- Introduction
- Non standard inferences
 - LCS and MSC
 - Matching
 - Rewriting
 - Approximation
 - Difference
 - Semantic difference
 - Syntactic difference

Introduction

- "Non-standard" by opposition to "standard" inferences (subsumption, satisfiability,...)
- Standard inferences are not sufficient when:
 - It comes to generate new concept descriptions from given ones
 - Concepts are specified using different vocabularies
 - Concepts are described in different levels of abstraction
 - ...
- Non-standard inferences needed for the construction and maintenance of large DL knowledge bases.
- First ad hoc implementations integrated into the CLASSIC DL-system

- Introduction
- Non standard inferences
 - LCS and MSC
 - Matching
 - Rewriting
 - Approximation
 - Difference
 - Semantic difference
 - Syntactic difference

 Least Common Subsumer. The *lcs* of a given sequence of concept descriptions is a description that represent their common properties. Formally:

C is the *lcs* of
$$C_1, ..., C_k$$
 iff:
1. $C_i \sqsubseteq C$ for all $i = 1, ..., k$; and
2. for a description *E*, if $C_i \sqsubseteq E$ for all $i = 1, ..., k$, then $C \sqsubseteq E$

- The *lcs* is unique up to equivalence.
- The *lcs* need-not always exist:
 - There may be several subsumption incomparable minimal descriptions satisfying 1 (This case cannot occur for DLs allowing for conjunction).
 - There may be an infinite chain of more and more specific descriptions satisfying 1.

MSC

Most Specific Concept. The *msc* of individuals described in an ABox is a description that represent their common properties.
 Formally:

C is the *msc* of $a_1, ..., a_k$ iff: 1. $C(a_i) \in \mathcal{A}$ for all i = 1, ..., k; and 2. for a description E, if $E(a_i) \in \mathcal{A}$ for all i = 1, ..., k, then $C \sqsubseteq E$

- Close connection between the *msc* and the *lcs*
 - Given the ABox: $C_1(a_1), ..., C_n(a_n)$ $msc(a_1, ..., a_n)$ is equivalent to $lcs(C_1, ..., C_n)$
 - Reduction to lcs and unary msc operation $msc(a_1, ..., a_n) \equiv lcs(msc(a_1), ..., msc(a_n))$

Applications of the LCS and the MSC

- Learning from examples. Find the most specific concept that generalizes a set of examples.
- Used as an alternative to disjunction. Replace $C_1 \sqcup ... \sqcup C_n$ by $lcs(C_1, ..., C_n)$ which represents the best approximation of the disjunction within a DLs not allowing for it.
- Support for the "bottom-up" construction of DL knowledge. Derive concept descriptions from typical examples in the ABox.

- Introduction
- Non standard inferences
 - LCS and MSC
 - Matching
 - Rewriting
 - Approximation
 - Difference
 - Semantic difference
 - Syntactic difference

Matching

- Given a concept pattern *D* (a concept description with variables) and a concept description *C*,
 - a matching problem modulo equivalence asks for a substitution σ (of variables by concept descriptions) such that $C \equiv \sigma(D)$
 - a matching problem modulo subsumption asks for a substitution σ such that $C \sqsubseteq \sigma(D)$
- Applications of matching
 - Filter unimportant aspects of complicated concepts in KB.

 $D := \forall research-interests. X$

 $C := \forall pets.Cat \sqcap \forall research-interests.AI \sqcap \forall hobbies.Gardening assigns AI to the variable X$

– Detect redundancies in KB.

Woman \sqcap haschild.Woman

Female \sqcap Human \sqcap haschild.(Female \sqcap Human)

– Find interschema assertions in KB integration

- Introduction
- Non standard inferences
 - LCS and MSC
 - Matching
 - Rewriting
 - Approximation
 - Difference
 - Semantic difference
 - Syntactic difference

Rewriting

- General framework
 - Let \mathcal{L}_1 , \mathcal{L}_2 , \mathcal{L}_3 desription languages, C an \mathcal{L}_1 -concept description and \mathcal{T} an \mathcal{L}_2 -TBox

Rewrite C into an \mathcal{L}_3 -concept description D such that

- 1. C $\rho_{\mathcal{T}} D$
- 2. D satisfies an optimality criteria (ex. minimal in size)
- Instances
 - The minimal rewriting problem
 - The DLs are the same language \mathcal{L}
 - The TBox \mathcal{T} is acyclic
 - The binary relation $\rho_{\mathcal{T}}$ is equivalence modulo the TBox
 - D is minimal w.r.t size of concept descriptions

