

Content

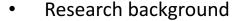
- Teaching team
- Topics
- Important information

Personal Information

Ting Hu, M.sc

- Research background
 - 2009-2016 Bachelor and Master Degree in China
 - 2018 PhD Student at Hasso Plattner Institute
- Research interests
 - Nature language generation.
 - Efficient NLP models

Personal Information


Gregor Nickel, M.Sc.

- Research background
 - 2013 2018 Bachelor Degree (RWTH Aachen University)
 - 2017 2018 Research assistant at the Chair of Imaging and Computer Vision at RWTH Aachen University
 - 2018 2020 Master Degree (RWTH Aachen University)
 - 2022 PhD Student at Hasso Plattner Institute
- Research interests
 - Computer vision and NLP
 - Binary neural networks and lightweight network architectures

Personal Information

Jona Otholt, M.Sc.

- 2015-2018 Bachelor Degree (Hasso Plattner Institute)
- 2018-2021 Master Degree (Hasso Plattner Institute)
- Since 2021 PhD Student at Hasso Plattner Institute

Research interests

Computer vision, document analysis, unsupervised / weakly supervised learning

PD Dr. Haojin Yang

- 10/2002-01/2008 Medientechnologie (Dipl.-Ing.), University of Technology Ilmenau, Germany
- 11.2013, PhD in Computer Science (CS), Hasso Plattner Institute for Software Systems Engineering (HPI)/University of Potsdam
- 2015-present, Head of Multimedia and Machine Learning Research Group, ITS Chair, HPI
- Since 07/2019, Privatdozent (PD) at HPI/University of Potsdam
 - Habilitation thesis: Deep Representation Learning for Multimedia Data Analysis
- 11/2019-10/2020, Head of Edge Computing Lab Beijing, AI Labs & Video Cloud, Alibaba Group

ITS - MML Group

- Group leader: PD Dr. Haojin Yang
- Team: PhD students, student co-workers
- Funding and supports: SAP, WPI, BMBF, BMUV, Meta AI
- Current research collaborators: <u>NICSEFC</u>, <u>PNNL</u>, <u>NCSU</u>, <u>RUC-AI</u>, <u>CUHK</u>, <u>IBME</u>

Research and Teaching

Computation and Energy Efficient Learning

- Binary neural networks
- Deep model compression
- Dynamic neural networks, e.g., dynamic BERT
- Efficient training and inference of LLM

Label Efficient Learning

- Dataset synthesis
- Novel/General class discovery

Edge Al

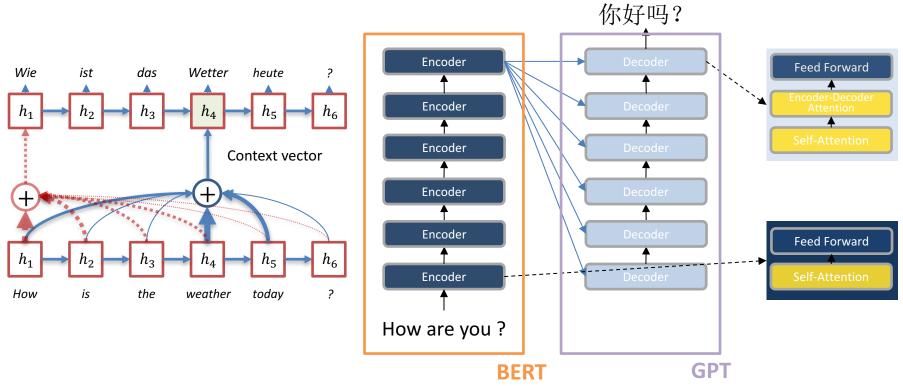
 Computation offloading, collaborative training and inference

AI MOOC@KI-Campus&openHPI

- Title: Applied Edge AI: Deep Learning outside of the Cloud
- Link: https://open.hpi.de/courses/edgeai2022

Master Seminar

- Practical Applications of Deep Learning SS (4 SWS)
- Machine Intelligence with Deep Learning WS (4 SWS)


Master Project

- **summer term 2021**: Accelerating Training and Inference of Large-scale Pre-trained Language Models
- **summer term 2022**: Developing Language Identification for Art-Historical Documents
- **summer term 2023**: Predicting Extreme Weather Events

