Implementation of Feedback Mechanism into

AODV based on NS2

Sebastian Roschke
[sebastian.roschke@hpi.uni-potsdam.de]

2007-05-16

Abstract

This paper gives an overview on the implementation of a feedback
mechanism into the AODV routing protocol based on NS2. This imple-
mentation work was done as part of seminar called Attacks And Security
Strategies in Mobile And Ad-hoc Networks. The requirements of that
project will be determined and the specific implementation details will be
discussed afterwards. Some detailed information on NS2(e.g. structure,
AODV and Scheduler) will be described as well, as it is necessary for
understanding.

1 Introduction

The main goal of this project was the implementation of a feedback mechanism
described in the paper Feedback-based Solution for Avoiding Attacks on Mobile
Ad-Hoc Networks|[1]. This implementation should be used for simulation of this
mechanism in virtual ad-hoc networks via the well known simulation software
NS2. The simulation results should be used for evaluation of that mechanism,
e.g. in time overhead or data overhead issues.

2 Requirements

This chapter describes the required steps to achieve the described goal. The
main subtasks to achieve this goal are:

e Implementation of feedback mechanism
e Implementation of malicious node behavior
e Implementation of simulation evaluation

e Development and Implementation of specific network simulations

The implementation of the feedback mechanism itself should be done on the
routing layer. The mechanism itself works directly on the routing layer. It
discovers malicious behavior on the routing layer. It sends additional messages
that directly affect the behavior on the routing layer, e.g. no routing over
untrusted or malicious nodes. The implementation can be done by modification
of existing routing implementation; e.g. AODV. This will be described in section
4 of this paper.

The implementation of the malicious node behavior can be done on different
layers, because of the different attack scenarios and vulnerabilities. In this
specific example only one attack on routing layer is discussed. An malicious node
performing an attack is expected here as a network node with selfish behavior.
This node for example does not route packets from other nodes, but drops them.
Based on this understanding of an attack, the implementation of the malicious
node behavior should be done on the routing layer. The implementation can
also be done by modification of existing routing implementation; e.g. AODV.

The implementation of the simulation evaluation can be done in a separate
application apart from NS2. This application needs to read NS2 simulation
output files, to analyze them and to visualize the results. This will not be
described within this paper.

All the implementation work is tested with specific NS2 simulation scripts.
These scripts are based on TCL and describes the simulation itself; e.g. the size
of the simulation area, the number of the nodes within the area and the number
and type of the packets send during this simulation. A useful documentation of
NS2 simulation scripts is NS-By-Example|[2].

3 Technical Background on NS2

This section describes the technical background of the implementation work. It
covers specific parts of the NS2 implementation. More precisely an overview over
NS2 is provided, the functionality of the scheduler and the implementation of the
AODV implementation will be described. The basis for this implementation is
NS2 version 2.30. The implementation is done with the NS2 all-in-one package[3,
4]. The information provided in this section can be found within documentation
and the source code. The investigations of AODV protocol functionality are
made by NS2 debugging[5].

3.1 Structure
3.1.1 Class Hierarchies

NS2 is a network simulator written in C++ and TCL. The NS2 front end is an
OTCL interpreter. The simulation descriptions are scripts written in OTCL.
The front end interprets this files and the back end simulates the described
scenario. The NS2 simulation output files are generated within this process.
Within NS2 there are two separate class hierarchies; the Compiled Hierarchy

implemented in C++ and the Interpreted Hierarchy implemented in TCL. Fur-
thermore there are classes that realize the processing of the simulation and there
are classes that belong to the simulation itself. Within this document objects
based on classes that realize the processing of the simulation are called Process-
ing Objects. The Objects based on the classes that belong to the simulation
itself will be called Simulation Objects. Most of the Processing Objects are
implemented in the Compiled Hierarchy. For most of the Simulation Objects,
there is 1:1 relationship between a base class in the Compiled Hierarchy and a
base class in the Interpreted Hierarchy. The implementation of this classes is
often separated in two parts, one located in the Compiled Hierarchy and one
located in the Interpreted Hierarchy. This makes modification of Simulation
Objects very complicated.

The separation in two class hierarchies is reasonable for dealing with the
trade-off between runtime performance and iteration time; which means the
required time to change the simulation descriptions and execute another simu-
lation. The iteration time can be minimized by utilization of simple scripting
language with simple syntax. The runtime performance can be optimized by
using a compiled language. Therefore the two approaches are combined within
NS2 by using OTCL as front end and C++ as back end.

