Master Lecture:
Competitive Problem Solving with Deep Learning
Framework, Visualization, Competitive Problem

Dr. Haojin Yang
Internet Technologies and Systems
Hasso Plattner Institute, University of Potsdam
Content

- Overview of deep learning frameworks
- Visualization
 - Data visualization, *PCA, t-SNE*
 - Neural network visualization
- Image recognition challenge
Feature Distill

- Richness of features indicates the information richness
- This assumption is based on the precondition that the features themselves are not related to each other \text{→ independent}
- Feature B is useless for a given problem, if
 - Feature B is derived from another feature A,
 - or feature B is not correlated to the problem
 - or feature B and feature A describe a same property just in different forms
- Generally speaking, using more features means that we also need more training samples.
- Feature distill
Principal Components Analysis (PCA)

PCA is a statistical procedure that uses an orthogonal transformation to convert a set of observations of possibly **correlated** variables into a set of values of **linearly uncorrelated** variables called **principal components**.

- Simplifying data set
- **Reduce the number of dimensions**
- Maintaining the features in the data set that contribute most to the variance (maintain the “important” features)
- Inhibit overfitting
- Visualization of data set
- Linear transformation
Principal Components Analysis (PCA)

PCA workflow:

- Data normalization
- Find the covariance matrix of the sample features
- Select k largest eigenvalues
- Build the matrix of selected eigenvectors
- Project the data sample onto the matrix of eigenvectors
Principal Components Analysis (PCA)

An example: Compress n-dim features to k-dim

- m (10) samples
- Each has $n=2$ features

<table>
<thead>
<tr>
<th>$x^{(1)}$</th>
<th>$x^{(2)}$</th>
</tr>
</thead>
<tbody>
<tr>
<td>2.5</td>
<td>2.4</td>
</tr>
<tr>
<td>0.5</td>
<td>0.7</td>
</tr>
<tr>
<td>2.2</td>
<td>2.9</td>
</tr>
<tr>
<td>1.9</td>
<td>2.2</td>
</tr>
<tr>
<td>3.1</td>
<td>3.0</td>
</tr>
<tr>
<td>2.3</td>
<td>2.7</td>
</tr>
<tr>
<td>2</td>
<td>1.6</td>
</tr>
<tr>
<td>1</td>
<td>1.1</td>
</tr>
<tr>
<td>1.5</td>
<td>1.6</td>
</tr>
<tr>
<td>1.1</td>
<td>0.9</td>
</tr>
</tbody>
</table>
Principal Components Analysis (PCA)

Step 1: Normalization

\[\bar{x}^i = \frac{1}{n-1} \sum_{j=1}^{n} x_j^i\]

\[x_j^i = x_j^i - \bar{x}^i, j = 1, \ldots n\]

\[\bar{x}^{(1)} = 1.81\]

\[\bar{x}^{(2)} = 1.91\]

<table>
<thead>
<tr>
<th>(x_j^{(1)} - \bar{x}^{(1)})</th>
<th>(x_j^{(2)} - \bar{x}^{(2)})</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.69</td>
<td>0.49</td>
</tr>
<tr>
<td>-1.31</td>
<td>-1.21</td>
</tr>
<tr>
<td>0.39</td>
<td>0.99</td>
</tr>
<tr>
<td>0.09</td>
<td>0.29</td>
</tr>
<tr>
<td>1.29</td>
<td>1.09</td>
</tr>
<tr>
<td>0.49</td>
<td>0.79</td>
</tr>
<tr>
<td>0.19</td>
<td>-0.31</td>
</tr>
<tr>
<td>-0.81</td>
<td>-0.81</td>
</tr>
<tr>
<td>-0.31</td>
<td>-0.31</td>
</tr>
<tr>
<td>-0.71</td>
<td>-1.01</td>
</tr>
</tbody>
</table>
Principal Components Analysis (PCA)

