
3 Data-driven Tool Development

Figure 4: We expect a big effect in exploration tasks when the architectural patterns
actually used do not align with the basic language representation.

3.3 Tool Containers

There are many opinions about how to efficiently use the two-dimensional screen
space. Layouting flavors include overlapping windows such as in Squeak, tiled areas
such as in Eclipse, unbounded spaces [2], and horizontal tapes [6]. They differ in
their degree of freedom considering the manual arrangement of widgets.

Our data-driven tool building approach is independent from particular tool con-
tainers. Theoretically, panes could be arranged al gusto—even on top of each other—
because the essence lies in accessing scripts and modifying them in situ. Program-
mers should be able to point with the finger on the screen and say “Why are my
artifacts presented this way?” or “I want to see more details about my artifacts in
this widget here.”

3.4 Towards a Controlled Experiment

At the time of writing, we are investigating to which extent programmers can benefit
from our framework. We are preparing a controlled experiment with a within subjects
design. The tasks will be about exploring source code and run-time state in the
context of fixing bugs or adding features. The control group will not be allowed
to access or modify scripts but only use a given set that is small but sufficient and
comparable to familiar tools. This includes traditional code browsing, object state
exploration, and code execution in a read-eval-print loop.

As for the experimental group, we expect an alternation of tool using and modifi-
cation activities as shown in Figure 4. To measure both kinds of activities, we want
to provide a modal interface for reading and writing scripts, which may complicate
the use of VIVIDE a little bit compared to its current modeless implementation. In
sum, the experimental group should be several times faster than the control group

199

Marcel Taeumel: Data-driven Tool Development

because they may not have to simulate and remember many things but can try them
out and see the results directly.

4 Related Work

The idea of data-driven approaches for building graphical applications manifested
itself long time ago in the domain of visual programming such as Fabrik [8] and its
web-based successor LivelyFabrik [10] do. The programmer can combine scriptable,
graphical components and establish dataflow in between. More recent research
projects include KScript [12], which employs functional reactive programming with
declarative, data-driven constructs for building graphical applications.

There are also industry-focused projects such as [14], which combines ActiveX
and JavaBeans components as filters into graphical interfaces. As spreadsheet pro-
gramming is also considered straightforward, the ActiveSheets project [19] explores
the possibilities of stream processing and visual output in Excel.

Our approach targets programmers but not necessarily the professional ones.
We explicitly appreciate the combination of different language concepts such as
object-oriented programming and data-driven scripting. In contrast to the projects
mentioned, we consider means of abstraction to facilitate the construction of more
complex tools.

5 Conclusion

Live programming systems such as Squeak/Smalltalk provide short feedback loops
to promote iterative, low-effort, and high-quality tool construction. Programmers
can modify pieces of source code and immediately observe changed behavior in
running programs. Graphic frameworks such as Morphic [11] leverage this idea for
programs with interactive, visual output. Programmers can directly explore and
adapt graphical objects and hence shape the user experience as desired.

With our data-driven perspective, we proposed a novel mechanism to further
facilitate the idea of modifying the tools in use and applied it to a range of graphi-
cal tools for the programming domain. Given this, programmers can perceive the
requirements for being both tool user and tool builder differently. We think that this
perspective on graphical tools can inspire the creation of new trade-offs in modular-
ity for both data-providing projects and interactive views.

200

References

References

[1] M. Appeltauer, R. Hirschfeld, M. Haupt, J. Lincke, and M. Perscheid. “A Com-
parison of Context-oriented Programming Languages”. In: Proceedings of the
1st International Workshop on Context-Oriented Programming. ACM. 2009, page 6.

[2] A. Bragdon, S. P. Reiss, R. Zeleznik, S. Karumuri, W. Cheung, J. Kaplan, C.
Coleman, F. Adeputra, and J. J. LaViola Jr. “Code Bubbles: Rethinking the
User Interface Paradigm of Integrated Development Environments”. In: Pro-
ceedings of the 32nd International Conference on Software Engineering. ACM. 2010,
pages 455–464.

[3] R. P. L. Buse and W. R. Weimer. “Automatically documenting program changes”.
In: Proceedings of the 25th International Conference on Automated Software Engi-
neering (ASE). IEEE/ACM. 2010, pages 33–42.

[4] P. M. Duvall, S. Matyas, and A. Glover. Continuous integration: Improving soft-
ware quality and reducing risk. Pearson Education, 2007.

[5] E. Gamma, R. Helm, R. Johnson, and J. Vlissides. Design patterns: Elements of
reusable object-oriented software. Pearson Education, 1994.

[6] A. Z. Henley and S. D. Fleming. “The Patchworks Code Editor: Toward Faster
Navigation with Less Code Arranging and Fewer Navigation Mistakes”. In:
Proceedings of the SIGCHI Conference on Human Factors in Computing Systems.
ACM, 2014, pages 2511–2520.

[7] K. Herzig and A. Zeller. “The impact of tangled code changes”. In: Proceedings
of the 10th International Workshop on Mining Software Repositories (MSR). IEEE.
2013, pages 121–130.

[8] D. Ingalls, S. Wallace, Y. Chow, F. Ludolph, and K. Doyle. “Fabrik: A Visual Pro-
gramming Environment”. In: ACM SIGPLAN Notices 23.11 (1988), pages 176–
190.

[9] D. Kawrykow and M. P. Robillard. “Non-essential changes in version histo-
ries”. In: Proceeding of the 33rd International Conference on Software Engineering
(ICSE) (2011), page 351.