3.1.2 TCL Linkage

The TCL Linkage is the communication interface between the implementation
of the Simulation Objects on the two class hierarchies; the Compiled Hierarchy
and the Interpreted Hierarchy. It realizes the communication between the im-
plementation parts; e.g. the transmission of messages from Compiled Hierarchy
into Interpreted Hierarchy and vice versa. The TCL Linkage consists of six
important classes:

e Tecl
e TclObject
TclClass

e TclCommand

EmbeddedTecl

e InstVar

The functionality of the TCL Linkage is described in chapter 3 of the NS2
documentation[4].
3.1.3 File System Structure

Figure 1 shows the structure of the file system within NS2. Only the directories
are shown, that have a meaning for the described implementation.

ns-allinone-2.xx

ns-2.xx nam-1.xx tclcl-1.xx e
commaon aodv tcl delaybox es
lib aea

Figure 1: File System Structure

e The root directory ~/ns-allinone-2.30/ includes the complete NS2 system.

e The TCL interpreter directory ~/ms-allinone-2.30/tclcl/ includes all files
related to the TCL interpreter.

e The NS2 simulator directory ~/ns-allinone-2.30/ns-2.30/ includes all files
related to the simulator. This includes the class implementations on Com-
piled Hierarchy and on Interpreted Hierarchy.

e The NS2 Processing Objects directory ~/ns-allinone-2.30/ns-2.30/common,/
includes all class implementations on Compiled Hierarchy.

e The NS Processing Objects directory ~/ns-allinone-2.30/ns-2.30/tcl/ in-
cludes the class implementations on Interpreted Hierarchy.

e The NS Simulation Objects directory ~/ns-allinone-2.30/ns-2.30/tcl/lib/
includes the class implementations on Interpreted Hierarchy.

e The AODV directory ~/ns-allinone-2.30/ns-2.30/aodv includes all classes
used by AODV implementation.

Figure 2 shows the most important classes in NS2 and can be used as overview.

3.2 Scheduler

The Scheduler is an entity within NS2 responsible for packet transmission. The
scheduler is a single instance within the NS2 runtime that collects and transmits

9017, e[¢SN :¢ 2ImS1g

PlOA: (100 Z'31qN0p : A3|qnOp | X)UDIRUISAPTIas
PloA: [PONZNGN 1 WIRIURISIP

pron: gueis

plos : quorusod aiepdh

FDONFNGEM | (3R

alqnop 1~ Lis3p
algnop : xisap
ajqnop : “snipea
aponangepy : aad
3PN | TxERY
apanaliqop © Teau
a1gnop : “paRds

algnop =7z
algnep)
a1anop 7
P o
PIoAT [TAPPRSU © 1SP)I3UUDD Ao Typ
LILE e = R IR T
ploa: (RiEAed : adfadiuaby FPONTIGEM
B e I e
pron: axIed : dldqugaas -
PloA T (Ja|puEY | 4 1aRg | d)puas M INTLSIT TR
— - EELYET IV Tt
.\MMWM_. www Wiz Tadk
vppRS 313y o epey
uaby PEIHAUN PIOAC (112 32152 W1 | 331321573 19RITIRT
PIOA (I © UNAZISTa|qRY s
ProA: (13[OSN | 1BEIRYINUIRY I SPIHN0I12BP
pron (ala0sH - 136 IRYy - 1spI3IN0I ppE
Bl (3INPaRBUNSY | WAAION 300U B3N
PIoA: {3npojBuINOY | ULAUIOUIN0S
PIOAT (PO : - puAsUL
3pan : gaponIza
PIOA: (2PON | 2pOUMTqyBIaNpPR
A LM3” LS © A
FpoUiElIequBIU | CLEIoquEIaY
FEaIapou T pEapo
BIOAT BIPURH : 413640 : d)puas PONUETI T uonRIT : uiEI0|
P A |apopABIaUT | |2pOWABIaUE ainpojBuINOYWEY anpopwBuINoYSy . anpoWBUNNOYIsEI
PIA ® COAM0EN - N aInpojBunnDy
ploa: (GOSN | 1aGRINAGR L dumas PIOA (33(GOSH | 13BEUINUARYI. SPIAIN0IT1313p — x;n_wumhufm o
alaeN g0 PIoA: (122100 LABIRVIRY L 1SPI3IN0S POE
12qosy 1 iebm
J0333uN0) apopiseIpRLIg apopue] apoy 1 H 2anog aimpaybunoyaseg
plen: aasa proa: (113MQSH | 13BIRYINUTRY 1, © JSP)AIN0"A1 (3P
JRU3. (L] APPRAN) £ 343 s5RApPRpuadde plon: aIed ; dAugm A (03M0SH | L3BARLTRY L, T 1SPIINOI PPR
IHLC (11D SSRUPPRISSAPPR AT P apOy PIOA T (IR, ST IR T dpATA) PIOAC (2(Q05N | 123007 URYIn | YIIRIN0IT 213130 ploa: @npowbunney ; wisieu ano Gaun
plom {p1'apajaieg © 3poujapouTppe PIOA: [IRIPUEH © ¥IRAIE 134Tk © ROMIA ploa: (aalqosN © Palge’ien s Yajano. ppe pIon.: (3InpojBuInGY | WLANI0UT3IN0]
W EPON | WyIRLR
Be1aIey : TBe pioa - arg : nalaipuey 1 “ssaappe ! BPON Y
apojuaEd | TIsijapou 1z “piapou apon
360Ny 103G 1308y Iponaeg aihpapBuInoy
uoneIny vippRs iped 3pouis~oqyBIan pRayapau w01