Applications

Increase the readability of large concept descriptions by using defined concept names from a TBox

Rewriting

- The problem of rewriting queries using views
 - $\mathcal{L}_1 = \mathcal{L}_2 = \mathcal{ALCNR} \mathcal{L}_3 = \{ \sqcap, \sqcup \}$
 - The binary relation $\rho_{\mathcal{T}}$ is subsumption (C \supseteq D)
 - D is maximal w.r.t subsumption

Application

- Databases: optimize the runtime of queries by using cashed views
- The approximation of concept descriptions

exact approximation Upper/lower approximations

- The TBox *T* is empty
 The binary relation ρ_T is equivalence, subsume ⊑, subsumed by ⊒
- D is minimal (*upper* case) / maximal (*lower* case) w.r.t subsumption

Application

 Translation of knowledge bases from an expressive DL into a less expressive one

- Introduction
- Non standard inferences
 - LCS and MSC
 - Matching
 - Rewriting
 - Approximation
 - Difference
 - Semantic difference
 - Syntactic difference

Approximation

- Upper approximation of ALC-concept descriptions by ALE-concept descriptions
- Given an \mathcal{ALC} -concept description $C = E \sqcup F$, its \mathcal{ALE} -approximation is lcs(E,F).
- A naïve approach: replace every disjunction by the lcs of its disjuncts

$$C_{ex1} = (\forall r.B \sqcup (\exists r.B \sqcap \forall r.A)) \sqcap \exists r.A$$
$$C_{ex2} = \exists r.A \sqcap \exists r.B \sqcap \forall r.(\neg A \sqcup \neg B)$$

\mathcal{ALC} normal from

- An \mathcal{ALC} -concept description C is in \mathcal{ALC} -normal form iff
 - 1. $C \equiv \bot$, then $C = \bot$ or $C \equiv \top$, then $C = \top$
 - 2. C is of the form $C = C_1 \sqcup ... \sqcup C_n$ with

$$C_{i} = \prod_{A \in \mathsf{prim}(C_{i})} A \sqcap \forall r. \forall_{r}(C_{i}) \sqcap \prod_{C' \in \exists_{r}(C_{i})} \exists r. C'$$

in *ALC*-normal form

• *ALC*-normal form can be of size exponential

 $(A_1 \sqcup A_2) \sqcap \ldots \sqcap (A_{2n-1} \sqcup A_{2n})$

The approximation algorithm

 $c\text{-approx}_{\mathcal{ALE}}(C) := \mathsf{P}_1 \sqcap \mathsf{P}_3$

The approximation algorithm

 $\operatorname{c-approx}_{\mathcal{ALE}}(C) := \mathsf{P}_1 \sqcap \mathsf{P}_3 \sqcap \forall r.lcs \{\operatorname{c-approx}_{\mathcal{ALE}}(\forall_r(C_i)) \mid 1 \leq i \leq n\} \sqcap$

The approximation algorithm

• Compute the ALE-approximations of

$$C_{ex1} = (\forall r.B \sqcup (\exists r.B \sqcap \forall r.A)) \sqcap \exists r.A$$
$$C_{ex2} = \exists r.A \sqcap \exists r.B \sqcap \forall r.(\neg A \sqcup \neg B)$$

- Introduction
- Non standard inferences
 - LCS and MSC
 - Matching
 - Rewriting
 - Approximation
 - Difference
 - Semantic difference
 - Syntactic difference

Difference

- The difference operator allows to remove from a given description the information contained into another description.
- Two definitions of the difference:
 - The semantic difference

 $C - D := \max_{\subseteq} \{E \mid E \sqcap D \equiv C\}$ where C is required to subsume D. Father – Man := \exists hasChild.Human

- The "syntactic" difference

 $C - D := min_{\preceq_d} \{ E \mid E \sqcap D \equiv C \sqcap D \}$ Uncle - Father := \exists hasSibling.Father

- Introduction
- Non standard inferences
 - LCS and MSC
 - Matching
 - Rewriting
 - Approximation
 - Difference
 - Semantic difference
 - Syntactic difference

- Some important properties
 - If the DL allows for negation C D is always equivalent to $\neg(D \sqcap \neg C)$ (not useful in practice)
 - For certain DLs the difference may not be unique

 $\bot - (P \sqcap Q) = \{\neg P, \neg Q\}$

 Teege characterizes the necessary conditions for a logic to have a semantically unique difference.

Semantically unique difference

- RCF (Reduced Clause Form)
 - A clause is a description that cannot be decomposed into a conjunction of descriptions

 $\forall r.(P \sqcap Q)$ is not a clause because $\equiv \forall r.P \sqcap \forall r.Q$

 A set of clauses is reduced if no clause subsumes the conjunction of the others.