Step 2: Calculate covariance matrix

\[
Var(X) = \frac{1}{n-1} \sum_{j=1}^{n} (x_j^1 - \bar{x}^i)(x_j^1 - \bar{x}^i)
\]

\[
Cov(X^1, X^2) = \frac{1}{n-1} \sum_{j=1}^{n} (x_j^1 - \bar{x}^1)(x_j^2 - \bar{x}^2)
\]

Matrix:

\[
Cov(Z) = \begin{pmatrix}
Cov(X^1, X^1) & Cov(X^1, X^2) \\
Cov(X^2, X^1) & Cov(X^2, X^2)
\end{pmatrix} = \begin{pmatrix}
0.616556 & 0.615444 \\
0.615444 & 0.716556
\end{pmatrix}
\]

<table>
<thead>
<tr>
<th>(x_j^1 - \bar{x}^1)</th>
<th>(x_j^2 - \bar{x}^2)</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.69</td>
<td>0.49</td>
</tr>
<tr>
<td>-1.31</td>
<td>-1.21</td>
</tr>
<tr>
<td>0.39</td>
<td>0.99</td>
</tr>
<tr>
<td>0.09</td>
<td>0.29</td>
</tr>
<tr>
<td>1.29</td>
<td>1.09</td>
</tr>
<tr>
<td>0.49</td>
<td>0.79</td>
</tr>
<tr>
<td>0.19</td>
<td>-0.31</td>
</tr>
<tr>
<td>-0.81</td>
<td>-0.81</td>
</tr>
<tr>
<td>-0.31</td>
<td>-0.31</td>
</tr>
<tr>
<td>-0.71</td>
<td>-1.01</td>
</tr>
</tbody>
</table>
Principal Components Analysis (PCA)

Step 3.1: eigenvalues

\[\text{Cov}(Z) = \begin{pmatrix} 0.616556 & 0.615444 \\ 0.615444 & 0.716556 \end{pmatrix} \]

Determinant

\[\text{det}(\text{Cov} - \lambda I) = 0 \]

Calculates the determinant:

\[\det \begin{pmatrix} 0.616556 - \lambda & 0.615444 \\ 0.615444 & 0.716556 - \lambda \end{pmatrix} = 0, \]

\[= 0.616556 - \lambda - 0.615444 \cdot 0.716556 + \lambda^2 = 1\lambda^2 - 1.333112\lambda + 0.063026 > 0 \]

\[D = b^2 - 4ac = (-1.333112)^2 - 4 \cdot 1 \cdot 0.063026 = 1.525084 > 0 \]

\[\lambda_1 = \frac{-b - \sqrt{D}}{2a} = \frac{1.333112 - 1.234943}{2} = 0.0490854 \]

\[\lambda_2 = \frac{-b + \sqrt{D}}{2a} = \frac{1.333112 + 1.234943}{2} = 1.2840275 \]
Step 3.2: eigenvectors

For λ_1:

$$\begin{bmatrix} 0.616556 & 0.615444 \\ 0.615444 & 0.716556 \end{bmatrix} \begin{bmatrix} x_{11} \\ x_{12} \end{bmatrix} = 0.0490845 \times \begin{bmatrix} x_{11} \\ x_{12} \end{bmatrix}$$

$$\Rightarrow \begin{cases} 0.616556x_{11} + 0.615444x_{12} = 0.049085x_{11} \\ 0.615444x_{11} + 0.716556x_{12} = 0.049085x_{12} \end{cases}$$

$$\Rightarrow \begin{cases} 0.567471x_{11} = -0.615444x_{12} \\ 0.615444x_{11} = -0.6674715x_{12} \end{cases} \Rightarrow x_{11} = -1.08454x_{12} \Rightarrow \begin{pmatrix} -0.73518 \\ 0.677873 \end{pmatrix}$$