plom (a3 A31puRY

|3popARIUT AP BNIEN Jalpuey wayeg wang

T\
; conss
cheduler
— Node
PacketQueue
o Node
b
-+ Node

Figure 3: Scheduler

messages. Therefore the Scheduler class is realized as static class with static
methods.

Figure 3 shows the logical structure of the scheduler within NS2. The Sched-
uler consists of control unit and a so called packet queue. This packet queue is
accessible through the nodes within the simulation. Each node can put pack-
ets into the packet queue. The Scheduler takes each packet from the queue
and dispatches the packet to its destination. The process is shown in figure 4.
The knows the destination of a packet during runtime. The destination of the
packet is saved within a special pointer in the packet structure. This pointer
is a reference to a NSObject instance where the method recv() is called within
Scheduler::dispatch().

3.3 AODYV Implementation

In mobile and ad-hoc networks there are several routing protocols available; e.g.
DSR, DSDV or AODV. Within NS2 there are implementations for some of the
available routing protocols. The AODV implementation in NS2 is the basis for
the implementation work and is therefore explained in this section. This AODV
implementation is not RFC compliant; e.g. there is no implementation for the
blacklist defined in AODV[6]. The AODV implementation mainly consists of
two functional units.

e Mechanism to detect the route through a network
e Mechanism to forward packets within this route

Figure 5 a simple packet flow within a single node in the simulation. An agent
consists to specific node. This agent allocates the packet and initializes the

Scheduler:run()

[neh hatied) ard
{QuesE not empty)

| Scheduler:dequel) |

| Scheduler: dispatch(p : Packet, double t) |

&

Figure 4: Scheduler Process

content of the packet. Afterwards the packet is handled by the AODV routing
mechanism. First the routing handler receives this packet. This is done locally.
Afterwards the route for the packet is detected. When a suitable route is found,
the packet is forwarded to the next hop within this route. The forward is done
by the Scheduler described in section 3.

This figure shows the sequence of calls within the software objects. The call
hierarchy in AODV is as follows. The recv() method is the first method called.
This method calls first the resolve() and the forward() method. The forward()
method calls the Scheduler::scheduler() method.

Figure 6 shows the initialization process of the AODV implementation in a
specific simulation. This simulation consists of three hosts that are located in a
line, so that Host 0 and Host 2 are not able to communicate directly. Within
this simulation one TCP packet is send from Host 0 to Host 2 and the reply is
send from Host 2 to Host 0. AODV resolves the route to Host 2 by sending a
special request packet. This packet is broadcasted as long as the destination of
the packet replies. The reply is also broadcasted through the network. Each
forwarded request packet also triggers the intermediate nodes to send additional
request packets.

Therefore in the beginning of the simulation there is a high amount of AODV
related network traffic. After that phase, there is only a few additional AODV
network traffic required. Detected routes are cached within this implementation,
so that not every send packets requires a related AODV route request. After
the detection of the route, the packet is send.

The the packet flow during the transmission is relatively simple. Figure 7
shows the process with the related calls. The packet is forwarded by each node
on the route. In the forward method the Scheduler is called, to transmit the
packets. The resolve() method returns immediately, due to a cached response

Agent:allocpktl)
Agant:iniipktl)

AODV:recv()
AODV:reschvel)
AODVY-forward()

%

Scheduler:instance().
schedule()

Scheduler:insert{e: Event)

&

Figure 5: Packet Flow

for the request.
The figure 8 shows the class structure of AODV related classes.

4 Implementation

This sections covers the main ideas of the implementation work. Based on the
technical background the implementation is done by modification of the existing
mechanisms.

