
57

TailR: A Platform for Preserving History on the Web of Data

Paul Meinhardt
Hasso Plattner Institute,
University of Potsdam

Prof.-Dr.-Helmert-Str. 2–3
14482 Potsdam, Germany

paul.meinhardt
@student.hpi.de

Magnus Knuth
Hasso Plattner Institute,
University of Potsdam

Prof.-Dr.-Helmert-Str. 2–3
14482 Potsdam, Germany
magnus.knuth@hpi.de

Harald Sack
Hasso Plattner Institute,
University of Potsdam

Prof.-Dr.-Helmert-Str. 2–3
14482 Potsdam, Germany
harald.sack@hpi.de

ABSTRACT

Linked data provides methods for publishing and connect-
ing structured data on the web using standard protocols and
formats, namely HTTP, URIs, and RDF. Much like the web
of documents, linked data resources continuously evolve over
time, but for the most part only their most recent state is
accessible. In order to investigate the evolution of linked
datasets and how changes propagate through the web of
data it is necessary to make prior versions of such resources
available. The lack of a common “self-service” versioning
platform in the linked data community makes it more diffi-
cult for dataset maintainers to preserve past states of their
data themselves. By implementing such a platform which
also provides a consistent interface to historic dataset infor-
mation, dataset maintainers can more easily start versioning
their datasets while application developers and researchers
instantly have the possibility of working with the additional
temporal data without laboriously collecting it on their own.

In this paper, we describe a basic model view for linked
datasets and a platform for preserving the history of arbi-
trary linked datasets over time, providing access to prior
states of contained resources via mementoes.

Categories and Subject Descriptors

H.4 [Information Systems Applications]: Miscellaneous;
D.2.8 [Software Engineering]: Metrics—complexity mea-
sures, performance measures
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Linked Data, RDF, Versioning, History, Memento

1. INTRODUCTION
The key observation that lies at the very core of the linked
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data effort is that data is useful beyond small groups of col-
laborating people in research and other communities. Usu-
ally however, data is not made available in a way that allows
it to be referenced or queried in a consistent manner. That is
mostly because data is published in a variety of application-
or domain-specific formats and protocols which prevent oth-
ers from using it. While the world wide web, the “web of
documents”, has become an incredibly important source of
information today, it lacks methods required for querying
and processing information and deriving clues from it in
an automated manner with proper support from software
agents. Therefore, linked data proposes a generic way to
express information and principles for structured data pub-
lishing allowing data to be interlinked and integrated into a
global knowledge graph, a “web of data”.

Much like the web of documents, the global knowledge
graph is in a steady state of flux, constantly changing. With
the status quo in linked data publishing, data is largely
replaced with updated versions. Generally only the most
recent working state is kept and manipulated directly, dis-
carding any overwritten or removed data as updates are per-
formed.

This practice results in a substantial loss of information
that is routinely kept in many modern web applications.
Wikipedia, for instance, stores the revision history for all of
its articles.

Being able to access such histories is useful for a number
of reasons:

Version References and Data Consistency In a distrib-
uted graph like the web, where different authorities are re-
sponsible for distinct parts, referenced data may change or
become unavailable at any time without the knowledge of
those referencing it. As common practice with software de-
pendencies, authors may instead wish to explicitly link to a
specific revision of a resource, an ontology or vocabulary for
instance.

Change Inspection Data users may further wish to inves-
tigate deltas between revisions, determining what kind of
changes were made. For an overview, the amount of added,
removed or unchanged statements hint at how significant a
change was with regard to the overall amount of data. More
detailed inspection might reveal updated facts or changed
semantics.

Data Quality Assessment The possibility of looking at
the history of an information resource also opens up oppor-
tunities for assessing the quality of the data. In particu-
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lar, temporal attributes like recency, volatility, and timeli-
ness [14] may be evaluated based on revision information.
These help data consumers in understanding whether or not
a dataset is actively maintained and whether they should
use it.

Dynamic Processes While time-series observations can be
represented explicitly, many data sources only provide sin-
gle, up-to-date values. Wikipedia pages for companies, for
instance, only provide the current numbers for revenue; coun-
try pages only give the most recent population numbers. For
the same reason, DBpedia contains just these values. In or-
der to study dynamic real-world processes however, being
able to look at the development of such indicators is crucial.