For λ_2:

$$\begin{bmatrix} 0.616556 & 0.615444 \\ 0.615444 & 0.716556 \end{bmatrix} \begin{bmatrix} x_{11} \\ x_{12} \end{bmatrix} = 1.2840275 \times \begin{bmatrix} x_{11} \\ x_{12} \end{bmatrix}$$

$$\Rightarrow x_{11} = 0.922053x_{12} \Rightarrow \begin{pmatrix} -0.677875 \\ -0.73518 \end{pmatrix}$$
Step 3: eigenvalues and eigenvectors

\[\text{Cov}(Z) = \begin{pmatrix} 0.616556 & 0.615444 \\ 0.615444 & 0.716556 \end{pmatrix} \]

\[\text{eigenvalues} = \begin{pmatrix} 0.049085 \\ 1.284028 \end{pmatrix} \]

\[\text{eigenvectors} = \begin{pmatrix} -0.73518 & -0.677875 \\ 0.677873 & -0.73518 \end{pmatrix} \]
Step 4: Build the matrix of eigenvectors

- Select k largest eigenvalues, (in this case $k=1$)

$$
eigenvalues = \begin{pmatrix} 0.049085 \\ 1.284028 \end{pmatrix}$$

- Use the corresponding eigenvectors as the columns of the matrix

$$
eigenvectors = \begin{pmatrix} -0.73518 & -0.677875 \\ 0.677873 & -0.73518 \\ 0.677875 & -0.73518 \end{pmatrix}$$
Step 5: Project the data sample onto the matrix of eigenvectors

- We have \(m \) data samples, \(n \) features, after normalization: \(DataA(m \times n) \)
- \(Cov(Z): (n \times n) \), select \(k \) eigenvectors as matrix:
- \(EigenVectors(n \times k) \)
- Data samples after projection:

\[
FinalData(m \times k) = DataA(m \times n) \cdot EigenVectors(n \times k), \quad F_n \rightarrow F_k
\]
Step 5: Project the data sample onto the matrix of eigenvectors

\[
\text{FinalData} (m \times k) = \text{DataA} (m \times n) \cdot \text{EigenVectors} (n \times k), \quad F_n \rightarrow F_k
\]

<table>
<thead>
<tr>
<th>(x^{(1)})</th>
<th>(x^{(2)})</th>
<th>(x)</th>
</tr>
</thead>
<tbody>
<tr>
<td>2.5</td>
<td>2.4</td>
<td>-0.8279</td>
</tr>
<tr>
<td>0.5</td>
<td>0.7</td>
<td>1.7776</td>
</tr>
<tr>
<td>2.2</td>
<td>2.9</td>
<td>-0.9922</td>
</tr>
<tr>
<td>1.9</td>
<td>2.2</td>
<td>-0.2742</td>
</tr>
<tr>
<td>3.1</td>
<td>3.0</td>
<td>-1.6758</td>
</tr>
<tr>
<td>2.3</td>
<td>2.7</td>
<td>-0.9129</td>
</tr>
<tr>
<td>2</td>
<td>1.6</td>
<td>0.0991</td>
</tr>
<tr>
<td>1</td>
<td>1.1</td>
<td>1.1146</td>
</tr>
<tr>
<td>1.5</td>
<td>1.6</td>
<td>0.438</td>
</tr>
<tr>
<td>1.1</td>
<td>0.9</td>
<td>1.2238</td>
</tr>
</tbody>
</table>
Visualizing MNIST with PCA

Source: http://colah.github.io
SNE (Stochastic Neighbor Embedding, Hinton and Roweis, 2002)

- SNE constructs a probability distribution among high-dimensional samples
- SNE constructs the probability distribution of these samples in the low-dimensional space, and
- making the two probability distributions as similar as possible
SNE (Stochastic Neighbor Embedding)