 $A \doteq \forall r_1.P_1 \sqcap \forall r_2.(P_2 \sqcap \forall r_3.\exists r_4.(P_3 \sqcap P_4)) \sqcap \forall r_2.\forall r_3.\exists r_4.P_3$ $\{\forall r_1.P_1, \forall r_2.P_2, \forall r_2.\forall r_3.\exists r_4.(P_3 \sqcap P_4)\}$

- Structural subsumption
 - A a clause and $B = B_1 \sqcap ... \sqcap B_n$ given by its RCF

 $A \sqsupseteq B \Leftrightarrow \exists \mathbf{1} \leq i \leq n : A \sqsupseteq B_i$

- The cases involving a non unique difference
 - Use of certain operators
 - Combination of operators
- The set of constructors of the logic \mathcal{L}_1 is The maximal set supporting structurally unique RCFs
 - $\sqcap, \sqcup, \top, \bot, (\exists r.C), (\exists f.C), (\geq nR)$ for concepts,
 - \perp , o, | for roles,
 - \perp , for functional roles.

- Decomposition of \perp

$$egin{aligned} A \sqcap
eg A &\equiv \bot \ orall f. \bot \sqcap \exists f. \top &\equiv \bot \ (\geq (n+1)r) \sqcap (\leq nr) \equiv \bot \ orall r. \bot \sqcap \exists r. \top &\equiv \bot \end{aligned}$$

– Compute the following differences:

$$(\exists f_3. \top \sqcap \forall f_3. \bot) - (\exists f_1. \top \sqcap \exists f_2. \top)$$

 $(\geq (p+1)r_3) \sqcap (\leq nr_3) - (\geq (n+1)r_1) \sqcap \leq mr_2)$
 $(\forall r. \bot) - (\forall r. P \sqcap \forall r. (\exists r. \top))$

- Roles with fixed number of images
- Feature agreement or role value map

- Introduction
- Non standard inferences
 - LCS and MSC
 - Matching
 - Rewriting
 - Approximation
 - Difference
 - Semantic difference
 - Syntactic difference

$$C - D := \min_{\preceq_d} \{ E \mid E \sqcap D \equiv C \sqcap D \}$$

- Proposed for ALE-descriptions, ALC and ALE-descriptions
- The syntactic order \preceq_d

 $\hat{C} \preceq_d C$ if $\ \hat{C}$ is obtained by removing subdescriptions from C

$$C_{ex} = \mathbf{Q} \sqcap \mathbf{Q} \sqcap \forall \mathbf{r}.\mathbf{P} \sqcap \exists \mathbf{r}.(\mathbf{P} \sqcap \exists \mathbf{r}.\mathbf{Q})$$
$$\widehat{C}_{ex} = \mathbf{Q} \sqcap \forall \mathbf{r}.\mathbf{P} \sqcap \exists \mathbf{r}.(\exists \mathbf{r}.\mathbf{Q}) \longleftarrow \mathsf{reduced}$$

if $\hat{C}\equiv C$ and \hat{C} is the most specific description verifying this property \hat{C} is called reduced

- The difference algorithm principle:
 - Remove from C the information in D or already present in C

Syntactic difference algorithm

$diff(C,D) := P_2 \sqcap \forall r.diff(\forall_r(C),\forall_r(D))$

Syntactic difference algorithm

 $diff(C,D) := P_2 \sqcap \forall r.diff(\forall_r(C),\forall_r(D))$

Syntactic difference algorithm

 $diff(C,D) := P_2 \sqcap \forall r.diff(\forall_r(C),\forall_r(D)) \sqcap \prod_{E \in \mathcal{E}} \exists r.E$

An example

- $C \doteq \exists r.P \sqcap \forall r.(P \sqcap Q) \sqcap \forall s.(\neg P \sqcap Q)$
- $D \doteq \exists r.(P \sqcap \neg Q) \sqcap \forall r.P \sqcap \forall s.Q$

Another philosophical question

• The link between the semantic and the syntactic operators?

Bibliography

- "The Description Logic Handbook: Theory, Implementation and Applications", Cambridge: University Press, 2003
- R. Küsters, "Non-Standard Inferences in Description Logics", Springer-Verlag, 2001
- S. Brandt, R. Küsters and A.-Y. Turhan, "Approximation and Difference in Description Logics" in KR 2002.
- G. Teege, "Making the Difference: A Subtraction Operation for Description Logics" in KR 1994.