Data Dynamics Finally, understanding the evolution of
the web of data itself requires recording state changes. Only
this way can we later identify patterns in changes and un-
derstand how they propagate, see which new resources are
referenced and how they grow [12].

Without preserving the histories of linked datasets many
of such insights are impossible. Yet there is no singular
established practice for versioning in the linked data com-
munity. Most datasets only provide occasional versioned re-
leases in the form of dumps, others do not have a versioning
strategy at all.

From the perspective of a linked data publisher, a lot of
effort goes into maintaining the dataset itself and also the
needed infrastructure. Even without the additional task of
recording a revision history, a large fraction of the linked
data web suffers from poor availability and other problems
[1]. When data publishers go the extra mile for archiving
past dataset states, different solutions expose different, non-
standard interfaces for accessing these, limiting their useful-
ness.

For linked data consumers on the other hand, the lack of
a central repository for past dataset states frequently means
they have to gather such information on their own. When
they do, their results are not always made public. Some will
provide dumps, but those are generally not very discoverable
and do not allow granular access. You need to know how
these files are organized and then download the appropriate
dump as a whole. From a data consumer perspective, a
consistent access mechanism is missing.

The platform we propose aims at separating the concerns
of data publishing, monitoring, and recording linked dataset
history. This separation frees dataset publishers from the
burden of maintaining a versioning solution for their data-
sets themselves and introduces a common version interface
to record datasets. Ideally, data publishers will submit changes
to an official repository for their own dataset. For datasets
where this is not the case, others can push change informa-
tion to the platform from existing linked data crawling and
monitoring tools. Through the creation of a community-
maintained storage platform for historic dataset states, in
some regards similar to the Internet Archive1, we hope to
gradually cover a significant portion of the web of data and
make past dataset states available for new applications and
further research on the dynamics of the web of data. To that
end, the proposed platform establishes a consistent time-
travel interface for all versioned datasets that aligns well
with linked data principles.

1https://archive.org/web/

The remainder of this paper is structured as follows: Sec-
tion 2 discusses related work in the area of versioning se-
mantic data and version access strategies. Section 3 further
motivates and describes our approach to archiving, the back-
ing storage model and service implementation. We share in-
sights gained in first experiments with the platform in sec-
tion 4. Finally, we conclude the paper with closing remarks
on the presented work and an outlook onto future directions.

2. RELATED WORK
A time travel protocol for the web has been previously

proposed by the Memento Project2 [4], which aims at mak-
ing archived web resources easily accessible via time-based
content negotiation. The protocol is natively supported by
a number of web archives, such as the Internet Archive, and
public libraries. It is available as an extension to MediaWiki
instances3 and a proxy implementation exists for services
which offer their own version API. The Memento approach
has also been adopted in the context of linked data, e.g. to
provide access to prior versions of DBpedia resources [5].
To achieve this, DBpedia releases were stored in a MySQL
database as independent snapshots and served through a
timegate endpoint (a more detailed description of the proto-
col follows in section 3.5). The demonstrator however misses
an archiving interface and updates have been discontinued
with DBpedia 3.9. While our platform analogously adopts
the Memento framework for version access, it aims to be-
come an archival platform not just for the DBpedia, but
other datasets as well. As such, it openly provides dataset
archival as a service and comprises a Push API that allows
users to submit new dataset revisions. The backing storage
concepts are more efficient so it will be able to keep up with
many datasets and a growing number of revisions.

Revision control systems such as CVS, Subversion, Mercu-
rial, and Git are well-established tools in software engineer-
ing for versioning mainly plain text files, such as source code
or CSV data4. Such versioning systems are typically based
on a unique serialization format. Using an appropriate RDF
serialization (preferably a fixed-order line-based format, e.g.
sorted N-Triples) such systems can equally well be used for
versioning RDF data [3]. This approach is practicable for
small datasets but has its limitations due to file-orientation
and revision control system characteristics. Additionally, an
extra HTTP layer is needed on top of repositories in order to
expose the recorded revision information and make it deref-
erenceable.