- **In high-dimensional space** R^x, convert **Euclidean Distance to Conditional Probability** to express the similarity between samples,
- e.g. x_i and x_j, x_i choose its neighbors x_j based on $p_{j|i}$

$$ p_{j|i} = \frac{e^{-\|x_i - x_j\|^2 / 2\sigma_i^2}}{\sum_{k \neq i} e^{-\|x_i - x_k\|^2 / 2\sigma_i^2}} $$

- **When we map the data to low-dimensional space** R^y, should get similar correlations between samples
- x_i and $x_j \rightarrow y_i$ and y_j, and set $\sigma^2 = \frac{1}{\sqrt{2}}$

$$ q_{j|i} = \frac{e^{-\|y_i - y_j\|^2}}{\sum_{k \neq i} e^{-\|y_i - y_k\|^2}} $$

Chart 17
SNE (Stochastic Neighbor Embedding)

- SNE uses gradient descent to optimize the cost function C based on KL distance (Kullback-Leibler Divergence) of P_i and Q_i:

$$C = \sum_i KL(P_i||Q_i) = \sum_i \sum_j p_{j|i} \log \frac{p_{j|i}}{q_{j|i}}$$

- Gradient wrt. y_i:

$$\frac{dC}{dy_i} = 2 \sum_j (p_{j|i} - q_{j|i} + p_{i|j} - q_{i|j})(y_i - y_j)$$

- Disadvantages
 - KL is an asymmetric metric, hard to optimize
 - Crowding problem, the boundaries are too blurred

Hinton and Roweis, 2002
t-SNE (t-Distributed Stochastic Neighbor Embedding)

- **t-SNE** (*Maaten and Hinton 2008*)
 - A nonlinear dimension reduction algorithm
 - From high dimension to 2 or 3 dimension, data visualization
- t-SNE improved two problems of SNE
 - *Asymmetric SNE*
 - *The Crowding Problem*
Symmetric SNE

- Uses **joint probability distribution**, $\forall i, j: p_{ij} = p_{ji}, q_{ij} = q_{ji}$

- Low dimensional space: $q_{ij} = \frac{e^{(-\|y_i-y_j\|^2)}}{\sum_{k\neq i} e^{(-\|y_i-y_k\|^2)}}$

- High dimensional space, simply: $p_{ij} = \frac{p_{j|i} + p_{i|j}}{2n}$ where n: number of samples

- Cost function $C = KL(P||Q) = \sum_i \sum_j p_{ij} \log \frac{p_{ij}}{q_{ij}}$

- Gradient: $\frac{dC}{dy_i} = 4 \sum_j (p_{ij} - q_{ij})(y_i - y_j)$

- Simple, more efficient computation
Solve the Crowding Problem

- In the visualization, different types of clusters crowded together, can not be distinguished clearly
- t-Distribution
 - More suitable than normal distribution for dealing with small sample set and outliers
t-SNE

- t-Distribution

\[
\begin{align*}
\text{Distribution: } & p_{i,j}, q_{i,j} \\
\end{align*}
\]
Redefine q_{ij} for low-dimensional space with freedom degree equals 1

$$q_{ij} = \frac{(1+\|y_i-y_j\|^2)^{-1}}{\Sigma_{k\neq i}(1+\|y_i-y_j\|^2)^{-1}}$$

Gradient wrt. y_i:

$$\frac{dc}{dy_i} = 4 \Sigma_j (p_{ij} - q_{ij}) (y_i - y_j) \left(1 + \|y_i - y_j\|^2\right)^{-1}$$

Disadvantages:

- Time and space complexity $O(N^2)$ wrt. number of samples
- Neither classification nor regression
t-SNE

- Visualizing MNIST with t-SNE
Overview of deep learning frameworks

Visualization
 - Data visualization, PCA, t-SNE
 - **Neural network visualization**

Image recognition challenge
Weight Filters and Activations Visualization

Learned weights filter
Activations from data
Activation gradients

Conv1
ReLu1
Pool1
Conv2
...
Pool4
fc 5
softmax

Source: ConvNetJS
Visualization of Receptive Fields

Girshick et al., “Rich feature hierarchies for accurate object detection and semantic segmentation” 2014
Gradient Based Approach

