Maria Siebert
B-1.1, Tel.: -518
http://www.hpi.uni-potsdam.de/~meinel/teaching/

Wintersemester 2009/10 Abgabe bis 15.12. 10:55 Uhr im Postfach 53, HPI-Foyer

7. Übungsblatt zur Vorlesung Mathematik I Diskrete Strukturen und Logik (Prof. Meinel)

- 19. Geben Sie für die dreielementige Menge $M = \{a, b, c\}$ **3 Punkte** eine Halbordnung R an, so dass R die jeweils folgenden Eigenschaften besitzt.
 - (a) R ist eine Ordnungsrelation
 - (b) Es gibt ein Minimum und ein Maximum
 - (c) Es gibt zwei minimale und zwei maximale Elemente
- 20. Erweitern Sie die folgenden Relation $R \subset M \times M$ mit 4 Punkte so wenigen Elementen wie möglich, so dass die neue Relation eine Halbordnung ist. Bestimmen Sie die maximalen Ketten der Relation.
 - (a) $R = \{(1,1), (1,2), (2,3), (4,5), (5,6)\}$
 - (b) $R = \{(1,2), (2,3), (6,5), (7,1)\}$
- 21. Seien A und B nichtleere Mengen und $f:A\to B$ **2 Punkte** Abbildung. Für $a,b\in A$ gelte $a\sim b$ gdw. f(a)=f(b).
 - (a) Zeigen Sie, dass \sim Äquivalenz ist.
- 22. Seien $M_1, M_2 \subseteq A$ Teilmengen von A und seien $N_1, N_2 \subseteq B$ **3 Punkte** Teilmengen von B. Zeigen Sie dass für jede Abbildung $f: A \to B$ gilt:

$$f(M_1 \cap M_2) \subseteq f(M_1) \cap f(M_2)$$

Allgemeiner Hinweis: Alle Aussagen sind zu begründen. Geben Sie ausreichende Zwischenschritte an. Weitreichende Umformungen ohne Zwischenschritte können nicht gewertet werden.