A variety of formats and vocabularies allow for describing
updates to RDF datasets: Both Delta [3] and RDF Patch5

propose dedicated patch file formats. Changeset6 defines a
vocabulary for changes to resource descriptions using RDF
reification including terms for metadata on the change. Fi-
nally, the Graph Update Ontology (GUO)7 provides an OWL
vocabulary for graph changes which avoids RDF reification.
These formats are primarily made for change propagation
between multiple copies of the same dataset. Except for

2http://mementoweb.org
3http://www.mediawiki.org/wiki/Extension:Memento
4http://blog.okfn.org/2013/07/02/
git-and-github-for-data/
5http://afs.github.io/rdf-patch/
6http://vocab.org/changeset/schema.html
7http://purl.org/hpi/guo#
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RDF Patch they produce rather bloated and verbose de-
scriptions of change information. Based on such change de-
scriptions historic versions of RDF datasets could be recon-
structed. But, none of these vocabularies developed to an
accepted standard, and neither is the publication of dataset
updates commonly adopted.

SemVersion [13] provided versioning for RDF models and
ontologies based on structural and semantical deltas. An-
other versioning approach for RDF was introduced by [2]
and integrated into the collaborative RDF editor Powl. Both
systems target ontology evolution and are meanwhile discon-
tinued.

R&Wbase [10] tracks changes within a modified triple-
store. It encodes deltas via context values assigned to the
changed triples (or quads) for each revision: Additions are
marked by even context values, deletions receive odd values.
In order to restore a revision, triples are scanned and selected
if the highest context value found is even. R&Wbase allows
querying via SPARQL and virtual graphs for revisions.

R43ples [6] implements an RDF-versioning proxy. It uses
named RDF graphs to group additions and deletions. Revi-
sions of the data are restored by creating a temporary graph
from the head revision, then rolling back changes stored
in the addition/deletion graphs. All the temporary copies
created for graph diffing and revision reconstruction turn
out to be rather costly. The comparably poor performance
of the approach limits its use to “medium-sized datasets”
with short histories. R43ples also introduces non-standard
SPARQL keywords for querying past states of a dataset.

Both R&Wbase and R43ples do not consider the linked
data aspect of versioned datasets, i.e. how to dereference
resource URIs and retrieve an RDF description for a specific
point in time. Linked data interfaces to SPARQL endpoints,
like the popular Pubby8, are not version-aware. They do
not allow for time queries and would have to be adapted for
use with R&Wbase or R43ples stores. They also rely on a
systematic, defined mapping to query statements related to
a URI. This mapping would need to be versioned as well or
guaranteed to never change. Otherwise a set of statements
retrieved from a URI might not be equivalent to what would
have been retrieved earlier. Finally, there are linked datasets
which do not originate from data sources exposed through
a SPARQL endpoint. For such datasets these approaches
would not work.

Recording changing states of web resources is a task the
Internet Archive and several other web archives have com-
mitted themselves to for a long time. They monitor and
preserve various artifacts on the web and provide access to
prior versions. The Dynamic Linked Data Observatory [9,
8] monitors a subset of the web of data on a weekly basis,
and provides data dumps and statistics on a two-hop neigh-
borhood of eighty thousand linked data documents.

These initiatives make it possible to gain insights on the
dynamics of web data but only show selected fragments of
the data in coarse time intervals. Both the monitored doc-
uments and time intervals can not be managed by the data
consumers.

3. APPROACH
Existing work on versioning semantic data models focuses

primarily on tracking changes to RDF datasets. While a

8http://wifo5-03.informatik.uni-mannheim.de/pubby/
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Figure 1: Linked datasets originate from a variety
of different data sources. A versioning system re-
ceives notifications about changes to a dataset di-
rectly from the publisher or through a monitoring
tool.

similar sounding concept, the notion of an RDF dataset
is not the same as that of a linked dataset. The purpose
of an RDF dataset is solely knowledge representation, it is
not concerned with how modeled information is published
or whether used resources can be dereferenced at all. In
a linked dataset, RDF descriptions are bound to resolvable
URIs, allowing agents to retrieve resource descriptions using
HTTP.