- Visualize the image pixels that mostly activate a neuron in a deeper layer
 - Forward input up to the target layer e.g. conv-5
 - Set all gradients to 0
 - Set gradient for the specific neuron to 1
 - Backpropagate to get reconstructed image, showing gradient on the image

Picks a single intermediate neuron (e.g. from Conv-5) and computes gradient of neuron value w.r.t. the image.
Gradient Based Approach

- Forward input up to the target layer e.g. conv-5
- Set all gradients to 0
- Set gradient for the specific neuron to 1
- Backpropagate to get reconstructed image, showing gradient on the image

Springenberg et al., “Striving for Simplicity: The All Convolutional Net” 2015
Gradient Based Approach

Springenberg et al., “Striving for Simplicity: The All Convolutional Net” 2015
- **Generate an image that maximizes a class score** (or a neuron activation)
- Forward a random image
- Repeat{
 - Set the gradient of the scores vector to be \([0,0,...,1,...,0]\)
 - Backprop to get gradient on the image
 - Update image with a small step in the gradient direction
}

Simonyan et al., “Deep Inside Convolutional Networks: Visualising Image Classification Models and Aliency Maps” 2014
Generate an image that maximizes a class score (or a neuron activation)

Repeat{
 - Forward image up to a specific layer e.g. Conv-5
 - Set the gradients to equal the layer activations
 - Backprop to get gradient on the image
 - Update image with small step
}

https://github.com/google/deepdream 2015

Chart 34
Deep Dream

Set the gradients to equal the layer activations

- Rather than synthesizing an image to maximize a specific neuron, at each iteration, the image is updated to **boost all features that activated in that layer in the forward pass**
Deep Dream

https://ai.googleblog.com/2015/06/inceptionism-going-deeper-into-neural.html
Neural Style

Content image
- Extracts **raw activations** in all layers
- Activations represent the image content

Gatys et al., "Image Style Transfer Using Convolutional Neural Networks", 2016
Style image

- Extracts activations from style image in all layers
- Instead raw activations, computes Gram Matrix G at each layer depicting style
 - $G = V^T V$, where V has dimension $[W \times H, D]$
 - Gram matrix G gives the correlations between channel responses

Gatys et al., “Image Style Transfer Using Convolutional Neural Networks”, 2016
Simultaneously matches the content representation of \(\hat{p} \) and the style representation of \(\tilde{a} \)

Thus jointly minimize:

\[
L_{total}(\hat{p}, \tilde{a}, \tilde{x}) = \alpha L_{content}(\hat{p}, \tilde{x}) + \beta L_{style}(\tilde{a}, \tilde{x})
\]

Chart 39

Gatys et al., "Image Style Transfer Using Convolutional Neural Networks", 2016
Neural Style

Gatys et al., "Image Style Transfer Using Convolutional Neural Networks", 2016
Neural Style

Content image + Style image

“Starry night” by Vincent Van Gogh
Neural Style

Luan et al., “Deep Photo Style Transfer”, 2017
Feature maps in a CNN model

- In deeper layers: contains higher abstraction, more important for the prediction results, but with very low resolution
 - e.g. the last feature map of VGG-16 is 14x14
- In shallow layers: low level abstraction, but higher resolution
- Can we take advantages of higher abstraction from deeper layer and higher resolution from shallow layer?
 - Bojarski et al., “VisualBackProp: efficient visualization of CNNs” 2017
VisualBackProp

- For visualizing which sets of pixels of the input image contribute most to the predictions
- As a debugging tool for the development of CNN-based systems
- High efficient, thus can be used during both training and inference
- VisualBackProp is a value-based method:
 - Backpropagate values (images) instead of the gradients

Bojarski et al., “VisualBackProp: efficient visualization of CNNs” 2017
Bojarski et al., "VisualBackProp: efficient visualization of CNNs" 2017