Master Thesis

• https://hpi.de/meinel/knowledge-tech/machine-learning-ai.html

Transformer, BERT and GPT

Vaswani, Ashish, et al. "Attention is all you need." NeurIPS 2017

Applications of Transformer and BERT

- BERT is applied in Google search engine for 72 languages since
 December 2019. → 5.6 billion searches per day
- Transformer is applied in Google translate
- → more than 100 billion words a day

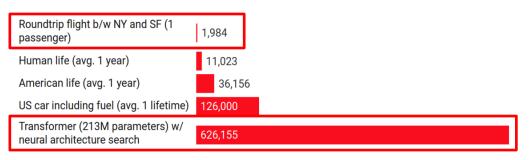
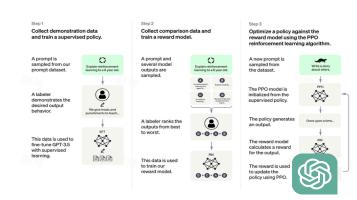
About 60% Google's TPU resources

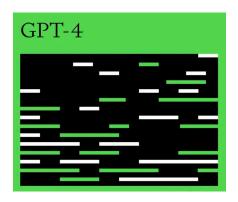
Deep Learning Models Spend Lots of Energy

The impact of large-scale AI computing on the environment

Common carbon footprint benchmarks [1]

in lbs of CO2 equivalent

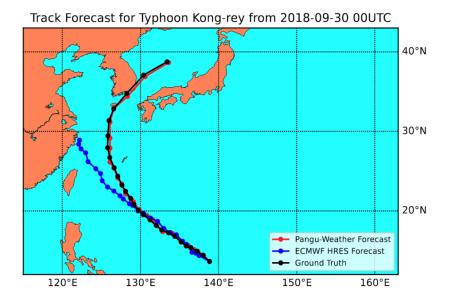




Chart: MIT Technology Review • Source: Strubell et al. • Created with Datawrapper

[1] Strubell, Emma, Ananya Ganesh, and Andrew McCallum. "Energy and Policy Considerations for Deep Learning in NLP." In the 57th Annual Meeting of the Association for Computational Linguistics (ACL). Florence, Italy. July 2019

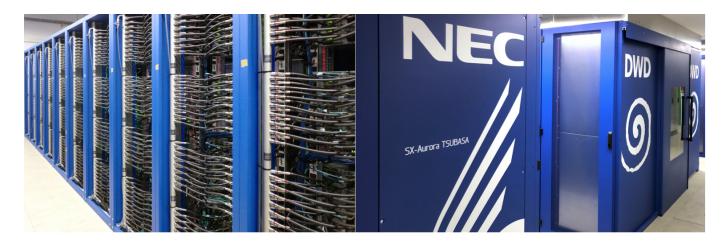
LLMs

- GPT-3 (175 billion parameters): 1287MW, 552 tons [1]
 - 43 cars or 24 US families / year
 - > 10k V100 GPUs
- Google's LaMDA (basis for "Bard") used 1024 TPU-v3 for 58 days, creates
 205 tons
- GPT-4:
 - > 25k GPUs
- GPT-5 ??



What is the ecological challenge?

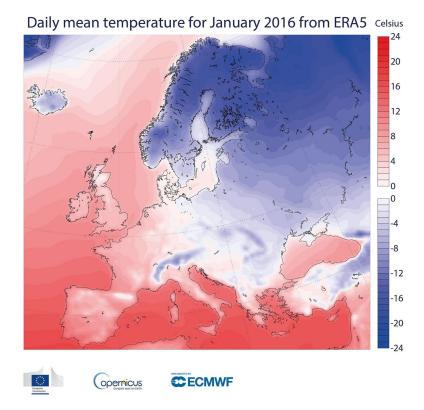
Is the typhoon going to hit an inhabited coastal area?


Where and when should precautionary measures be taken?

"Pangu-Weather: A 3D High-Resolution Model for Fast and Accurate Global Weather Forecast". Kaifeng Bi, Lingxi Xie, Hengheng Zhang, Xin Chen, Xiaotao Gu, Qi Tian

Ideas: What concrete contributions can AI make?