Different sources for linked data exist, e.g. views defined
on top of relational databases or dedicated triplestores, data
published in plain RDF documents or RDF embedded in
other document formats like HTML (figure 1).

By approaching the problem of recording dataset history
on a linked data level, we achieve an abstraction over differ-
ent sources of RDF data and are able to provide a consistent
interface to historic resource states.

3.1 A Model for Linked Datasets
A linked dataset is a set of URIs and associated RDF

descriptions (returned when dereferencing a URI):

DS = {(URI1, RDF1), . . . , (URIn, RDFn)}

Above definition provides a common view onto linked data-
sets independent of the underlying data source. It is suit-
able for implementing a versioning scheme which applies to
all kinds of linked datasets.

3.2 Possible Changes in Linked Datasets
For tracking the history of a linked dataset, we can identify

these possible (atomic) changes:

• introduction of a URI-RDF description pair

• removal of a URI-RDF description pair

• changes to the RDF description associated with a URI

Typically such changes are not recorded. The data source
is modified in place and only the current state of the data is
kept.

http://wifo5-03.informatik.uni-mannheim.de/pubby/


60

Q3 (index)URI

1

2

3

n

Q1 (state)

Q2 (history)

t

…

Figure 2: Linked dataset history consisting of indi-
vidual timelines for each URI and visualization of
basic queries.

3.3 Querying Linked Dataset History
A linked data archival system should answer the following

essential queries (in order of importance):

Q1 What was the description RDFx of URIx at time t?

Q2 When did the description for URIx change?

Q3 Which URI∗ existed at time t?

A graphical illustration of these queries is given in figure 2.
Q1 allows the retrieval of a past state of a specific resource,
a so-called “memento”. We consider this to be the most
common type of query. Q2 allows for tracing changes to a
single resource through time, figuring out at what points it
was actually changed. Q3 asks for an index of the resources
represented in a dataset at a certain point in time.

Other, high-level queries like cross-version queries may be
implemented in terms of these basic classes of queries.

3.4 Service Overview
The platform aims to provide linked data archival as a

user-friendly service. Users or organizations can register
freely and create repositories for the linked datasets that
they wish to track. Generally, dataset maintainers will want
to create a repository for their own dataset, but others may
choose to monitor public datasets and submit them to the
service if an official repository is missing.

Apart from a graphical web interface, which allows users
to manage their accounts and browse repositories, the ser-
vice comprises two major HTTP APIs: A Push API for
submitting dataset change information and a read-only Me-
mento API for accessing stored version information of linked
data resources.

3.5 Memento API
The idea of a time-travel interface for the web has previ-

ously been developed and advocated by Van de Sompel et
al. [4]. Their protocol-based framework, called “Memento”,
uses standard HTTP capabilities in order to link and re-
trieve past states of web resources9. The archival platform
we propose applies the concepts of Memento to linked data
resources for consistent and discoverable version access.

Each repository acts as a timegate for the original re-
sources. It supports datetime negotiation for accessing prior

9http://tools.ietf.org/html/rfc7089

resource states, mementoes. This mechanism works very
similar to regular HTTP content negotiation. Except in-
stead of a document format, a certain point in time is re-
quested by passing an Accept-Datetime header (Q1).The
server will reply with an RDF description equivalent to that
of the resource valid at the given point in time. It will also
include a Memento-Datetime response header informing the
client about when the resource was actually changed (might
be earlier than the requested timestamp). In case the re-
source did not yet exist at that time or was deleted previ-
ously, the server responds with the appropriate HTTP 404
status code.

For straight-forward linking to a specific version of a re-
source, it is also possible to specify the desired datetime as
a query parameter instead of a header (?datetime=...).

An index of all the URIs in a dataset at any given time
(Q3) may be retrieved using the same datetime negotiation
mechanism described above. For datasets consisting of many
resources, this index is split up into a number of pages. The
service provides this additional, virtual index resource as an
extension to the Memento framework.

If a client is interested in the change history of a particular
resource (Q2), it can request that resource’s timemap. A
timemap lists links to all of the stored states for a resource
along with their timestamps.

