Hasso
Plattner

Digital Engineering + Universitdt Potsda

(Strong) aPAKE Revisited:
Capturing Multi-User Security and Salting

Dennis Dayanikli Anja Lehmann

Hasso Plattner Institute | University of Potsdam

Conference Collision

\‘\'\‘! €rsyz s

First security proof of SRP (v6a)

Most widely deployed aPAKE protocol

Apple Homekit, 1Password, Telegram, AWS

Weird design from 1998 (to circumvent patents)

complicated security analysis

37" IEEE Computer Security Foundations Symposium
July 8-12, 2024 - Enschede, The Netherlands

Provable Security Analysis of the Secure Remote
Password Protocol

Dennis Dayanikli and Anja Lehmann

Hasso-Plattner-Institute, University of Potsdam
{dennis.dayanikli, anja.lehmann}@hpi.de

Abstract. This paper analyses the Secure Remote Password Proto-
col (SRP) in the context of provable security. SRP is an asymmetric
Password-Authenticated Key Exchange (aPAKE) protocol introduced
in 1998. It allows a client to establish a shared cryptographic key with
a server based on a password of potentially low entropy. Although the
protocol was part of several standardization efforts, and is deployed in
numerous commercial applications such as Apple Homekit, 1Password
or Telegram, it still lacks a formal proof of security. This is mainly due
to some of the protocol’s design choices which were implemented to cir-
cumvent patent issues.

Our paper gives the first security analysis of SRP in the universal com-
posability (UC) framework. We show that SRP is UC-secure against
passive eavesdropping attacks under the standard CDH assumption in
the random oracle model. We then highlight a major protocol change
designed to thwart active attacks and propose a new assumption — the
additive Simultaneous Diffie Hellman (aSDH) assumption - under which
we can guarantee security in the presence of an active attacker. Using
this new assumption as well as the Gap CDH assumption, we prove se-
curity of the SRP protocol against active attacks. Our proof is in the
“Angel-based UC framework”, a relaxation of the UC framework which
gives all parties access to an oracle with super-polynomial power. In our
proof, we assume that all parties have access to a DDH oracle (limited to
finite fields). We further discuss the plausibility of this assumption and
which level of security can be shown without it.

1 Introduction

A password authenticated key-exchange protocol (PAKE) [13,17] allows two par-
ties to securely establish a cryptographic session key over an insecure channel
based on their knowledge of a shared low-entropy password. In its asymmetric
version - aPAKE [15,22,36] - one of the parties plays the role of the client while
the other party acts as the server. Upon registering a client, the server stores a
mapping of the password (the password verifier) which is typically some form
of a salted hash of the password. After registration, both parties can engage in
a protocol to establish a common key. To do so, the server uses the password
verifier while the client uses its password. A secure aPAKE protocol leaks no
offline-attackable information about the password or the password verifier in the

Password-based Authentication (Status Quo) @*@ ﬂ

m Passwords still predominant form of user authentication — convenient! No key needed

d‘stores only (salted) password hashes h

Alice wb3822Ujsd4 checks that hyjice == H(s,pwd’) ?
Bob b5kMsa8dsbn
Carol 77peCu52Kry

= Storing hashes only,

provides (some) protection in case of server compromise

m But: Passwords are send in clear to the server wiaTLs) at every login!

LinkedIn, Twitter, Github lost millions of plaintext passwords due to accidental logging
85% of users re-use their passwords: a single bad server/ phishing attack is fatal

Ideally: password-based authentication without the need for plaintext passwords ...

0‘\'\‘! €rsyz %

(Strong) Asymmetric PAKE L

o,

[
Qi)
*
b .

s Asymmetric Password Authenticated Key Exchange (@PAKE), invented in the 90s
m Enables secure pwd-based authentication between client and server
Main feature: client doesn’t reveal pwd during login
|

or any offline-attackable information thereof
Important as passwords have low entropy

oo TTEEEEEEEEE S
P apake kP e (GRS
i > i Alice pwfiley
: < : Bob pwfileg
MI‘\ >/,I kor L 3 Carol pwfile.