[10] J. Lincke, R. Krahn, D. Ingalls, and R. Hirschfeld. “Lively Fabrik A Web-based
End-user Programming Environment”. In: Proceedings of the 7th International
Conference on Creating, Connecting and Collaborating through Computing (C5).
IEEE. 2009, pages 11–19.

[11] J. H. Maloney and R. B. Smith. “Directness and Liveness in the Morphic User
Interface Construction Environment”. In: Proceedings of the 8th Symposium on
User Interface and Software Technology. ACM. 1995, pages 21–28.

201

Marcel Taeumel: Data-driven Tool Development

[12] Y. Ohshima, A. Lunzer, B. Freudenberg, and T. Kaehler. “KScript and KSWorld:
a time-aware and mostly declarative language and interactive GUI frame-
work”. In: Proceedings of the 2013 ACM international symposium on New ideas,
new paradigms, and reflections on programming & software. ACM. 2013, pages 117–
134.

[13] R. Robbes and M. Lanza. “A change-based approach to software evolution”.
In: Electronic Notes in Theoretical Computer Science 166 (2007), pages 93–109.

[14] D. Spinellis. “UNIX Tools as Visual Programming Components in a GUI-
builder Environment”. In: Wiley Software: Practice and Experience 32.1 (2002),
pages 57–71.

[15] M. Taeumel, T. Felgentreff, and R. Hirschfeld. “Applying data-driven tool
development to context-oriented languages”. In: Proceedings of the 6th Interna-
tional Workshop on Context-oriented Programming. ACM. 2014.

[16] M. Taeumel, M. Perscheid, B. Steinert, J. Lincke, and R. Hirschfeld. “Interleav-
ing of Modification and Use in Data-driven Tool Development”. In: Proceedings
of the Symposium for New Ideas, New Paradigms, and Reflections on Everything to
do with Programming and Software (Onward!) 2014. ACM. To appear.

[17] M. Taeumel, B. Steinert, and R. Hirschfeld. “The VIVIDE programming envi-
ronment: Connecting run-time information with programmers’ system knowl-
edge”. In: Proceedings of the ACM International Symposium on New Ideas, New
Paradigms, and Reflections on Programming and Software (Onward!) ACM, 2012,
pages 117–126.

[18] Y. Tao, Y. Dang, T. Xie, D. Zhang, and S. Kim. “How do software engineers
understand code changes?: An exploratory study in industry”. In: Proceedings
of the ACM SIGSOFT 20th International Symposium on the Foundations of Software
Engineering. ACM. 2012, page 51.

[19] M. Vaziri, O. Tardieu, R. Rabbah, P. Suter, and M. Hirzel. “Stream Processing
with a Spreadsheet”. In: Proceedings of the European Conference on Object-oriented
Programming (ECOOP). Springer, 2014, pages 360–384.

202

Omniscient Debugging in Database Applications

Arian Treffer

Enterprise Platform and Integration Concepts
Hasso-Plattner-Institut

arian.treffer@hpi.de

Omniscient debuggers can greatly improve developer productivity. Not only do
they allow for more efficient navigation in the execution of a program, they can
be used as a foundation for dynamic analyses that further help the developer
to identify relevant parts of code. Much work has been done on debugging and
analyzing object-oriented code.

We present an approach of bringing omniscient debugging and advanced analy-
sis algorithms to stored procedures. Our prototype allows omniscient debugging
of SQLScript that handles large amounts of data, while creating only a small
overhead through slicing. Furthermore, we show how the trace can be used as a
foundation to run dynamic analysis algorithms whilst reducing the amount of
data that has to be processed.

1 Introduction

The debugger is one of the most important of a software developer. It allows to
observe and inspect a program’s execution and is useful for many purposes, such
as bug detection and code comprehension. Studies found that developers spend up
to 50 % of their time debugging.

The usage of a debugger usually follows the same pattern:

1. The developer forms a hypothesis about the workings of a specific part of the
program.

2. She sets a breakpoint inside or before the code of interest. If the control flow
through the program is not certain, multiple breakpoints can be used.

3. Once the debugger halts the execution, the program’s state can be examined.

4. The execution is continued in small or larger steps, e.g., using step instructions
or more breakpoints.

5. If unexpected values or behavior are observed, the hypothesis is adapted.

203

mailto:arian.treffer@hpi.de

Arian Treffer: Omniscient Debugging in Database Applications

This process is repeated until the developer’s hypothesis is sufficiently confirmed.
Alas, with commonly used debuggers, this approach has several problems. To

find good locations for setting breakpoints, extensive knowledge is often necessary.
If the hypothesis is changed, other parts of the program may become of interest. If
these parts have already been executed, the debug session has to be restarted. This
is particularly common in bug hunting, where the infection chain has to be followed
from the failure to the code defect, backwards in time. Furthermore, navigation
errors such as stepping over a method call instead of into it often make restarting
the debug session necessary.

The remainder of the report is structured as follows: The next section gives a brief
introduction to omniscient debuggers and presents our previous work on debugging
and slicing Java applications. Section 3 shows our ongoing work of adapting these
concepts to SQLScript and describes new challenges that emerge when debugging
code that handles large amounts of data. A history of omniscient debugging and
other related work is presented in section 4, before we conclude in section 5.

2 Omniscient Debugging

A Backwards Debugger is a debugger that allows to step not only forwards, but also
backwards in the execution. As an extension, an Omniscient Debugger is a debugger
that knows every state of the program, in the past and future of the current point in
time.

Working backwards debuggers have been implemented for several programming
languages [7, 11–13]. Many of them internally work like omniscient debuggers, but
do not reveal this to the user.

2.1 Modeling the execution trace

Debuggers are a special kind of runtime analysis tools. Basically, there are two ways
to implement a runtime analysis.