The Memento framework makes use of the HTTP Link

header10 for supplying URI references between the different
kinds of endpoints. The service memento responses will al-
ways contain the URIs of the corresponding original resource
and timemap. For best integration, the original linked data
endpoint should refer to the repository as its timegate by
inserting an appropriate Link header (rel="timegate"). A
simple Apache or Nginx proxy configuration change will of-
ten suffice to achieve this explicit reference.

A major advantage we see in using Memento for a linked
data archival platform is that it closely mirrors linked data
principles by using HTTP and content-negotiation for ver-
sion retrieval. It is a well-documented approach which offers
great discoverability and is easily integrated with existing
linked datasets.

3.6 Storage Model
There are two common model alternatives in revision con-

trol systems: snapshot storage and delta storage. With
snapshot storage, full descriptions are stored for each re-
vision, while a delta approach focuses on encoding transfor-
mations that lead from one version of the data to another.

Retrieval of revisions tends to be most efficient with snap-
shot storage as there is no computational overhead involved
for applying data transformations. In contrast, a delta based
model is more compact for data which undergoes evolution-
ary changes (a small portion of the data changes with each
revision).

The system we describe uses hybrid revision storage, snap-
shots and deltas, to balance space requirements and retrieval
time (cf. [11]).

The storage structure is designed to support memento
queries. Basic entities in the system are (see also figure 3):

repos Repositories are created by users and are typically
referenced by name. Conceptually, each repository encapsu-
lates a linked dataset and its history.

10https://tools.ietf.org/html/rfc5988
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repo-id* key-hash* timestamp* type len

hmap

csets

blobs repo-id* key-hash* timestamp* data

hash* value

Figure 3: Storage schema used to record dataset
changes. A ∗ indicates a primary key component.

csets Changesets encode information about modifications
to linked data resources within a repository at a particular
point in time. There are three types of changeset entries:
snapshot, delta and delete. Each 32-byte cset entry is iden-
tified and indexed by repository id, a hash of the original
resource URI (the “storage key”) and its timestamp.

hmap This auxiliary structure maps hashed storage keys
back to their unhashed value. It is only needed if support
for queries of type Q3 is required. The URI hashes stored in
the hmap are typically much shorter than storing the plain
URI as part of each cset redundantly. Also, queries Q1 and
Q2 can be answered directly without consulting the hmap
because with a well-known hash function, the storage key
can be computed directly and used for querying.

blobs Blobs contain optional data associated with cset en-
tries. In the case of snapshots, they contain a normalized
version of the resource RDF description. Blobs for deltas
encode differences in the resource description on top of the
previous resource state (added and removed statements). No
blobs are created for delete-csets as the cset marking a re-
source as deleted already captures just that information.

Notice that csets and blobs are actually de-normalized.
They share the same primary key but are handled as dif-
ferent entities. Queries Q2 and Q3 can already be answered
without reading any blob data. We thus avoid scanning more
data than necessary by storing blobs separately. While our
current implementation uses the same database system for
storing all of the above entities, this structure also opens
up the possibility to move blobs to a dedicated blob store
should that prove beneficial.

The csets for a resource form base+delta chains which
allow reconstruction of resource states by time. The base
is a non-delta cset (snapshot or delete) and followed by 0
or more deltas according to their timestamps. As a general
rule: There are no deltas directly after a delete-base. A
delete is always followed by a snapshot (details below).

Reconstructing a particular resource state reads from the
latest non-delta cset (and corresponding blob) before the re-
quested time t and applies the subsequent deltas in the chain
ordered by time. This is efficient because of the chosen in-
dex/primary key. Queried cset entries for resource recon-
struction may be read sequentially from a coherent range.

A tuneable chain length limit avoids high retrieval costs
for resources with long histories that include many changes,
i.e. a snapshot is stored if

1. The chain length for the resource is 0. When a history
for a resource has not yet been recorded, we simply

repo-id* key-hash* timestamp* type len

SNAPSHOT

… DELTA

… DELTA

… DELTA

… DELETE

… SNAPSHOT

… DELTA

t

Figure 4: Base+delta chain: Any resource state is
reconstructed from the latest non-delta cset prior to
the requested t and subsequent deltas.

insert a snapshot. Hence the first cset entry for any
resource is always a snapshot. A delta would only mark
every statement as “added”.