Chart 45
Bojarski et al., "VisualBackProp: efficient visualization of CNNs" 2017
Semi-supervised end-to-end scene text recognition (Bartz et al., 2017)
Visualization Tool

- Visualization with TensorFlow
- tensorflow/tensorboard
- awslabs/mxboard
- tensorboard-pytorch
- tensorboard-chainer
Content

- **Brief overview of deep learning frameworks**
- Visualization
 - Data visualization, *PCA*, *t-SNE*
 - Neural network visualization
- Image recognition challenge
Deep Learning Frameworks

- theano
- torch
- MatConvNet
- Chainer
- TensorFlow
- cuDNN
- neon
- deeplearning4j
- mxnet
- K
- CNTK
- openNn
- Numenta
- PYTORCH
- Caffe
- H2O.ai
Activity of Deep Learning Frameworks

arXiv mentions as of 2018/03/07 (past 3 months)

Github aggregate activity April-July 2017
DL Framework Features

<table>
<thead>
<tr>
<th>Framework</th>
<th>Core language</th>
<th>Platform</th>
<th>Interface</th>
<th>Distributed training</th>
<th>Model ZOO</th>
<th>Multi-GPU</th>
<th>Multi-threaded CPU</th>
</tr>
</thead>
<tbody>
<tr>
<td>Caffe</td>
<td>C++</td>
<td>Linux, MacOS, Windows</td>
<td>Python, Matlab</td>
<td>No</td>
<td>yes</td>
<td>Only data parallel</td>
<td>yes</td>
</tr>
<tr>
<td>Tensorflow</td>
<td>C++</td>
<td>Linux, MacOS, Windows</td>
<td>Python, Java, Go</td>
<td>yes</td>
<td>yes</td>
<td>Most flexible</td>
<td>yes</td>
</tr>
<tr>
<td>MXNet</td>
<td>C++</td>
<td>Linux, MacOS, Windows, Devices</td>
<td>Python, Scala, R, Julia, Perl</td>
<td>yes</td>
<td>yes</td>
<td>yes</td>
<td>yes</td>
</tr>
<tr>
<td>Pytorch</td>
<td>Lua</td>
<td>Linux, MacOS, Windows</td>
<td>Python</td>
<td>yes</td>
<td>yes</td>
<td>yes</td>
<td>yes</td>
</tr>
<tr>
<td>Chainer</td>
<td>Python</td>
<td>Linux</td>
<td>Python</td>
<td>yes</td>
<td>yes</td>
<td>Yes</td>
<td>Via openblas</td>
</tr>
<tr>
<td>CNTK</td>
<td>C++</td>
<td>Windows, Linux</td>
<td>Python, C#</td>
<td>yes</td>
<td>yes</td>
<td>yes</td>
<td>yes</td>
</tr>
</tbody>
</table>
Deep Learning Frameworks Benchmarking

- Data set CIFAR-10,
- Task: average time for 1,000 images using ResNet-50 for feature extraction

<table>
<thead>
<tr>
<th>DL Library</th>
<th>K80/CUDA8/cuDNN6</th>
<th>P100/CUDA8/cuDNN6</th>
</tr>
</thead>
<tbody>
<tr>
<td>Caffe2</td>
<td>148</td>
<td>54</td>
</tr>
<tr>
<td>Chainer</td>
<td>162</td>
<td>69</td>
</tr>
<tr>
<td>CNTK</td>
<td>163</td>
<td>53</td>
</tr>
<tr>
<td>Gluon</td>
<td>152</td>
<td>62</td>
</tr>
<tr>
<td>Keras(CNTK)</td>
<td>194</td>
<td>76</td>
</tr>
<tr>
<td>Keras(TF)</td>
<td>241</td>
<td>76</td>
</tr>
<tr>
<td>Keras(Theano)</td>
<td>269</td>
<td>93</td>
</tr>
<tr>
<td>Tensorflow</td>
<td>173</td>
<td>57</td>
</tr>
<tr>
<td>Lasagne(Theano)</td>
<td>253</td>
<td>65</td>
</tr>
<tr>
<td>MXNet</td>
<td>145</td>
<td>51</td>
</tr>
<tr>
<td>PyTorch</td>
<td>169</td>
<td>51</td>
</tr>
<tr>
<td>Julia-Knet</td>
<td>159</td>
<td>n/a</td>
</tr>
</tbody>
</table>