4.1 Feedback Mechanism

This implementation is done by modification of the existing AODV implemen-
tation. This implementation is described in section 3.3. To implement the
feedback mechanism, the following issues are realized.

The header structure of the common packet is changed. The header hdr_cmn
is the main header structure utilized for each packet in NS2. The common header
is extended with the following information:

bool recv_fb_req;
bool one_hop_fb_req;
bool two_hop_fb_req;

int fb_type;
int fb_dst;
int fb_path[PATH_LEN];

The first three members are boolean values utilized to encode the requested
feedback into the packet. Each packet needs to carry information for it’s required

Host 0

ACDV-ADDVI)

Host 1

AODV-AODV()

Host 2

O
ACDV:recv() AODV: recyl)
‘ ADDV: recyACDV() ACDV. recvACDV()
ADDV; recv() AQDV: recvRequest|) ADDY; recvRequest()
ADDV. resolve() AQDV: forward|) [AODV.sendReplyl) |

ACDY:sendRequest() ‘

-
-

{ ADDV:recvl) ‘

AODV::recvADDV(}

ACDV: recvRaply()
‘ ADDV:Forward() ‘
,) |

¢ 1
ADDVrecv()
AOD V- recvAODV(] ‘ L ‘
ACDV recvReply() AODYV Initialize

AQDV-forward()

__ __I_EN{EHJJ_‘____
| |

Figure 6: AODV Initialization

feedback. The integer members fb_type and fb_dst are used for feedback packets
to encode the type of the feedback and it’s destination. The integer fb_path array
fb_path is used to save the feedback route.

Additional packet types are implemented, utilized by nodes to transmit in-
formation according to the feedback mechanism. The following packet types are
added:

e FB
e FB_REQ
e FB_ACK
e FB.DEV

The FB packet is a general feedback packet. This packet will be send when a
packet is received and a feedback is required. The FB_REQ packet is used to
request a feedback of a host that was not send in time. The FB_ACK packet is
used to acknowledge a received feedback. The FB_DEV packet is used to inform
neighbor nodes when the reputation of a node is devalued.

Send Packet

Host 0 Host 1 Host 2

Scheduler:instance().
schedule()

Scheduler:insert(e: Event)

ACDV:recv()
ADDV:resolvel()
AODV forward()

¢

Scheduler:instance().
schedule()

Scheduler:insert{e: Event)

Figure 7: Transmission Packet Flow

Several new data storages are implemented within the class AODV. The
following data storages related to the feedback mechanism are implemented:

list<ReputationListElement> replist;
list<ReputationListElement> sendFeedbackList;
list<ForwardedListElement> forwardedPacketList;

The repList is used to save all reputation values of the neighbor nodes. The
sendFeddbackList saves all the feedback packets that the node sends. The for-
wardedPacketList saves all forwarded packets, processed by this host.

To send new types of packets there is a new timeout handler required. This
timeout handler get a callback, when he timeout is reached. When there is no
feedback acknowledge received yet, the feedback is requested. If this fails, the
reputation of the neighbor host, responsible for the feedback, is decreased.

The AODV class is extended with methods to send and receive feedback
packets. The following methods are added:

void sendFB(Packet *pfb,nsaddr_t dst, int uid,int type);
void sendFBRequest(nsaddr_t dst);

void sendFBAck(nsaddr_t dst);

void sendFBDevalue(nsaddr_t dst);

void recvFB(Packet *p);

void recvFBRequest(Packet *p);

void recvFBAck(Packet *p);

void recvFBDevalue(Packet *p);

10

am1oNIg sse) AJOV :8 9mSIg

ARYD D {ITAPPRSY SPIpUILL

pIoA (Y AppERSU © jspyananbap

134Rd : gananbap

PloA D RYI, ABRpIoa 3fR)puRIIWIOD
proa: fiayied : diznbua

plon (3IPURY © YNE R daaal

ananoid JETTTEL-TRPL R ananbiapoe

AETHTAPOE D TAppRSY aspidnyon)
PloaC [AUATLTAROR | ANa)a1a|ap
PIOA A IET AP [AR ppR

| qEHTAPOE

104 (1TIPPREN L APPRLOSINIAILTAD O

proac: gAudwaad

proa: gaiaapad

ploa (TAppRsY praajapTad

AosAnIAg A0 © TAppERSY - phdhsooTad
Ploa TAppRSY phuasuTad
A0qYBIRNTATSY D TIPRRSY pldhyooTqu
ploa s (TAPPRSY D pHUBsUITQY