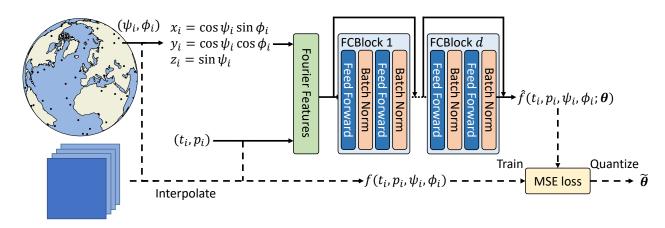
Classical Weather Models are run on Supercomputers


The combined processing power of the Deutscher Wetterdienst's supercomputers is more than **10 petaflops**, which is more than **10,000 times faster** than an average desktop computer.

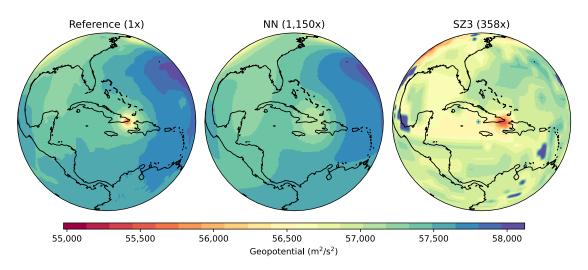
ERA5 Data:

- European Centre for Medium-Range Weather Forecasts (ECMWF)
- Variety of meteorological variables, such as temperature, wind speed, geopotential, etc.
- 30km grid (spatial resolution of 0.25° × 0.25°)
- Hourly data on a global scale updated every day since 1979

Data Size Example:


 1 ERA5 variable, 1979-2018, spatial resolution of 2.8125° × 2.8125°, hourly scale → 10.7GB

Neural Network for Data Compression:


- Lossy compression with 300× to more than 3,000× in compression ratios with better quality than the state-of-the-art SZ3 compressor
- Compression (training) and decompression (inference)

[1] Langwen and Hoefler. "Compressing multidimensional weather and climate data into neural networks." arXiv preprint arXiv:2210.12538 (2022).

[2] https://github.com/spcl/NNCompression

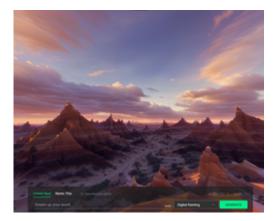
- Geopotential at 500hPa on Oct 5th 2016 with hurricane Matthew in the center:
 - Data extracted from a dataset with 15.6 GB → compressed to 13.86 MB
 - Compression ratio 1150x

^[1] Langwen and Hoefler. "Compressing multidimensional weather and climate data into neural networks." arXiv preprint arXiv:2210.12538 (2022).

^[2] https://github.com/spcl/NNCompression

• Challenge: Preserve Extreme Weather Events in the Al Model

Research Questions:


- How can we measure the quality of the compressed data?
 Is there something like an accuracy to evaluate?
- Which compression rate is a sweet spot between compression rate and data quality?
- Can the compression method be enhanced for our use case of predicting extreme weather events?

Topic 2: Build Your Games using Generative AI tools

- Generative AI technology has facilitated the development of many creativity-related industries.
- Al copilots like GPT-4 allow people to build specific applications even without much prior knowledge.

Text-to-Image https://www.midjourney.com

Text-to-360-degree world https://www.blockadelabs.com/

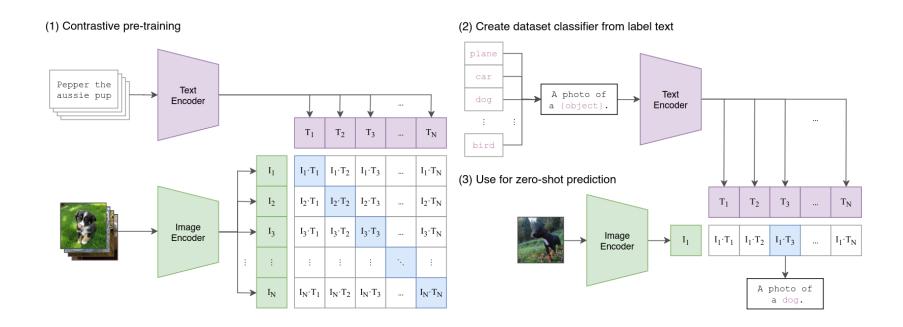
Text-to-Text https://chat.openai.com/

Topic 2: Build Your Games using Generative AI tools

- Start from vivid text-based adventure games(e.g., ChatGPT and Midjourney).
- Build Escape games: generate scripts, 360-degree scenes, and objects \rightarrow build your game (e.g., Unity).
- How these tools could benefit the game development and design?

