Implementing a Neural Network from Scratch #2

Christian Bartz, Joseph Bethge
Last Exercise: Feedback

- how long did it take?
Last Exercise: Feedback

- how long did it take?
- most difficult/easy task?
Last Exercise: Feedback

- how long did it take?
- most difficult/easy task?
- favorite/most disliked task?
Last Exercise: Feedback

- how long did it take?
- most difficult/easy task?
- favorite/most disliked task?
- more suggestions, comments?
What We Will Do With You

- tasks for this exercise
- LENGTHy introduction
- time to hack
- outlook

- at home: finish any remaining tasks until next time (three weeks)!
Prepare your Environment

- we added some tests for today’s tasks
- stash your changes

 `git stash`
- fetch the updates from Github

 `git fetch`
- rebase your current branch on our master

 `git rebase origin/master`
- apply stash

 `git stash apply`
Tasks for today

1. Initialization - Christian
2. Sigmoid - Joseph
3. ReLU - Christian
4. Adam - Joseph
5. Dropout - Christian

Bonus:

1. Convolution including tests!
2. Pooling functions (max_pooling, average_pooling) including tests!
3. Tanh
Task 1: Initialization

Should we initialize a network with zeros everywhere?
Task 1: Initialization
(length/initilizers/xavier.py)

- it is important to have a good initialization
 - allows convergence
 - enables faster convergence
- why do we care about initialization and don’t just take:
 \[W = \text{np.random.randn}(n) \] with \(n \) being the number of inputs?
Task 1: Initialization
(length/initializers/xavier.py)

- using the right initialization we get evenly distributed activations
 - makes training easier
 - mitigates saturation of activation functions and vanishing gradient
Task 1: Initialization (length/initializers/xavier.py)

- we can get evenly distributed activation values by scaling the random weights: $\frac{2}{\sqrt{n_{in} + n_{out}}}$

naive initialization

normalized initialization
Task 2: Sigmoid
(length/functions/sigmoid.py)

- forward pass:
 - trivial to implement for one value
 - batch processing: use numpy methods instead
- backward pass:
 - stepwise derivatives
 - direct derivative (lecture)
 - chain rule!
- why are we using non-linearities?
Task 3: ReLU
(length/functions/relu.py)

- very simple activation function
- enables faster convergence
 - why?

RECTIFIED LINEAR UNITS (RELU)
Task 3: ReLU
(length/functions/relu.py)

- very simple activation function
- enables faster convergence
 - does not saturate
 - stable gradient
- forward pass:
 - element-wise maximum
- backward pass:
 - only sub-differentiable!
 - think about every case
Task 4: Adam
(length/optimizers/adam.py)

- baseline: SGD - “man walking the steepest way down”

  ```python
  param_deltas = [self.lr * grad for grad in gradients]
  
  does anyone know how adam works?
  ```

\[z = \frac{1}{20} \left(x^2 + x + y^2 + y + 3^{1-(5x^2+5y^2)} \right) \]
Task 4: Adam
(length/optimizers/adam.py)

- baseline: SGD - “man walking the steepest way down”

  ```python
  param_deltas = [self.lr * grad for grad in gradients]
  ```

- adam - “ball rolling down the hill”
- how could we implement this?
def adam(self, gradient):
 self.t += 1
 self.m = beta1 * self.m + (1 - beta1) * gradient
 self.v = beta2 * self.v + (1 - beta2) * (gradient ** 2)
 m_corrected = m / (1 - (beta1 ** self.t))
 v_corrected = v / (1 - (beta2 ** self.t))
 delta = alpha * m_corrected / ((v_corrected ** 0.5) + epsilon)
 return delta

alpha = 0.001
beta1 = 0.9
beta2 = 0.999
epsilon = 10e-8
Task 4: Adam
(length/optimizers/adam.py)

```python
def adam(self, gradient):
    self.t += 1
    self.m = beta1 * self.m + (1 - beta1) * gradient
    self.v = beta2 * self.v + (1 - beta2) * (gradient ** 2)
    m_corrected = m / (1 - (beta1 ** self.t))
    v_corrected = v / (1 - (beta2 ** self.t))
    delta = alpha * m_corrected / ((v_corrected ** 0.5) + epsilon)
    return delta
```

increase timestep
(needed for bias correction)