A live analysis evaluates the program as it is executed; as soon as, or even before,
the program terminated, the result of the analysis is available. Common debuggers
typically fall into this category.

A post-mortem analysis first records aspects of the programs execution and then
analyses the recorded data. Sometimes, this approach has the advantage that multi-
ple analyses may be run iteratively, without having to re-execute the program. This
disadvantage of this approach is that, depending on the granularity of the recorded
data, it requires much more memory.

204

2 Omniscient Debugging

Backwards debuggers can be implement with both the live and the post-mortem
approach. In the scenario described above, where the debug session begins at the
occurrence of a failure, it does not make much of a difference. In other use cases,
however, the look-ahead that is possible with the post-mortem approach can make
the difference between a backwards and an omniscient debugger.

Many strategies have been proposed to reduce the amount of data that has to be
captured to allow a replay of the execution. However, since we aim for an omniscient
approach, we will record almost everything, including method calls and returns,
exceptions, and variable and field accesses.

2.2 Advanced navigation

As described above, a recurring task is to find the source of a value. It seems obvious
how a backwards debugger can improve the time required to find the source of an
error.

Restarting the debug session becomes virtually unnecessary. Once an error is
identified, the developer can step backwards to its source. If a method call is stepped
over by accident (in either direction), the operation can be easily reverted.

Nevertheless, this may still require stepping (backwards) through large parts of
the application. An omniscient debugger, on the other hand, immediately knows
where the value was set.

Figure 1: Variables View in Eclipse

Figure 1 shows the variable view of Eclipse’s debugging perspective, which is
typically used to spot erroneous values. With the omniscient debugger extension,
the developer can directly jump back in time to the assignment of a value simply by
double clicking it. This changes the debugging process as follows:

The developer finds the value and double-clicks to jump to its source. She finds
that the value is build from three other values, using a formula that seems to be
correct. However, she is not sure which of the input values is erroneous. Thus, she

205

Arian Treffer: Omniscient Debugging in Database Applications

bookmarks the current point-in-time and begins to investigate the first value, again
by double-clicking it.

Once she stepped around through the value’s creation, she is certain that this
value is valid and uses the bookmark to return back to the future. Then she begins
to investigate the second value. When she realizes that it is invalid, this process is
repeated until the fault is reached.

As the example shows, another important task is to determine whether a value is
valid by examining how it is produced. Here, the omniscient debugger can assist in
multiple ways.

Firstly, instead of showing just the current stack trace, the omniscient debugger
can provide a tree of previous and subsequent invocations (cf. Figure 2). Especially
after jumping backwards, the developer may have to regain orientation, where this
additional context can be helpful.

Figure 2: Call Tree

Secondly, the debugger can show the history of a variable, or even an entire object
(cf. Figure 3). Mostly, this is helpful when a value is created in a loop or if an object is
changed in multiple, different parts of the application over a longer stretch of time.

Finally, the debugger knows whether a given value is used again or at all. By
greying out variables and fields that are not accessed again (at least not before their
values are changed), the program state that has to be examined by the developer is
effectively reduced.

206

2 Omniscient Debugging

Figure 3: Variable History

2.3 Slicing

According to Weiser [19], a (static) slice S is a subset of the statements of a program
P on a slicing criterion C, so that for any input I, S and P produce state trajectories
equivalent with respect to C. A typical example for a slicing criterion would be a
variable in a given line. Then, all statements that can never impact the value of that
variable can be removed from the slice. Dynamic slices are defined similarly, but
have to produce the equivalent state trajectories only for specific inputs [10].

It has been shown that slicing represents how programmers naturally think about
problems in programming [19] and has many applications, including, but not limited
to, debugging [1] and program comprehension [4].

Typically, static and dynamic slicing algorithms focus on finding statements be-
longing to a slice. However, in many cases statements are executed multiple times
in a single program run and not all executions are relevant for the slice. Therefore,
our algorithm focuses on state-changing events, i.e., actual executions of statements,
instead of the statements themselves.

On the highest level, our algorithm to compute a dynamic slice works as follows:
The output of the algorithm will be a sorted set of events. The target event, i.e., the
event for which the slice was requested, is added to both the result set and a queue
of unprocessed events. Then, until the queue is empty, an event is polled and its
dependency events are determined as follows:

Firstly, the event is mapped to a statement in the code. Secondly, the static depen-
dency graph for that method is obtained. Thirdly, the statement is looked-up in the
graph and candidate dependency statements are mapped back to events.

207

Arian Treffer: Omniscient Debugging in Database Applications

Each dependency event that is not yet part of the result set is added to both the
result and the queue. Finally, the result set is returned.

Compared to existing Java dynamic slicers, our approach has several advantages.
Unlike JSlice, we separated the tracing and the analysis phase. This allows for faster
results when computing multiple slices on the same execution. Both JSlice and
JavaSlicer allow to visualize the slice by highlighting relevant lines in the source
code. Our approach uses the slice in the context of a debug session, which means
it not only allows to step through the slice, but also allows the developer to inspect
variables and objects at any point in time. Furthermore, the developer can choose to
exclude different types of dependencies from a slice to set a focus, for instance, on
calculation or reachability questions.

3 Debugging Stored Procedures

Many large and complex applications use a database to persist large amounts of data.
However, with the advance of in-memory databases and the decline of RAM cost,
the database is no longer seen as a simple data provider [15]. For maximum perfor-
mance, more and more business logic is moved away from the so-called application
layer, which is typically coded in some high-level object-oriented language, into the
database, where it has to be rewritten in SQL queries and stored procedures (mostly
SQLScript). The increasing complexity of database routines brings an increased need
for tool support for debugging.