—————————————————

If pwd correct, create fresh
session key k, else return L

s Offline attacks only possible after compromise of pwd-file, precomputation is possible
s Strong aPAKE: no precomputation attacks before server compromise

OPAQUE: First Strong aPAKE [JKX‘18] i ﬂ

s Won the IETF (a)PAKE competition in 2020, currently undergoing standardization by IRTF
m Provably secure in Universal Composability framework ... but only for a single user

4)

F (s)aPAKE _ Ideal functionality F(s)apake assumes that

server only manages a single user

—

Real world: one server & many users

Alice

_

pwfile, y,

m Single-user setting simplifies analysis

m Multi-user version follows from UC Framework pwiles

pwfileg

—> Protocol is secure under self-composition

Carol pwfilec

)]

T

But: only if all protocol copies are independent
g? ()aPAKE] - server is not allowed to keep state across instances

SeVersig,

OPAQUE | Single-User Protocol (Core Idea) . iy

dam

pwd create AKE key-pairs (sk¢, k), (sks, pks), and OPRF key koprr
rw := PRF (kopgp, pwd) and ¢ := AEnc(rw, (sk¢, pks))

store flle - (kOPRF' Sks, ka' C)
EkOPRF !

Self composition:
(sk¢, pks) == ADec(rw,c) < Must not be re-used across clients

skc, pkg . Authenticated Key Exchange pk@/

——
Auth. based on sk, and skg
korl If Auth OK, return random k kor L
< Else return L

pwd OPRF
rw = PRF (kopgrr, pwd)

\}‘\'\\J ers, 1’,‘?}

Draft-OPAQUE | Multi-User Protocol for IRFT Standard s EAD

Global Server Setup:
create static (=same for all users) AKE—key pair (skg, pks) and seedyprr

pwd create AKE key-pairs (skc, pkc), (sks, pks), koprr = F(seedoprr, uid)

IRFT: “The oprf_seed value SHOULD be used
for all clients”

- UC self composition no longer applies!

rw := PRF (kopgp, pwd) and ¢ := AEnc(rw, (sk¢, pks))
store file = (seedypgrr, Sks, Pkc, €)

(to prevent client enumeration attacks) koprr = F(seedpprr, uid)
«—
)

- Is this OPAQUE version secure?

Qur work:
1) New saPAKE security model for multi-user setting 'ange pkc,sks (long-term AKE key)
2) Security analysis of Draft-OPAQUE in new model sks —
(shared state modificatio only) m k kor L
|

Else return L

Security of Multi-User saPAKE : ﬂ

[
Qi)
*
b .

s Security model mostly straightforward extension of single-user functionality:

(5

\ No offline attacks on user’s password during login
Precomputation & offline attacks after server compromise

saPAKE

New: impact of partial compromise across users:

"Username | PWeRile | Offline attacks on Alice‘s and

—

2“:? pw;ie’* Alice pwfiles, — Bob's pwd possible
0 pwfile -
K Carol pwﬁl; 1 Bob pwfiles ... but not for Carol
~ No offline or precomputation attacks on uncompromised files

m Draft-OPAQUE: file = (seedgpgrr, Sks, pkc, ¢) compromise leaks shared keys seedpprr and skg
xm Re-use of seedprr allows to offline attacks all accounts after single file leak

Server sends c == AEnc(rw, (sk¢, pks)) — Adv can compute rw* via seedpprr & test if ADec(rw*,c) #L1?

/u Re-use of skg does not harm security = security proof (assuming per-client kgpgr)

Security of Multi-User (strong) aPAKE ﬂ

s Take away OPAQUE and strong aPAKE
Key-reuse can be secure (has advantages for server)

Security model & protocol should already be for real-world setting
(otherwise dangerous gap between proven vs. real-world protocol)

This was about strong aPAKE - what about standard one?
s Multi-user aPAKE model (and secure protocols therein) exist:

No offline attacks on users password during login

Precomputatten&-offline attacks only after file compromise

i:bl Standard aPAKE does not provide any security against precomputation attacks

o _

m Here there is another gap between provable security guarantees and actual protocols:
Several protocols (such as SRP) are actually more secure than what is modelled!

aPAKE - No Security against Precomputation Attacks s

s aPAKE Model

Precomputation attacks possible at all time:
o Adversary can create pwd-rainbow table B _1_)_C[ef‘t_e_> |

o Lookup pwd after server is compromised
o Equivalent to unsalted hashes \\2) compromise

s Precomputation attacks are not possible with salted hashes
in standard plaintext-pwd authentication!