设立 Adam
(length/optimizers/adam.py)

```python
def init():
m = 0
v = 0
t = 0
```

alpha = 0.001
beta1 = 0.9
beta2 = 0.999
epsilon = 10e-8

Implementing a Neural Network from Scratch
def adam(self, gradient):
 self.t += 1

 self.m = beta1 * self.m + (1 - beta1) * gradient
 self.v = beta2 * self.v + (1 - beta2) * (gradient ** 2)

 m_corrected = m / (1 - (beta1 ** self.t))
 v_corrected = v / (1 - (beta2 ** self.t))

 delta = alpha * m_corrected / (sqrt(v_corrected) + epsilon)

 return delta
def adam(self, gradient):
 self.t += 1
 self.m = beta1 * self.m + (1 - beta1) * gradient
 self.v = beta2 * self.v + (1 - beta2) * (gradient ** 2)
 m_corrected = m / (1 - (beta1 ** self.t))
 v_corrected = v / (1 - (beta2 ** self.t))
 delta = alpha * m_corrected / (sqrt(v_corrected) + epsilon)
 return delta

adapt second order momentum (variance)
99.9 % - previous momentum
0.1 % - element-wise square of new gradients

alpha = 0.001
beta1 = 0.9
beta2 = 0.999
epsilon = 10e-8
def adam(self, gradient):
 self.t += 1
 self.m = beta1 * self.m + (1 - beta1) * gradient
 self.v = beta2 * self.v + (1 - beta2) * (gradient ** 2)
 m_corrected = m / (1 - (beta1 ** self.t))
 v_corrected = v / (1 - (beta2 ** self.t))
 delta = alpha * m_corrected / (sqrt(v_corrected) + epsilon)
 return delta

bias correction - most relevant for the first iterations
(m and v were initialized with zero)

def init():
 m = 0
 v = 0
 t = 0

alpha = 0.001
beta1 = 0.9
beta2 = 0.999
epsilon = 1e-8
Task 4: Adam
(length/optimizers/adam.py)

def adam(self, gradient):
 self.t += 1
 self.m = beta1 * self.m + (1 - beta1) * gradient
 self.v = beta2 * self.v + (1 - beta2) * (gradient ** 2)
 m_corrected = m / (1 - (beta1 ** self.t))
 v_corrected = v / (1 - (beta2 ** self.t))
 delta = alpha * m_corrected / (sqrt(v_corrected) + epsilon)
 return delta

calculate parameter delta (alpha = learning rate)
what is the influence of v?
def adam(self, gradient):
 self.t += 1
 self.m = beta1 * self.m + (1 - beta1) * gradient
 self.v = beta2 * self.v + (1 - beta2) * (gradient ** 2)
 m_corrected = m / (1 - (beta1 ** self.t))
 v_corrected = v / (1 - (beta2 ** self.t))
 delta = alpha * m_corrected / (sqrt(v_corrected) + epsilon)
 return delta

calculate parameter delta
(alpha = learning rate)

v - decreases delta on alternating gradients

abs(delta) <= alpha
Task 5: Dropout
(length/functions/dropout.py)

- regularization function that randomly drops units
- why does this help the training of the network?
Task 5: Dropout (length/functions/dropout.py)

- regularization function that randomly drops units
- why does this help the training of the network?
 - forces network to find meaningful features
- anything we have to think of?
Task 5: Dropout
(length/functions/dropout.py)

- regularization function that randomly drops units
- why does this help the training of the network?
 - forces network to find meaningful features
- anything we have to think of?
 - **no** dropout at testing time!
 - scaling necessary!
Task 5: Dropout
(length/functions/dropout.py)

- forward pass:
 - drop a value in input with probability p
 - scale outputs of functions by probability p
- backward pass:
 - anyone an idea?
Task 5: Dropout
(length/functions/dropout.py)

- **forward pass:**
 - drop a value in input with probability p
 - scale outputs of functions by probability p

- **backward pass:**
 - set gradients of dropped units to 0

- **testing time:**
 - do nothing
Implementing a Neural Network from Scratch

LENGTH - Lightning-fast **Extensible Neural-network Guarding The HPI**
LENGTH - Recap

- very simple neural network implementation based on Chainer
 - entirely written in Python using Numpy
 - simple, object oriented API
 - uses dynamic computational graph
Implementing a Neural Network from Scratch

Static Computational Graph

(define and run)

\[x \quad z \quad + \quad * \]

\[x = 3 \quad y = 4 \quad z = 2 \]

\[\text{14} \]

Dynamic Computational Graph

(define by run)

LENGTH - Computational Graph
Implementing a Neural Network from Scratch

Static Computational Graph
(define and run)

Dynamic Computational Graph
(define by run)
import numpy as np
import length.functions as F
from length.graph import Graph

x = Graph(np.array([3], dtype=np.float32))
y = Graph(np.array([4], dtype=np.float32))
z = Graph(np.array([2], dtype=np.float32))

h = F.add(x, y)
out = F.multiply(h, z)

create input data and prepare computational graph
Implementing a Neural Network from Scratch