Source: https://analyticsindiamag.com/evaluation-of-major-deep-learning-frameworks/
Content

- Overview of deep learning frameworks
- Visualization
 - Data visualization, *PCA, t-SNE*
 - Neural network visualization
- **Image recognition challenge**
Image Captioning

- Roadmap
- Data set
- Evaluation
- Grouping method
- GPU usage schedule
Project - Roadmap

- **Competitive problem solving: An image recognition challenge**
 - 11.06.2018 Challenge open: Release training und validation data, grouping
 - 02.07.2018 Release test set
 - 09.07.2018 Release pre-ranking result
 - 09-10.07.2018 Model submission: Tutors will run the models using a secret test dataset
 - 16.07.2018 **Final presentation**, release final ranking result, (20%) awards granting
 - Until 31. August Final submission: **Implementation + Paper** (40%)

- Weekly individual meeting with your tutors during the project
Data set

- Each photo with 5 captions
- Training and validation data
 - `/data/dl_lecture_data/TrainVal` on each server

```
{  
  "license":5,  
  "file_name":"COCO_val2014_000000003310.jpg",  
  "height":640,  
  "width":480,  
  "date_captured":"2013-11-20 08:09:40",  
  "flickr_url":"http://farm5.staticflickr.com/4020/4667015053_4566d4aaa0_z.jpg",  
  "id":3310
}
{  
  "image_id":3310,  
  "id":621942,  
  "caption":"A woman is taking a bite out of a hot dog."
},
{  
  "image_id":3310,  
  "id":625008,  
  "caption":"A person with a red hat bites into a hot dog."
},
{  
  "image_id":3310,  
  "id":625014,  
  "caption":"The woman is enjoying her very large hot dog."
}
...
```
Model Submission

- Nvidia-Docker image (*ready-to-run*)
- Well written documentation for your docker file
Evaluation

- **Bleu**: A Method for Automatic Evaluation of Machine Translation
 - analyzes the co-occurrences of n-grams between the candidate and reference

- **Meteor**: Automatic Machine Translation Evaluation System
 - is calculated by generating an alignment between the words in the candidate and reference

- **ROUGE**: A Package for Automatic Evaluation of Summaries

- **CIDER**: Consensus-based Image Description Evaluation
 - measures consensus in image captions by performing TF-IDF weighting for each n-gram

- **SPICE**: Semantic Propositional Image Caption Evaluation

Evaluation toolkit: coco-caption
Grouping

- Up to 8 groups
 - Each group accepts maximal 6 people
- Please add your name on Doodle
GPU usage schedule

- We offer 3 servers with totally 8 GPUs
- Each team can select 2 time slots for setup, installation etc. (1 day per slot)
- Each team can select 4 time slots for experiments (3 days per slot)
- For each time slot 2 GPUs can be used
- Add your time slots use this link or QR code
Thank you for your Attention!
Have fun with the project!
- [Goodfellow15] Ian Goodfellow et al., „Expaining and harnessing adversarial examples“, ICLR 2015
Contact