Regular debuggers for stored procedures already exist. They allow to set break-
points and to inspect variables and tables, as one would expect. However, often they
can not be used as efficiently as debuggers for other languages. It is common for a
stored procedure to run several seconds or even minutes, which increases the cost
for restarting a debug session. Furthermore, the large amounts of data that can be
processed in a single call can make it impossible for the developer to gain a complete
understanding of the program state.

Both problems can be solved by testing with minimal example data. However, if
the nature of a bug is not yet known, creating such an example may be impossible.
In this section, we show how an omniscient debugger for stored procedures can be
realized and discuss specific problems such a debugger has to face. A prototypical
implementation is currently being developed.

3.1 Tracing and Omniscient Debugging

An omniscient debugger also suffers from the large amounts of data. Our Java debug-
ger traces every field and variable access. Tracing every tuple of a table would create

208

3 Debugging Stored Procedures

a dramatic overhead. Using an even-bigger database, just to manage a single debug
session, is not feasible. Instead, we take advantage of the same that makes stored
procedures so powerful in the first place: the declarative nature of SQL queries.

Unlike in object-oriented programs, where almost every behavior can be changed
by virtual method calls, it is not possible to change the behavior of a where-clause.
Furthermore, SQL queries are well defined so that it is not necessary to analyze the
internal workings to allow an analysis of the overall behavior.

Instead, we only need to trace variable assignments to be able to reproduce the
program execution. Queries don’t have to be traced at all, although for some pur-
poses it will be helpful to record some meta information, such as the execution time
or the number of results. However, we need to be able to reproduce the query results,
otherwise the debugger would be quite useless.

3.2 Reproducing Queries

By tracing all variables, the debugger has enough information available to re-execute
any query. However, the query will only yield the same results as long as the under-
lying data has not changed.

In general, one can expect that debugging will take place on a development ma-
chine where no other data manipulation occurs. However, in cases where this as-
sumption doesn’t hold, the debugger might end up showing wrong or misleading
data the developer, which can make the tool outright harmful. Furthermore, the
debugged stored procedure itself may change the data, which will cause a query to
return different results at different points in time.

We have identified three strategies of dealing with data changes, each with its
own advantages and disadvantages.

Temporary Tables Auxiliary tables can be used to track all data changes. Values
of deleted tuples and modified attributes have to be recorded, as well as timestamps
of the manipulation events. To re-execute a query, it has to be rewritten to include
this additional data.

An advantage of this approach is that it allows to efficiently analyze the modifi-
cations that were applied by the stored procedure. Disadvantages are that copying
data to auxiliary tables greatly increases the tracing overhead, and that rewritten
queries are much more complex and thus may take longer to execute.

Transactions If the hole debug session runs in a single database transaction, it is
automatically protected from concurrent modifications. Nested transactions can be
used to rollback changes done by the debugged code.

209

Arian Treffer: Omniscient Debugging in Database Applications

This approach requires only little effort by the debugger, as it builds upon ex-
isting features of the database. However, to re-execute a single query, the whole
stored procedure has to be re-executed up until that point, which can create a sig-
nificant overhead. Furthermore, depending on how transactions are implemented,
the developer might accidentally lock the database for everyone else.

Insert-Only In systems that are relevant to accounting, such as ERP, finance, and
CRM systems, data is never deleted. Such behavior often even is a legal requirement.
If we require for all tables that data can never be changed or deleted and annotate
all tuples with timestamps of when they have been created and invalidated, we can
reconstruct the state of the database of any point in time.

This approach combines the advantages of both previous approaches. Especially
in in-memory databases, the overhead can be less than expected due to compression,
and it may even improve the performance as inserts can be faster than updates or
deletes. Finally, adding timestamp filters to select queries does not cause a significant
slowdown.

3.3 Slicing

The slicing algorithm that we presented in subsection 2.3 can be easily transferred
to stored procedures. Statements depend on each other through the variables they
access, and from the variable trace the execution path that is necessary for dynamic
slicing can be reconstructed easily.

However, the power of dynamic slicing comes from knowing where fields of ob-
jects are read and written. In stored procedures, we would expect that the slicing
algorithm can tell us which tuples of a table are actually relevant for the slice. How-
ever, without tracing access to tables, this information is not immediately available.

Exact approach One way to find relevant tuples is to reproduce the filter expres-
sions that were used to access a table. By or-chaining all expressions, the result is the
union of all individual query results. Additional attributes can be introduced that in-
dicate which of the filter expression matched for a tuple. While this approach might
not scale well when nested queries are involved, we are now, at least in principle,
able to get a view on the database that reflects ours slice.

However, the slicing algorithm does not yet consider this information when com-
puting a slice. It might be the case that a particular filter expression, or a particular
variable in a filter expression, does not affect the result set. In this case, the expression
or variable should be excluded from the slice.

210

4 Related work

In principle, it is possible to use this information when constructing a slice. How-
ever, actually executing these queries can increase the time required for building a
slice until it is no longer desirable.

Approximate approach Another way to build a data slice is to approximate a fil-
ter. Bloom filters use hashing to store subsets of large data in comparatively small
bitmaps, at the cost of creating some false positives [14]. Inserting bloom filters at
selected parts in the stored procedure can reduce the need to analyze larger parts of
code and simplify filters that are used to compute slices.

A usable dynamic slicing algorithm could first create a slice without inspecting the
tables. In cases where more precision is needed, the developer could then choose to
apply one of the approaches outlined above to refine the results.