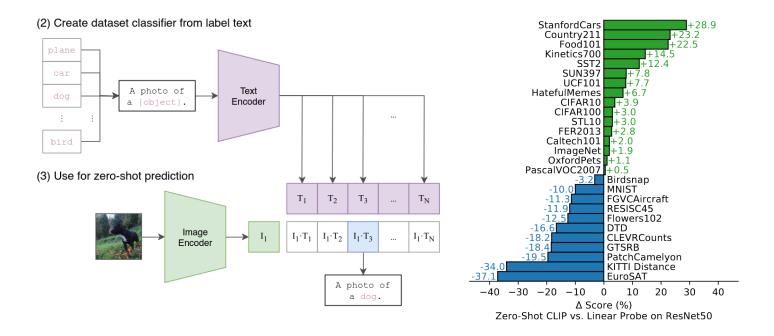
You are an adventurer, and recently you heard a legend about an ancient treasure. It is said that the treasure is hidden in an ancient ruin, and only the bravest adventurers can find it. You decide to embark on a journey to search for the treasure.

Now you are standing at the entrance of the ruins, and you see a stone door with ancient inscriptions carved on it.

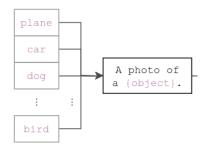


Text adventure https://www.youtube.com/watch?v=A-6c584jxX8

Prison escape


Challenges: prompt engineering, some knowledge in using game development software.

Topic 3: Class Discovery using Language-Image Pretrainings


Radford, Alec, et al. "Learning transferable visual models from natural language supervision." International conference on machine learning. PMLR, 2021.

Topic 3: Class Discovery using Language-Image Pretrainings

Radford, Alec, et al. "Learning transferable visual models from natural language supervision." International conference on machine learning. PMLR, 2021.

Topic 3: Class Discovery using Language-Image Pretrainings

Research Question: What if we don't know the class names?

- Given only images, can we still use CLIP for classification?
- Can we maybe infer the correct prompts for the images?
- How does this approach measure against existing clustering / class discovery methods?

Tools and Hardware

- Deep learning framework PyTorch
- GPU servers from MML Group
 - Prerequisites
 - <u>introductory moodle course</u> (required)
 - cluster usage document

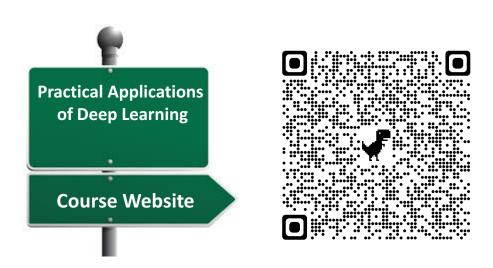
Grading Policy

The final evaluation will be based on:

- idea presentation and Initial implementation,
- Final presentation,
- Report, 12-18 pages (<u>latex</u>)
- Code,
- Participation in the seminar
- Grading

- **10**% (22.05.2023)
- 20% (24.07.2023)
- **30%** (31.08.2023)
- **40**% (31.08.2023)
- (bonus) (30.09.2023)

Enrollment/Anmelden


Registration

- HPI students: HPI-moodle
- Other UP students: Email to HPI-Studienreferat (<u>Studienreferat(at)hpi.uni-potsdam.de</u>)
- until 24.04.2023, inform your preferred and secondary topics by email
 - Send email to: mml-team@hpi.de
- **28.04.2023:** Announcement of group assignment
- Individual weekly meeting with teaching team

Contact

Email: {ting.hu, gregor.nickel, jona.otholt, haojin.yang}@hpi.de

Office: G2-E.31, G2-E.32, G2-E.26