aPAKE guarantees strong security of passwords in transit

Carol h,

but decreases security for stored passwords

...but some aPAKE protocols do have salt

10

11

pIversi (5

Salting in aPAKE Protocols - W

@,

am

Client C with uid Server S

Setup: For security parameter A and field instance generator G
(IFp, p, g) += G(1*) where F,, is a finite field of characteristic p with primitive element g

— Hash functions H, : {0,1}* — Zp 1, Ha : {0,1}* — Fp, Hy: {0,1}* — Fp, Hq: {0,1}* — {0,1}*,
HE, {l] 1} }]F* Hb {U 1} }Ep 1

Initialization QpJ
s < {0, I}" x := Hy(s, uid, puw)}
Mgre file[uid| := (s,v)

Phase

| :
Login Phase (S1) Input (SvrSession, ssid, C, uid)
Retrieve file[uid] := (s, v)
(C2) Input (CltSession, ssid, S, pw’) .._CD_(""B k= Hs(p,g), b&ZFp 1, B:=k-v44"

r a

T ”|(‘f uid, pw} u{—.?’p 1, A q

k= Hs(p,g), © = HE-(A 1)

Te = (B — k- g" | MS = Ha(A, B, Te) — M) | (83) u:— He(A, B), Ts == (Av™)",
M} == Ha(A, B, Ts)
if Mf # M7, then (M3, Ks) := (1, 1)

_ _ S else M3 := Hy(A, M7, Ts), Ks:= Ha(15)

(C4) M5 == H3(A, Mf,Tc) — M2 output (ssid, Ks)

if M5 # M, then K¢ := L,

clse K¢ := Hq(T¢)

output (ssid, K¢)

Many existing UC-secure aPAKEs (e.g., SRP, OKAPE, AuCPace) use salting techniques
Precomputation attacks impossible without knowing the salt

But: salt is sent in clear to client during login

Seversig %

.
1]
* LD
dam
.
.

Benefits of ,,Public” Salting?

sod

s How can asalt help when it is revealed before authentication?
Added security only becomes clear in multi-user setting
Individual salt capture ,,attack” vs. bulk compromise:

4] N\ Username | PW-File
Alice

It >) Alice pwfiley
«— 5% Precomputation attacks o —
0 B
Bob were possible - N

> -
< saltg Dave pwfilep
Eva pwfileg
Carol . Frank pwfilegp

<ae. Precomputation attacks —e .
< £ . abi pwfileg
\ _ y were not possible Harry wfiles
E Karla pwfileg

Adversary can get salt, but has to start Server compromise reveals bulk of user files

session for every user individually —> one attack often leaks millions of files

13

Strengthening Security of aPAKE .' ﬂ

» Our Work: new model(s) to reflect the stronger security of protocols:
o Precomputation attack possible only after Adv has initiated session for uid
o When Adv compromises file for uid, but never initiated session before:
- Same security for user as strong aPAKE

New Strong
Models aPAKE

before compromise of file for user uid aPAKE

no offline attacks

no precomputation attacks

m Several aPAKE protocols (almost) satisfy stronger model
o Not fully — due to UC subtleties (assumes global network eavesdropper)
o Simple transformation (encrypt salt under fresh pk) to yield stronger aPAKE security

14

Summary O

m (Strong) aPAKE security model for multi-user security needed to:

o Design optimal & secure protocol for real-world setting
Server key-reuse has advantages, but not every key can be re-used > OP@ed in OPAQUE
o Understand cross-user impact of partial compromise

s Many aPAKE protocols provider better security than advertised
o Many protocols have “public salt” = helps against precomputation attacks
o Stronger security model(s) & transformations

Thank You!

https://eprint.iacr.org/2024/756

	Slide 1
	Slide 2: Conference Collision
	Slide 3: Password-based Authentication (Status Quo)
	Slide 4: (Strong) Asymmetric PAKE
	Slide 5: OPAQUE: First Strong aPAKE [JKX‘18]
	Slide 6: OPAQUE | Single-User Protocol (Core Idea)
	Slide 7: Draft-OPAQUE | Multi-User Protocol for IRFT Standard
	Slide 8: Security of Multi-User saPAKE
	Slide 9: Security of Multi-User (strong) aPAKE
	Slide 10: aPAKE  No Security against Precomputation Attacks
	Slide 11: Salting in aPAKE Protocols
	Slide 12: Benefits of „Public“ Salting?
	Slide 13: Strengthening Security of aPAKE
	Slide 14: Summary