4 Related work

An omniscient debugger is a debugger that immediately knows about every event
in the execution of a program [11]. While reversible execution for debugging pur-
poses has been researched earlier [5], the first omniscient debugger was presented
by Lewis [11]. The debugger supported several ways to jump through points-of-
interest in the execution, but had no slicing capabilities. Subsequent work in the
area focused mostly on memory aspects, for instance by developing a specialized
event database [16] or allowing garbage-collection of unreachable past events [13].

The concept of slicing has first been introduced by Weiser, along with a first static
slicing algorithm [19]. Korel and Laski, and Agrawal and Horgan later extended the
idea to include runtime information to produce more precise slices [2, 10]. Further-
more, Agrawal et al. presented a debugger for C programs with dynamic slicing
capabilities [1]. Since then, different slicing algorithms have been proposed and
analyzed [3, 8, 20].

For Java, dynamic slicing has been implemented for byte-code traces [17, 18]. JSlice
[18] and JavaSlicer [6] are available tools. Ko and Myers used a combination of
techniques similar to static and dynamic slicing to automatically answer causality
questions [9].

5 Conclusion and Future Work

We have shown how omniscient debuggers can increase developer productivity
by allowing backwards navigation and providing fast advanced dynamic analyses.

211

Arian Treffer: Omniscient Debugging in Database Applications

While these techniques can be applied to all imperative programming languages,
a prototype for SQLScript has revealed particular problems that occur when large
amounts of data are handled in the analyzed execution.

Future work will consist of developing omniscience-based algorithms for analyz-
ing stored procedure, and evaluating them with regards to required tracing overhead
and performance.

References

[1] H. Agrawal, R. A. Demillo, and E. H. Spafford. “Debugging with dynamic
slicing and backtracking”. en. In: Software: Practice and Experience 23.6 (1993),
pages 589–616. doi: 10.1002/spe.4380230603.

[2] H. Agrawal and J. R. Horgan. “Dynamic Program Slicing”. In: Proceedings
of the ACM SIGPLAN 1990 Conference on Programming Language Design and
Implementation. PLDI ’90. New York, NY, USA: ACM, 1990, pages 246–256. doi:
10.1145/93542.93576.

[3] D. Binkley, S. Danicic, T. Gyimóthy, M. Harman, Á. Kiss, and B. Korel. “The-
oretical foundations of dynamic program slicing”. In: Theoretical Computer
Science 360.1–3 (2006), pages 23–41. doi: http://dx.doi.org/10.1016/j.
tcs.2006.01.012.

[4] A. De Lucia. “Program slicing: methods and applications”. In: First IEEE Inter-
national Workshop on Source Code Analysis and Manipulation, 2001. Proceedings.
2001, pages 142–149. doi: 10.1109/SCAM.2001.972675.

[5] S. I. Feldman and C. B. Brown. “IGOR: a system for program debugging via
reversible execution”. In: Proceedings of the 1988 ACM SIGPLAN and SIGOPS
workshop on Parallel and distributed debugging. PADD ’88. New York, NY, USA:
ACM, 1988, pages 112–123. doi: 10.1145/68210.69226.

[6] C. Hammacher. Design and Implementation of an Efficient Dynamic Slicer for Java.
Published: Bachelor’s Thesis. Saarland University, Nov. 2008.

[7] C. Hofer, M. Denker, and S. Ducasse. “Design and implementation of a backward-
in-time debugger”. In: NODe 2006 (2006), pages 17–32.

[8] T. Hoffner. Evaluation and comparison of program slicing tools. Citeseer, 1995.
[9] A. J. Ko and B. A. Myers. “Debugging reinvented: asking and answering why

and why not questions about program behavior”. In: Proceedings of the 30th
international conference on Software engineering. ICSE ’08. New York, NY, USA:
ACM, 2008, pages 301–310. doi: 10.1145/1368088.1368130.

212

http://dx.doi.org/10.1002/spe.4380230603
http://dx.doi.org/10.1145/93542.93576
http://dx.doi.org/http://dx.doi.org/10.1016/j.tcs.2006.01.012
http://dx.doi.org/http://dx.doi.org/10.1016/j.tcs.2006.01.012
http://dx.doi.org/10.1109/SCAM.2001.972675
http://dx.doi.org/10.1145/68210.69226
http://dx.doi.org/10.1145/1368088.1368130

References

[10] B. Korel and J. Laski. “Dynamic slicing of computer programs”. In: Journal
of Systems and Software 13.3 (Nov. 1990), pages 187–195. doi: 10.1016/0164-
1212(90)90094-3.

[11] B. Lewis. “Debugging backwards in time”. In: Computing Research Repository
cs.SE/0310016 (2003).

[12] H. Lieberman. “Reversible Object-Oriented Interpreters”. English. In: ECOOP’
87 European Conference on Object-Oriented Programming. Volume 276. Lecture
Notes in Computer Science. Springer Berlin/Heidelberg, 1987, pages 11–19.

[13] A. Lienhard, T. Gîrba, and O. Nierstrasz. “Practical Object-Oriented Back-in-
Time Debugging”. In: ECOOP 2008 – Object-Oriented Programming. Edited by
J. Vitek. Lecture Notes in Computer Science 5142. Springer Berlin Heidelberg,
Jan. 2008, pages 592–615.

[14] A. Pagh, R. Pagh, and S. S. Rao. “An Optimal Bloom Filter Replacement”.
In: Proceedings of the Sixteenth Annual ACM-SIAM Symposium on Discrete Al-
gorithms. SODA ’05. Vancouver, British Columbia: Society for Industrial and
Applied Mathematics, 2005, pages 823–829.

[15] H. Plattner and A. Zeier. In-Memory Data Management: An Inflection Point for
Enterprise Applications. Springer, 2011.