AppEsy CApprTad

A0SANIRA A O

plos s (TIpRRSY D AppEMogybiaN Ao

alqnop ; adxaTqu
YAPPELY L APPRETQU

SUTRE =TT
sdosdnazadapoe @ gad
Appesy s doyTixau

Wl noxTdoyTiIsR T
Wl sdoyTw

Wil oubas

APPRSU 1PTH

i waTharmy

aqnap hoawnThamu

AoquBIaNTAd oY

AlaTymapoe

plon: 1EyIRd o duougaid

ploa: (ayarg - djojjagadal

proa: faxied o diAdageasd

ploa (1 o disanbagaaa

ploa: (3anaed @ diagoyaaad

ploa (ueajoog 481 fEyied | duougpuas

plosC (oj[aHpuas

Ploac (UAPPESY C 1spiA|dagpuas

ploa (TApPRSY © lspiisanbaypuas

PlOA ML AR|RP IEH IR dANUETHTAROR | AN PR AMIO)
plos: pabandp

Plo Gl plqTyIppREy : pidiejo TRl

PIOAC ML PIGYAPPRSY C pIUasUTpl

proa: gabind qu

PIOA D (TAPPRSY D pHRLARETY

ploa (TAPPRSY : podnyooTqu

Ploa (TAppREY D pHUISUITqU

189 IEd CMMETU T ApoR ¢ Anualanbap

proa payied o dAnuaTuTapoe ©Auaanbua

plos gabind™d

ploa: (1EyIeg @ dipapel) Ty

ploa aied - d'AuaTuUTApoR | Auapedal TR0l
PIOA IS AR OE D AU Um0 P

ploa s Eqnap - aw faadxanTappeey s dogixan i) ad1Ew) wnubasthinaTuTapor Anua)aepdinTu
plos: (1Eeaeg @ diaaosadTy

Wi Qpaz|RIu

W1 QpURLUW O]

plon (GalpuRY Y ey IR diaaad

ananidd : ananby
A3EER U D TERWp
ahanba=apor ; ananby
3|qRUTAPOE 3|JRU
Jawinpdoqyiag ©Jaw
A3WLL0]|AH CA3WILY

AW [AYIRDINOY DA
Aawn Ledaygeae] Ddauny
A3WI[IFRIPROAG 431
Iz oubas

W plg

TTAPPRSEY © ¥ApU]

fliel

J3wnpeday e

A3 [AYIRIFIN0Y

Jaw oqybiay J3WI10]|3H 131 115EIpELG

11

The trace subsystem of NS2 is modified, due to the additional packet types.
The new packet types are processed and logged through this logging system.

4.2 Malicious Node Behavior

The malicious node behavior here only covers the packet dropping within the
route. It is a selfish behavior of a node to increase it’s network performance. To
implement the attack on the routing layer the AODV forwarding mechanism is
modified in the following way.

A node is configured to show malicious behavior through a configuration file.
When the AODV object is instantiated the first time, a file is read that includes
all malicious node configurations. The AODV class holds a static list to save
the node configurations.

static list<MaliciousNodeListElement> maliciousNodelList;

Each node is configured through the members badNode and dropping_rate. The
boolean member bad node holds information whether the node is malicious.
The dropping_rate member holds the information of the dropping rate of this
malicious node.

bool badNode;
int dropping_rate;

The nodes configured as malicious nodes are dropping forwardable packets with
a specified rate. This is done by modification of the forward method within
AODV. The dropping of a packet is logged through trace subsystem.

4.3 Blacklist

As described in section 3.3 the AODV implementation is not RFC compliant.
The blacklist is needed by the feedback mechanism to avoid detected malicious
nodes. The current AODV implementation does not provide a working blacklist.
Therefore the blacklist is newly implemented into AODV by modification of the
AODV class.

list<nsaddr_t> blacklist;

The blacklist member is added into the AODV class. Each host listed on the
blacklist is excluded from the AODV routing. Request and replies from those
hosts are not accepted and the forwarding of packets from this hosts is disabled.

References

[1] Feedback-based Solution for Avoiding Attacks on Mobile Ad-Hoc Networks,
2007.

12

Ns2 by example. [Online]. Available: http://nile.wpi.edu/NS/

Ns2 source. [Online]. Available: http://www.isi.edu/nsnam/dist/ns-
allinone-2.30.tar.gz

Ns2 documentation. [Online]. Available:
http://www.isi.edu/nsnam/ns/doc/index.html

Ns2 debugging. [Online]. Available: http://www.cs.ust.hk/ cszyz/ns2-
debug.html

Ad hoc on-demand distance vector (aodv) routing. [Online]. Available:
http://www.ietf.org/rfc/rfc3561.txt

13