Dr. Haojin Yang
Office: H-1.22
Email: haojin.yang@hpi.de

Dr. Xiaoyin Che
Office: H-1.22
Email: xiaoyin.che@hpi.de

Christian Bartz, M.sc
Office: H-1.11
Email: chrisitan.bartz@hpi.de

Mina Rezaei, M.sc
Office: H-1.22
Email: mina.rezaei@hpi.de

Goncalo Mordido, M.sc
Office: H-1.22
Email: Goncalo.Mordido@hpi.de

Joseph Bethge, M.sc
Office: H-1.21
Email: joseph.bethge@hpi.de
Content

- Overview of deep learning frameworks
- Visualization
 - Data visualization, PCA, t-SNE
 - Neural network visualization
- Adversarial examples
- Image recognition challenge
Adversarial examples is a class of samples that are maliciously designed to attack machine learning models.
Adversarial Patch is one of the latest research results from Google [Brown17]
Adversarial examples is a class of samples that are maliciously designed to attack machine learning models.

Samples from: https://nicholas.carlini.com/code/audio_adversarial_examples/
Adversarial Examples

Reason?
- Non-linearity, uneven distribution, overfitting
- Linearity
 - Goodfellow et al. “Explaining and Harnessing Adversarial Examples”
 - If the model has a large enough input resolution
 - Example: a binary classifier $\text{Score} = W^T X$, add a small noise n, then $\text{Score}' = W^T X + n$

<table>
<thead>
<tr>
<th>x</th>
<th>2</th>
<th>-1</th>
<th>3</th>
<th>-2</th>
<th>2</th>
<th>2</th>
<th>1</th>
<th>-4</th>
<th>5</th>
<th>1</th>
</tr>
</thead>
<tbody>
<tr>
<td>w</td>
<td>-1</td>
<td>-1</td>
<td>1</td>
<td>-1</td>
<td>1</td>
<td>-1</td>
<td>1</td>
<td>1</td>
<td>-1</td>
<td>1</td>
</tr>
</tbody>
</table>
Adversarial Examples

- Example: a binary classifier $Score = W^T X$, add a small noise n.
 Then $Score' = W^T X + n$
- Let $n = 0.5$
- $P(y = 1|x; w) = \frac{1}{1 + e^{-(w^T x + b)}} = \sigma(w^T x + b)$, where $b = 0$

<table>
<thead>
<tr>
<th>x</th>
<th>2</th>
<th>-1</th>
<th>3</th>
<th>-2</th>
<th>2</th>
<th>2</th>
<th>1</th>
<th>-4</th>
<th>5</th>
<th>1</th>
<th>\sum</th>
</tr>
</thead>
<tbody>
<tr>
<td>w</td>
<td>-1</td>
<td>-1</td>
<td>1</td>
<td>-1</td>
<td>1</td>
<td>-1</td>
<td>1</td>
<td>1</td>
<td>-1</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>wx</td>
<td>-2</td>
<td>1</td>
<td>3</td>
<td>2</td>
<td>2</td>
<td>-2</td>
<td>1</td>
<td>-4</td>
<td>-5</td>
<td>1</td>
<td>-3 0.04743</td>
</tr>
<tr>
<td>$wx + n$</td>
<td>-1.5</td>
<td>1.5</td>
<td>3.5</td>
<td>2.5</td>
<td>2.5</td>
<td>-1.5</td>
<td>1.5</td>
<td>-3.5</td>
<td>-4.5</td>
<td>1.5</td>
<td>2 0.8808</td>
</tr>
</tbody>
</table>

- We improved the class 1 probability from 4.7% to 88%
Adversarial Examples

Adversarial samples
- Almost impossible to distinguish the difference between real and adversarial examples with naked eyes
- Will lead to wrong judgment of the model, but not the human
- Not specific images
- Not specific deep neural networks (discriminative ML models)
- Attacks and defenses of adversarial samples is active research field
Adversarial Examples

Tutorials:
- Tricking Neural Networks: Create your own Adversarial Examples [link]
- Adversarial Examples and Adversarial Training – YouTube [link]
- Adversarial Examples and their implications [link]

Paper:

Challenge:
- NIPS 2017 Adversarial learning competition [link]