[16] G. Pothier, É. Tanter, and J. Piquer. “Scalable omniscient debugging”. In: Pro-
ceedings of the 22nd annual ACM SIGPLAN conference on Object-oriented program-
ming systems and applications. OOPSLA ’07. New York, NY, USA: ACM, 2007,
pages 535–552. doi: 10.1145/1297027.1297067.

[17] A. Szegedi and T. Gyimothy. “Dynamic slicing of Java bytecode programs”.
In: Fifth IEEE International Workshop on Source Code Analysis and Manipulation,
2005. Sept. 2005, pages 35–44. doi: 10.1109/SCAM.2005.8.

[18] T. Wang and A. Roychoudhury. “Dynamic Slicing on Java Bytecode Traces”.
In: ACM Trans. Program. Lang. Syst. 30.2 (Mar. 2008), 10:1–10:49. doi: 10.1145/
1330017.1330021.

[19] M. Weiser. “Programmers use slices when debugging”. In: Commun. ACM
25.7 (July 1982), pages 446–452. doi: 10.1145/358557.358577.

[20] X. Zhang, R. Gupta, and Y. Zhang. “Precise dynamic slicing algorithms”. In:
25th International Conference on Software Engineering, 2003. Proceedings. May
2003, pages 319–329. doi: 10.1109/ICSE.2003.1201211.

213

http://dx.doi.org/10.1016/0164-1212(90)90094-3
http://dx.doi.org/10.1016/0164-1212(90)90094-3
http://dx.doi.org/10.1145/1297027.1297067
http://dx.doi.org/10.1109/SCAM.2005.8
http://dx.doi.org/10.1145/1330017.1330021
http://dx.doi.org/10.1145/1330017.1330021
http://dx.doi.org/10.1145/358557.358577
http://dx.doi.org/10.1109/ICSE.2003.1201211

Learning Deep Semantic Feature for Cross-modal
Representation

Cheng Wang

Internet Technologies and Systems
Hasso-Plattner-Institut

Cheng.Wang@hpi.uni-potsdam.de

This report summaries my research activities in the HPI Research School on Ser-
vice Oriented Systems Engineer of the past six months on multimodal learning.
In this report, deep semantic features are learned for cross modal mapping be-
tween visual and textual data. In processing text modality, in order to extract text
sematic features, multi-level Online Latent Dirichlet Allocation is proposed and
implemented for fitting 3.3 million Wikipedia articles to 336 topics with different
topic granularity. For image modality, visual features are learned with deep Con-
volutional Neural Networks (CNNs) that is pre-trained with 1.2 million images.
Those features are used to train a 3-layer neural network for cross representation
and thus to bridge the semantic gap across text and image modality.

1 Introduction

The rapid increasing of multimedia data on web brings new challenges for informa-
tion retrieval. Web applications produce massive multi-modal data every day, such
as image, text, audio and video. It means the information we received from vari-
ous information channels. This trend makes conventional uni-modal based retrieval
systems that only considering single modality by using key words or caption more
difficult to retrieve user interested information. Besides text-based engines, image
[5] and video retrieval systems [4] also been proposed for retrieval multimedia in-
formation. But those researches still cannot apply to multi-modal case. Modeling
multimodal data is needed as previous research [11] have proved that one modality
can be a semantic complementary for another modality, which shown to outperform
state-of-the-art information retrieval systems on a uni-modal retrieval task.

Recently, several cross-modal approaches have been proposed to enhance infor-
mation retrieval performance, in which fusing data modality was widely studied,
particularly, image-text modality fusion. Conventional approach is to represent the
image component within document to visual words with SIFT [9] descriptor. In
processing text modality, Latent Dirichlet Allocation (LDA) [2] is considered, as a
probabilistic models, it has proved that this kind of model can effectively exploring
the hidden topics in given corpus. One popular approach is to build joint model

215

mailto:Cheng.Wang@hpi.uni-potsdam.de

Cheng Wang: Learning Deep Semantic Feature for Cross-modal Representation

for fusing text and image modality and discover the underlying shared “concept”
between those modalities. This approach is useful because different data modality
actually carry different interesting information. By combining those information
can definitely achieve better retrieval results. How to build a joint model is still a
difficult problem to be address due to following challenges:

(1) Many previous cross modal retrieval systems tackle retrieval tasks by assigning
predefined categories to inquiry text (image), and selecting top-K matched image
(text) as retrieval results. One problem of this approach is that existed image labels
often ambiguous, which means one image can be classified to different categories.

(2) With respect to feature representation. LDA is a common method that used
to infer documents’ major topics for representing text modality. On the other hand,
traditional visual representation of use the bag-of-visual-words (BOVW), in which
image key points are often extracted by SIFT or SURF [1]. Features of each image
utilized to visual topic clustering in image representation. The correlation between
word topics and visual topics generally involves Canonical Correlation Analysis
(CCA). Thus the features obtained by taking LDA and BOVW vectors are important
for cross mapping performance. The problem of those kinds of research is how to
appropriately represent image and text in order to improve cross representation
performance.

As in [13], “Different modalities typically carry different kinds of information”.
Thus it requires both image and text features should be well learned so that those
feature can more appropriately represent input data modality. To address those
problems, we therefore propose a novel cross modal retrieval architecture which
allows cross representation with deep networks. Specifically, image will be repre-
sented by text feature and vise-versa in this research. Deep networks [10] has been
applied to cross modality feature learning and demonstrated it effectiveness in un-
supervised feature learning for single modalities. In this work, similarly, we apply
it to learn features from image and text separately. In learning image feature, deep
Convolutional Neural Networks (CNN)[8] has achieved considerably outperform
previous result in visual representation. In text modality feature, we propose multi-
level Online LDA for constructing the bag of topics with different topic granularity,
by doing so, text can be semantically represented as topical feature. For mapping
between image and text we propose 3-level neural network for training projection
layers between image and text modality.