2. The last chain entry is a delete. Similar to condition 1,
when inserting a new RDF description after a delete,
all statements would be considered “added”. It is thus
more efficient to just create a snapshot cset.

3. The snapshot is smaller than the delta computed against
the last revision. When a significant portion of the
RDF description changes, a delta may be larger than
a snapshot. Our system does the right thing in such
cases and stores the entry occupying less space.

4. The accumulated size of deltas from the last stored
snapshot exceeds a configurable threshold. By ensur-
ing that snapshots are created on a regular basis, we
effectively prevent base+delta chains from growing ar-
bitrarily long and cap the costs for retrieving random
revisions.

With this model we can efficiently store and retrieve the
revision histories for sets of resources and thus linked data-
sets as a whole.

A list of resource URIs existing in a repository at a partic-
ular point in time is not stored explicitly, but can be derived
by traversing csets in a repository and joining with the hmap
entries. Our model is not as efficient for this type of query.
Rather it is optimized for queries Q1 and Q2 as we assume
these to be the most common use-case. The biggest issue
with Q3-type queries is: The list of URIs may be very long
for linked datasets making it infeasible to store and version
it directly.

3.7 Push API
Once a user has created a repository, they can start ver-

sioning their dataset resources. To create a new revision of
a resource, they simply push the RDF description in its cur-
rent state through straight-forward HTTP requests (snap-
shots are always available, while deltas are usually not).
An HTTP PUT request introduces or updates a URI-RDF
pair, while a DELETE request marks a resource as deleted.
Clients may pass a change timestamp explicitly in their re-
quests. If no timestamp is passed, the current system time
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is used as a default. The API accepts various RDF formats
(including RDF/XML, N-Triples, Turtle, N-Quads, RDFa,
RDF/JSON, TriG11) as input further reducing the integra-
tion effort for dataset maintainers. Push access to reposito-
ries is authorized via generated API tokens.

3.8 Implementation
The described protocols and storage model have been im-

plemented as a Python web service on top of a data store.
The hmap, csets and blob entities are stored by a rela-

tional database management system (MariaDB) with the
option of moving out blobs to a dedicated blob store should
that prove more fitting and the need arises. To further scale
the service we consider sharding the database once demands
outgrow our current setup and the gains we can get by fur-
ther fine-tuning. Depending on the actual workloads we will
see, sharding by the combination of repository and key-hash
might be appropriate, if we see a focus on Q1 and Q2 queries,
or by repo only, if analysis deems Q3 to be highly relevant.

As for hashing of storage keys, we are using the SHA-1
hash function also used in popular DVCS systems like Git
or Mercurial. It produces 20-byte hashes, but the hash-size
could of course be increased when necessary, swapping it
with a different function with longer output.

Like stated before, the push API accepts a number of RDF
input formats. These formats are parsed, re-serialized and
stored in a normalized fashion. The platform stores equiva-
lent RDF models rather than an exact byte-by-byte copy of
each RDF description. This allows for detecting malformed
input and has several advantages for the internal handling of
the data. RDF input is parsed through the Python-bindings
for Redland librdf12.

Snapshot blobs contain RDF data as zlib-compressed N-
Quads13, data for deltas is stored in zlib-compressed RDF-
Patch format14. Both of these formats are syntactically
very similar, making it straight-forward to generate patches
based on two N-Quad representations and, reversely, recon-
structing models from an N-Quad snapshot and RDF-Patch
deltas. Zlib-compression effectively reduces the required
storage capacity and transfer costs for blob data with mod-
erate computational overhead.

Computing deltas uses a hash set implementation. Sets
of statements can be diffed with an average complexity of
O(m+ n), where m and n are the number of statements in
the compared models. If M and N are sets of statements,
the subset A of statements added when going from M to N

is simply A = N − M , the subset D of deleted statements
is D = M − N . With a reasonable hash set implemen-
tation, each of the containment checks for elements of the
subtracted set in the base set have an average complexity of
O(1). This approach to diffing does not attempt to match
blank nodes. It favors lower computational complexity and
ease of implementation over minimal deltas.

