘𝐶 , 𝑝𝑘𝑆 ≔ 𝐴𝐷𝑒𝑐(𝑟𝑤, 𝑐)

create AKE key-pairs (𝑠𝑘𝐶 , 𝑝𝑘𝐶), 𝑠𝑘𝑆, 𝑝𝑘𝑆 , and OPRF key 𝑘𝑂𝑃𝑅𝐹

𝑟𝑤 ≔ 𝑃𝑅𝐹(𝑘𝑂𝑃𝑅𝐹 , 𝑝𝑤𝑑) and 𝑐 ≔ 𝐴𝐸𝑛𝑐 𝑟𝑤, 𝑠𝑘𝐶 , 𝑝𝑘𝑆

store 𝑓𝑖𝑙𝑒 = (𝑘𝑂𝑃𝑅𝐹 , 𝑠𝑘𝑆, 𝑝𝑘𝐶 , 𝑐)

𝑘𝑂𝑃𝑅𝐹

𝑟𝑤

𝑝𝑤𝑑

𝑘 or ⊥

LOGIN

REGISTRATION

𝑝𝑤𝑑

OPRF

𝑟𝑤 ≔ 𝑃𝑅𝐹(𝑘𝑂𝑃𝑅𝐹 , 𝑝𝑤𝑑)

Self composition:

Must not be re-used across clients

create AKE key-pairs (𝑠𝑘𝐶 , 𝑝𝑘𝐶), 𝑠𝑘𝑆, 𝑝𝑘𝑆 , and OPRF key 𝑘𝑂𝑃𝑅𝐹

𝑟𝑤 ≔ 𝑃𝑅𝐹(𝑘𝑂𝑃𝑅𝐹 , 𝑝𝑤𝑑) and 𝑐 ≔ 𝐴𝐸𝑛𝑐 𝑟𝑤, 𝑠𝑘𝐶 , 𝑝𝑘𝑆

store 𝑓𝑖𝑙𝑒 = (𝑘𝑂𝑃𝑅𝐹 , 𝑠𝑘𝑆, 𝑝𝑘𝐶 , 𝑐)

Draft-OPAQUE | Multi-User Protocol for IRFT Standard

7

Authenticated Key Exchange

Auth. based on 𝑠𝑘𝐶 and 𝑠𝑘𝑆

If Auth OK, return random 𝑘

Else return ⊥

𝑠𝑘𝐶 , 𝑝𝑘𝑆 𝑝𝑘𝐶 , 𝑠𝑘𝑆

𝑘 or ⊥

𝑐
𝑠𝑘𝐶 , 𝑝𝑘𝑆 ≔ 𝐴𝐷𝑒𝑐(𝑟𝑤, 𝑐)

𝑟𝑤

𝑝𝑤𝑑

𝑘 or ⊥

LOGIN

REGISTRATION

𝑝𝑤𝑑

OPRF

𝑟𝑤 ≔ 𝑃𝑅𝐹(𝑘𝑂𝑃𝑅𝐹 , 𝑝𝑤𝑑)

Global Server Setup:
create static (=same for all users) AKE−key pair 𝑠𝑘𝑆, 𝑝𝑘𝑆 and 𝑠𝑒𝑒𝑑𝑂𝑃𝑅𝐹

𝑘𝑂𝑃𝑅𝐹 ≔ 𝐹(𝑠𝑒𝑒𝑑𝑂𝑃𝑅𝐹 , 𝑢𝑖𝑑)

𝑓𝑖𝑙𝑒 = (𝑠𝑒𝑒𝑑𝑂𝑃𝑅𝐹 , 𝑠𝑘𝑆, 𝑝𝑘𝐶 , 𝑐)

𝑠𝑘𝑆 (long-term AKE key)

SETUP

IRFT: “The oprf_seed value SHOULD be used
for all clients” (to prevent client enumeration attacks) 𝑘𝑂𝑃𝑅𝐹𝑘𝑂𝑃𝑅𝐹 ≔ 𝐹(𝑠𝑒𝑒𝑑𝑂𝑃𝑅𝐹 , 𝑢𝑖𝑑)

→ UC self composition no longer applies!
→ Is this OPAQUE version secure?

Our work:
1) New saPAKE security model for multi-user setting
2) Security analysis of Draft-OPAQUE in new model
 (shared state modificatio only)

■ Security model mostly straightforward extension of single-user functionality:

Security of Multi-User saPAKE

8

𝓕𝐬𝐚𝐏𝐀𝐊𝐄

Username PW-File

Alice 𝑝𝑤𝑓𝑖𝑙𝑒𝐴

Bob 𝑝𝑤𝑓𝑖𝑙𝑒𝐵

Carol 𝑝𝑤𝑓𝑖𝑙𝑒𝐶

Offline attacks on Alice‘s and
Bob‘s pwd possible

… but not for Carol

Username PW-File

Alice 𝑝𝑤𝑓𝑖𝑙𝑒𝐴

Bob 𝑝𝑤𝑓𝑖𝑙𝑒𝐵

No offline attacks on user’s password during login

Precomputation & offline attacks after server compromise

New: impact of partial compromise across users:

No offline or precomputation attacks on uncompromised files

■ Draft-OPAQUE: compromise leaks shared keys 𝑠𝑒𝑒𝑑𝑂𝑃𝑅𝐹 and 𝑠𝑘𝑆

□ Re-use of 𝑠𝑒𝑒𝑑𝑂𝑃𝑅𝐹 allows to offline attacks all accounts after single file leak

Server sends 𝑐 ≔ 𝐴𝐸𝑛𝑐 𝑟𝑤, 𝑠𝑘𝐶 , 𝑝𝑘𝑆 – Adv can compute 𝑟𝑤∗ via 𝑠𝑒𝑒𝑑𝑂𝑃𝑅𝐹 & test if 𝐴𝐷𝑒𝑐 𝑟𝑤∗, 𝑐 ≠⊥ ?