Work that is most relate to our research are [11, 14, 15], which are used as baselines
for our research. For compare with those works, in this paper, we will evaluate our
model on open benchmark Wikipedia corpus 1 that used in the baselines for cross
model retrieval. Our retrieval tackles two retrieval tasks: (1) retrieving best matched
image for a given query text, (2) retrieving best related text for give query image.

1http://www.svcl.ucsd.edu/project/crossmodal/, accessed December 16, 2014.

216

http://www.svcl.ucsd.edu/project/crossmodal/

2 Related work

Different to previous approach in modeling multimodal data, our research concen-
trate on cross modal representation with deep networks. Consequently, improving
cross-modal retrieving performance.

2 Related work

2.1 Modeling Multimodal Data

Modeling and analysis of multimodal data have gained much attention in last sev-
eral years, much effort have put into discover new joint model for multimodal data.
N. Rasiwasia et. al [3] proposed a novel approach to match text and image modal-
ity via canonical correlation analysis (CCA). SFIT feature of image and text feature
that generated with LDA are considered. Through projecting image feature and
text feature into two intermediate spaces and matching different modalities and
applied it to cross-modal multimedia retrieval. Similarly, Jin Yu [15] designed a
cross-modal retrieval system that considering image-text statistical correlations. The
images are represented with SIFT feature and quantized to 100-dimensional vector,
correspondingly, 100 topics that generated from LDA use to represent text modality.
Motivated by those works, K. Y. Wang [14] proposed an approach which combines
common subspace learning and coupled feature selection for cross-modal matching
problem. l21-norm was used in this case for selecting features from coupled modal-
ities and coupled linear regression was used to project data to a common space.
As deep learning technique received a lot of attention recently, it has been applied
to various researches including multimodal data analysis. J. Ngiam [10] applied
multimodal deep learning approach in audio-visual speech classification. Greedily
training restricted Boltzmann machine (RBM) and deep auto-encoder are used to
discover correlation connections across different modalities. In [13] N. Srivastava
used a Deep Boltzmann Machine to extract a unified representation from different
data modalities, it found out this representation is useful in addressing classification
and information retrieval problem.

2.2 Deep Convolutional Neural Networks

Deep Convolutional Neural Networks (CNNs) has already been proved very pow-
erful in image feature extraction and image classification [8, 16]. Conceptually, at a
convolution layer, a feature map is formed by convolving the previous layers’ feature
maps with kernels and activation function. If we denote j-th feature map at given
layer l as x(l)j , for given weights w(j) and bias b(j), the feature map x(l)j combine
convolutions with multiple input maps that represented asMj , and then denoted

217

Cheng Wang: Learning Deep Semantic Feature for Cross-modal Representation

as follows:
x
(l)
j = f(

∑
i∈Mj

x
(l−1)
i w

(l)
ij + b(l)),

where f(·) is activation function.
At sub-sampling layer, input maps is down sampled to smaller version for reduc-

ing the computational complexity, generally, an output map denoted as:

x
(l)
j = f(β

(l)
j S(x

(l−1)
i) + b(l)),

where f(·) and S(·) are activation function and sub-sampling function respectively,
and each output map given its own multiplicative bias β(l)

j and bias b(j). Inspired by
[7] which implemented a fast convolutional architecture for effectively representing
sensory inputs. Part of our work is implemented base on Caffe framework.

3 Learning Architecture

To address the problem of cross modal representation we will learn highly repre-
sentative features for image and text modality separately with different pre-trained
visual and textual models. Document contains image-text pair will be represented as
feature pairs. For a training dataset S, which contains documentsD = {D1, D2 . . . Dn}

and each document is image-text pair that we represented asDi = {Ii, Ti}. Modeling
multimodal data always need informative method to represent different modalities.
To achieve this goal, we designed learning architecture to represent text and image
modality separately. First, text and image representation model are pre-trained with
deep convolution neuron network and multi-granularity Latent Dirichlet Alloca-
tion. As shown in Figure 1, the architecture tackles input document to two different
modalities and extracts features. In order to build the connection between visual
and textual feature, we designed two project layers, LI→T and LT→I. The function
of projection layers is to project visual feature to textual feature and vice versa. The
learned features from pre-trained visual and textual model used as training data for
learn LI→T and LT→I. In cross modal representation stage, we focus on two problems:
(1) represent image with textual feature, (2) vice versa. By doing this, cross modal
representation is achieved and further applied to cross modal retrieval field.

218

4 Modality Representation

Figure 1: Figure Learning Architecture for text and image modality

4 Modality Representation

4.1 Text Representation

In processing text modality, the problem we need to address is to learn feature rep-
resentation. To this end, we extend the concept of “bag of words (BOW)” to “bag
of topics (BOT)”, which is derived from Latent Dirichlet Allocation (LDA). LDA is
a generative probabilistic model for discover latent topics from given corpus. The
generative process can be decomposed into doc-topic and topic-word generative
process. For a given corpus D , the topic proportion θ follows a Dirichlet distri-
bution with prior probability α. For given θ, the specific topic zn is draw from a
multinomial distribution. Similarly, in topic-word distribution, a word wn follows
multinomial distribution with ϕk that is drawn from a Dirichlet distribution with
prior probability β. Thus joint probability distribution can be described as

p(w, z, | θ, β) = p(θ | α)

N∏
n=1

p(zn | θ)p(wn | zn, β),

where wn means the n-th word in document, zn means the topic of n-th word.N is
the number of words in corpus.