Similarly, applying deltas as a reverse operation is imple-
mented in terms of adding and removing statements from a
hash set.

The source code is published as a GitHub repository15, an

11for supported MIME types see http://librdf.org/raptor/
api/raptor-formats-types-by-parser.html

12http://librdf.org/
13http://www.w3.org/TR/n-quads/
14http://afs.github.io/rdf-patch/
15https://github.com/pmeinhardt/tlr

Rel. Wikipedia #Resources #Statements Dump size
Dump Date (KiB)

3.2 2008-10-08 100,000 416,303 10,904
3.3 2009-05-20 97,461 431,895 11,062
3.4 2009-09-24 96,180 469,529 11,493
3.5 2010-03-16 99,876 481,245 11,930
3.5.1 2010-03-16 99,876 491,987 12,103
3.6 2010-10-11 99,838 537,401 12,771
3.7 2011-07-22 99,842 648,320 13,950
3.8 2012-06-01 99,867 684,965 14,253
3.9 2013-04-03 100,000 540,237 13,301

Table 1: For evaluation a random subset of 100,000
resources present in DBpedia 3.2 and 3.9 was se-
lected. Their descriptions are collected from DB-
pedia titles, mapping-based types and properties in
releases 3.2 through 3.9.

instance of the service is available at http://tailr.s16a.org/.

3.9 Integration Points
The system we present aims to solve the problem of keep-

ing linked datasets versioned in an efficient way. However,
we have not yet discussed how this system might be inte-
grated with existing linked data tools.

The best results for archiving could obviously be achieved
by integrating directly with linked data editors and data
sources. Through their application-knowledge, they have a
chance of instantly detecting resource changes and pushing
updates in an event-based manner. We are however aware
that this approach is not yet commonly pursued.

There is a lot of existing work on monitoring web resources
in general and, more specifically, linked data resources. A
range of monitoring systems have been developed in an effort
to create periodic snapshots of the web of data. Notably the
Dynamic Linked Data Observatory (DyLDO) [9] publishes
compressed dumps of their weekly linked data crawls. While
a very valuable source of historic structured data, the gath-
ered dumps are not very accessible. If instead resource snap-
shots retrieved by such monitoring approaches were con-
tributed to appropriate dataset repositories on our archival
platform, they could be inspected individually through the
Memento API.

Even though the platform is only picking up service now,
this does not mean that only future revisions of resources
can be recorded. Many datasets provide exported snap-
shots of past versions in some way which can be checked
into repositories retrospectively (along with the appropri-
ate date and time). For a start, we plan on creating and
pre-filling repositories for well-known datasets so their his-
tories are referenceable and accessible through a consistent,
queryable interface.

4. EXPERIMENTAL RESULTS
A direct comparison of the system with other related ap-

proaches is currently not possible, mostly because they do
not provide linked data interfaces with time-travel capabili-
ties. This section contains experimental results for our per-
formance measurements of the Push and Memento APIs as
well as the storage model.

The evaluation dataset consists of a subset of DBpedia
resources in releases 3.2 through 3.9 (3.2, 3.3, 3.4, 3.5, 3.5.1,
3.6, 3.7, 3.8 and 3.9). A random sample of 100,000 resources

http://librdf.org/raptor/api/raptor-formats-types-by-parser.html
http://librdf.org/raptor/api/raptor-formats-types-by-parser.html
http://librdf.org/
http://www.w3.org/TR/n-quads/
http://afs.github.io/rdf-patch/
https://github.com/pmeinhardt/tlr
http://tailr.s16a.org/
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Figure 5: Push API response times (in ms) during
the evaluation run with 100,000 resources across 9
versions of DBpedia.

present in DBpedia releases 3.2 and 3.9 has been selected
(see table 1). Descriptions for the selected resources have
been extracted from the English DBpedia titles, mapping-
based types and properties, collecting statements where the
sampled resources appear in the subject position. The sam-
ple dataset used in our evaluation is publicly available for
future reference16.