□ Re-use of 𝑠𝑘𝑆 does not harm security → security proof (assuming per-client 𝑘𝑂𝑃𝑅𝐹)

𝑓𝑖𝑙𝑒 = (𝑠𝑒𝑒𝑑𝑂𝑃𝑅𝐹 , 𝑠𝑘𝑆, 𝑝𝑘𝐶 , 𝑐)

■ Take away OPAQUE and strong aPAKE

Key-reuse can be secure (has advantages for server)

Security model & protocol should already be for real-world setting

Security of Multi-User (strong) aPAKE

9

This was about strong aPAKE → what about standard one?

■ Multi-user aPAKE model (and secure protocols therein) exist:

■ Here there is another gap between provable security guarantees and actual protocols:

Several protocols (such as SRP) are actually more secure than what is modelled!

No offline attacks on users password during login

Precomputation & offline attacks only after file compromise

Standard aPAKE does not provide any security against precomputation attacks

(otherwise dangerous gap between proven vs. real-world protocol)

■ aPAKE Model

Precomputation attacks possible at all time:

□ Adversary can create pwd-rainbow table

□ Lookup pwd after server is compromised

□ Equivalent to unsalted hashes

■ Precomputation attacks are not possible with salted hashes
in standard plaintext-pwd authentication!

aPAKE→ No Security against Precomputation Attacks

10

Password “Hash”

𝑝𝑤1 ℎ1

𝑝𝑤2 ℎ2

𝑝𝑤3 ℎ3

1) create

2) compromise

Username PW-File

Alice ℎ3

Bob ℎ6

Carol ℎ2

aPAKE guarantees strong security of passwords in transit

but decreases security for stored passwords

...but some aPAKE protocols do have salt

3) lookup

■ Many existing UC-secure aPAKEs (e.g., SRP, OKAPE, AuCPace) use salting techniques

■ Precomputation attacks impossible without knowing the salt

■ But: salt is sent in clear to client during login

Salting in aPAKE Protocols

11

■ How can a salt help when it is revealed before authentication?

Added security only becomes clear in multi-user setting

Individual salt capture „attack“ vs. bulk compromise:

Benefits of „Public“ Salting?

12

𝐴𝑙𝑖𝑐𝑒

𝑠𝑎𝑙𝑡𝐴

𝐵𝑜𝑏

𝑠𝑎𝑙𝑡𝐵

Username PW-File

Alice 𝑝𝑤𝑓𝑖𝑙𝑒𝐴

Bob 𝑝𝑤𝑓𝑖𝑙𝑒𝐵

Carol 𝑝𝑤𝑓𝑖𝑙𝑒𝐶

Dave 𝑝𝑤𝑓𝑖𝑙𝑒𝐷

Eva 𝑝𝑤𝑓𝑖𝑙𝑒𝐸

Frank 𝑝𝑤𝑓𝑖𝑙𝑒𝐹

Gabi 𝑝𝑤𝑓𝑖𝑙𝑒𝐺

Harry 𝑝𝑤𝑓𝑖𝑙𝑒𝐻

Karla 𝑝𝑤𝑓𝑖𝑙𝑒𝐾

𝐶𝑎𝑟𝑜𝑙

𝑠𝑎𝑙𝑡𝐶

Adversary can get salt, but has to start
session for every user individually

Server compromise reveals bulk of user files
→ one attack often leaks millions of files

Precomputation attacks
were possible

Precomputation attacks
were not possible

■ Our Work: new model(s) to reflect the stronger security of protocols:

□ Precomputation attack possible only after Adv has initiated session for 𝑢𝑖𝑑

□ When Adv compromises file for 𝑢𝑖𝑑, but never initiated session before:

→ Same security for user as strong aPAKE

Strengthening Security of aPAKE

13

before compromise of file for user 𝑢𝑖𝑑 aPAKE
New

Models
Strong
aPAKE

no offline attacks

no precomputation attacks

■ Several aPAKE protocols (almost) satisfy stronger model

□ Not fully – due to UC subtleties (assumes global network eavesdropper)

□ Simple transformation (encrypt salt under fresh 𝑝𝑘) to yield stronger aPAKE security

■ (Strong) aPAKE security model for multi-user security needed to:

□ Design optimal & secure protocol for real-world setting

Server key-reuse has advantages, but not every key can be re-used → OPRF-seed in OPAQUE

□ Understand cross-user impact of partial compromise

■ Many aPAKE protocols provider better security than advertised

□ Many protocols have “public salt” → helps against precomputation attacks

□ Stronger security model(s) & transformations

Summary

14

Thank You!

Full paper at: https://eprint.iacr.org/2024/756

https://eprint.iacr.org/2024/756

	Slide 1
	Slide 2: Conference Collision
	Slide 3: Password-based Authentication (Status Quo)
	Slide 4: (Strong) Asymmetric PAKE
	Slide 5: OPAQUE: First Strong aPAKE [JKX‘18]
	Slide 6: OPAQUE | Single-User Protocol (Core Idea)
	Slide 7: Draft-OPAQUE | Multi-User Protocol for IRFT Standard
	Slide 8: Security of Multi-User saPAKE
	Slide 9: Security of Multi-User (strong) aPAKE
	Slide 10: aPAKE  No Security against Precomputation Attacks
	Slide 11: Salting in aPAKE Protocols
	Slide 12: Benefits of „Public“ Salting?
	Slide 13: Strengthening Security of aPAKE
	Slide 14: Summary