Inspired by recent work in [12] in which a multi-level LDA approach is used for
text representation. It regards learned topics from different level as topical feature
so that the most discrimination features are extracted. In this work, we redesigned
that topic learning architecture to fit our experiment. In order to represent text as
topical features, we need to learn a topical feature map from corpus, to address
this problem we design our text representation scheme as following In this scheme,

219

Cheng Wang: Learning Deep Semantic Feature for Cross-modal Representation

Figure 2: Text representation architecture

3 levels designed to generate 16, 64 and 256 topics from bottom to top respectively,
each topic regard as feature which consists of about 50 words. Topical feature map is
“bag of topics” which combines of those topics. That is, 16+ 64+ 256 = 336 topical
features. For each input text, pre-trained topical feature map which is pre-trained
model used to extract text features. Assume input text with words, we calculate word
distribution over topics and generate topical features. It is possible one word belongs
to different topics. This assures that different meanings carried by one word can be
considered. That’s our text representation mechanism expects to achieve. Here we
summarized the algorithm for text representation using topical feature map as in
Algorithm: This is a straightforward algorithm for calculating word distribution

Algorithm 3: Text feature extraction with pre-trained topic model
Input: text T ,MT =MT

1 ,M
T
2 . . .M

T
n, n = 336

Output: TF = f1, f2 . . . fn
ForMT

1 ∈MT

W ⇐ T ∩MT
t

f =
∑

w∈W v(w)

end for

over pre-trained topical feature model. In implementation of this algorithm we firstly
use OnlineLDA [6] to train topic feature model. OnlineLDA fits topic models with
online stochastic optimization thus it can easily apply to large scale corpus. In this
research, we extend OnlineLDA to multi-level for fitting topics models from different
semantic level. Finally we got 336 topic models and we generate the top-50 words
for each topic. We here list some 5 example topics with top-8 words.

220

4 Modality Representation

Table 1: example topics learned from Wikipedia
Topic 0 war, force, prime, royal, navy, commander, killed, squadron
Topic 1 science, back, silver, audience, scientific, knowledge, shooting, christmas
Topic 2 best, directed, festival, short, girl, drama, special, series
Topic 3 river, western, south, state, australia, greek, running, williams
Topic 4 county, district, village, population, town, province, rural, towns
… …
Topic 336 southern, natural, black, established, map, history, animals, iowa

Figure 3: deep CNN architecture

4.2 Image Representation

In order to learn grounded feature from images, we use the-state-of-art approach for
extracting features. In this paper we concentrate on features that learned from deep
conventional neuron network which realized by A. Krizhevsky [8]. But we removed
the last layer in feature extraction, in that way, each image can be represented as
4096-dimension vector. For each input image, it was resized to 256 × 256 pixels before
image processing. The first convolutional layer filters it with 64 feature maps whose
size is 55 × 55 pixels. The subsampling operation summarizes the neighborhood
pixels of center pixel with size 2 × 2. Subsampling results as input of C2, which has
256 feature maps, each feature map is 27 × 27 pixels. And C3, C4, C5 same feature
size 13 × 13 pixels and have 384,384 and 256 feature maps respectively. F6 and F7 is
full connection layer, both of them have 4096 feature vector. The output of F7 is the
features that we aim to extract from image.

221

Cheng Wang: Learning Deep Semantic Feature for Cross-modal Representation

Table 2: configurations for model training
Modality Configuration Training time

Image model ubuntu 12.04, 4 cpus, nvdia 780 GPU 8 days
Topic models ubuntu 12.04, 4 cpus, 9 days for 3 levels

5 Ongoing Experiments

5.1 Datasets

In this work, we used dataset from different modalities for training visual and textual
model respectively. For building visual model we use ImageNet [3], which is a large
scale manually labeled image database. Our dataset is from ILSVRC2012, a subset
of ImageNet and consists of 1.2 million training image and 50,000 validation images.
Those images are assigned to 1000 categories according to the center meaning of
image. With respect to modeling text data, we use Wikipedia dataset, on one hand,
we used 3.3 million Wikipedia [12] articles to train 336 topic models from 3 level.
For comparison reason, we use the same dataset as used in [11, 14, 15]. This dataset
contains 2886 documents and each document is image-text pair, it is more convenient
for us to examine the effeteness of our approach and compare with others’ work.

5.2 Training Procedure

In this subsection, we describe the experiments of feature learning for text and
image separately. Firstly, we give our configuration information for training image
model and text topic models as follows: It takes about 8 days for obtaining visual
models and 9 days for textual model, in which we conducted our topic training
experiments for each topic level serially. The accuracy of visual model is verified in
image classification tasks. Through fine tunning layer “conv”, “conv 4” and “conv 5”
and learning rate to adapt our 64-batch size. The final test accuracy is about 53.4 %
after around 1.4 million iterations.

As we mentioned before, in multi-level topic training, we trained 16 topics, 64 top-
ics and 256 topics respectively. In fitting topics to 3.3 million Wikipedia articles, we
configured training settings as recommend in [6]. The training configurations and
iteration times are: (1) in level-16, 35516 iterations with batch size 64, (2) level-64,
25521 iterations with batch size 64 and (3) level-256 have 3220 iterations with batch
size 1024. To compare with different topic levels, we selected one topic which is
mainly about “music” in three different topic levels.

222

5 Ongoing Experiments

Figure 4: The proceudure of visual model training

Figure 5: “Music” topic in three different levels (top-10 words are displayed)

223