The setup for our evaluation run comprised two virtual
private servers (DigitalOcean17 droplets) in the same data-
center. The first, tailr, was a 2GB RAM, 2 CPU, 40GB SSD
machine, hosting an instance of our service implementation.
The second, pushr, was a 1GB RAM, 1 CPU, 30GB SSD
machine for pushing sample resources to the service repos-
itory API. Both machines were running Ubuntu 14.04 x64
with the default Python 2.7.6.

In a first study, we measured Push API response times.
Going through the release samples in order, the description
for each contained resource was pushed to a test repository.
If a resource was not present in a version of the DBpedia,
we issued a DELETE request to the API. The response times
during the test run are summarized in figure 5. The timing
data was parsed from the server logs.

Push requests for the first release took the longest time
on average. For resources with an empty history, hmap en-
tries need to be created which explains the additional over-
head. After that, response times increased to a small degree.
The growing base+delta chains make for slightly higher costs
of reconstructing last-known resource states before diffing.
These effects are comparatively small and also limited by
chain length restrictions and re-snapshotting for longer his-
tories.

Server CPU load during the whole experiment was below

16http://s16a.org/files/tailr/testdata.tgz
17https://www.digitalocean.com/

Rel. #Snapshots #Deltas #Deletes Data size
(KiB)

3.2 100,000 0 0 16182.14
3.3 100,878 21,350 2,539 20047.63
3.4 104,146 49,716 3,920 28131.71
3.5 112,863 78,134 3,967 37200.18
3.5.1 112,964 89,423 3,967 38986.99
3.6 114,006 114,380 4,030 43423.59
3.7 117,337 146,922 4,075 51857.38
3.8 119,140 172,405 4,099 56732.34
3.9 124,933 211,744 4,099 65730.81

Table 2: Number of cset entries by type and aggre-
gate size of the data stored in blobs measured after
pushing each release.

20%, disk I/O averaged less than 2MB/s (never exceeded
3MB/s) leaving plenty of room for parallel requests and
greater throughput.

We were further interested in the efficiency of the storage
model and the applicability of delta encoding. The counts
for the created snapshot, delta and delete csets after pushing
the samples for each of the DBpedia versions are given in
table 2. The last column lists the cumulated size of the data
stored in blob objects.

As we can see, the total amount of blob data accounts for
64.19 MiB, compared to 109.15 MiB for the cumulated size
of the individual compressed dumps in table 1 (or 579.70
MiB for the uncompressed N-Triples files). Contrasting the
growth in the numbers of delta csets with that of snapshot
entries, we can gather that seen space savings can be largely
attributed to delta encoding. Though other datasets may
possibly change in a different way from our sample, the im-
plemented storage model will nonetheless leverage the ben-
efits of delta compression if they exist.

Finally, we measured the Memento API performance by
requesting each of the sample resources in a random revision.
Response times grouped by DBpedia release are shown in
figure 6. The data was again parsed from the server log
files.

We can see a slight increase in the response times for
later revisions. Again, this is due to the longer base+delta
chains resulting in higher resource reconstruction costs. Re-
sponse times are still in a very acceptable range and our
re-snapshotting strategy will limit retrieval costs for longer
dataset histories.

5. CONCLUSIONS AND FUTURE WORK
In this paper we introduced a model for versioning linked

datasets and presented TailR, an archiving system for linked
data resources. An implementation of the presented con-
cepts and service is openly available. We are confident that
providing “linked data archival as a service” will lower the
entry barrier for dataset maintainers to start recording the
history of their datasets. Consequently, we plan to accumu-
late a significant amount of historic information on public
datasets and facilitate research by providing this informa-
tion through standard protocols and interfaces.

The platform will be the basis for new, time-based linked
data applications. Future work includes added services based
on the recently recognized and aggregated changes, an inte-

http://s16a.org/files/tailr/testdata.tgz
https://www.digitalocean.com/
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Figure 6: Memento API response times (in ms) mea-
sured for accessing random revisions of the sample
resources.

grated notification mechanism (e.g. via PubSubHubbub18)
and resource statistics. Since our approach does not sup-
port querying of multiple resources per se, it needs to be re-
searched which query approaches can be applied for within
this setting. Since the whole dataset is not accessible at
once, traversal based querying [7] seems a good candidate.
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