LENGTH - Backward Computation

```python
import numpy as np
import length.functions as F
from length.graph import Graph

x = Graph(np.array([3], dtype=np.float32))
y = Graph(np.array([4], dtype=np.float32))
z = Graph(np.array([2], dtype=np.float32))

h = F.add(x, y)
out = F.multiply(h, z)
```

perform computation and keep track of computational graph

```plaintext
>>> out.visualize()
<table>
<thead>
<tr>
<th>id</th>
<th>layer</th>
<th>next</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>input (1,)</td>
<td>4</td>
</tr>
<tr>
<td>2</td>
<td>input (1,)</td>
<td>4</td>
</tr>
<tr>
<td>3</td>
<td>input (1,)</td>
<td>5</td>
</tr>
<tr>
<td>4</td>
<td>Add (1,)</td>
<td>5</td>
</tr>
<tr>
<td>5</td>
<td>Multiply (1,)</td>
<td>6</td>
</tr>
</tbody>
</table>
```
LENGTH - Backward Computation (length/graph.py)

- `out.backward(optimizer)` → starts computation of gradients and update of learnable parameters

```python
def backward(self, optimizer):
    if self.data.size == 1 and self.grad is None:
        self.grad = np.ones((1,), dtype=constants.DTYPE)

    candidate_layers = []
    seen_layers = set()

    def add_candidate_layer(candidate):
        if candidate is not None and candidate not in seen_layers:
            candidate_layers.append(candidate)
            seen_layers.add(candidate)

    add_candidate_layer(self)
```

```python
df -- = 1
df
```
Implementing a Neural Network from Scratch

LENGTH - Backward Computation

(length/graph.py)

- `out.backward(optimizer)` → starts computation of gradients and update of learnable parameters

```python
def backward(self, optimizer):
    if self.data.size == 1 and self.grad is None:
        self.grad = np.ones((1,), dtype=constants.DTYPE)

candidate_layers = []
seen_layers = set()

def add_candidate_layer(candidate):
    if candidate is not None and candidate not in seen_layers:
        candidate_layers.append(candidate)
        seen_layers.add(candidate)

candidate_layers = []
seen_layers = set()

add_candidate_layer(self)
```

prepare gradient computation for each function in computational graph
def backward(self, optimizer):
 ...
 while candidate_layers:
 candidate_layer = candidate_layers.pop()
 if candidate_layer.creator is None:
 continue
 if candidate_layer.creator.needs_optimizer:
 candidate_layer.creator.optimizer = optimizer

 gradients = candidate_layer.creator.backward(candidate_layer.grad)

 for predecessor, gradient in zip(candidate_layer.predecessors, gradients):
 predecessor.grad = gradient
 if gradient is not None:
 # the gradient flows to another layer (does not happen with loss layers)
 add_candidate_layer(predecessor)

as long as we are not at the top of the computational graph, we go on
def backward(self, optimizer):
 [...]
 while candidate_layers:
 candidate_layer = candidate_layers.pop()
 if candidate_layer.creator is None:
 continue
 if candidate_layer.creator.needs_optimizer:
 candidate_layer.creator.optimizer = optimizer

 gradients = candidate_layer.creator.backward(candidate_layer.grad)

 for predecessor, gradient in zip(candidate_layer.predecessors, gradients):
 predecessor.grad = gradient
 if gradient is not None:
 # the gradient flows to another layer (does not happen with loss layers)
 add_candidate_layer(predecessor)
def backward(self, optimizer):
 [...]
 while candidate_layers:
 candidate_layer = candidate_layers.pop()
 if candidate_layer.creator is None:
 continue

 if candidate_layer.creator.needs_optimizer:
 candidate_layer.creator.optimizer = optimizer

 gradients = candidate_layer.creator.backward(candidate_layer.grad)
 for predecessor, gradient in zip(candidate_layer.predecessors, gradients):
 predecessor.grad = gradient
 if gradient is not None:
 # the gradient flows to another layer (does not happen with loss layers)
 add_candidate_layer(predecessor)

compute gradients of this layer/function
class Layer(Function):
 needs_optimizer = True
 name = "Layer"

 def internal_update(self, parameter_deltas):
 raise NotImplementedError

 def backward(self, gradients):
 gradients = super().backward(gradients)
 input_gradient = gradients[:len(self.inputs)]
 parameter_gradients = gradients[len(self.inputs):]

 if len(parameter_gradients) > 0:
 parameter_deltas = self.optimizer.run_update_rule(parameter_gradients, self)
 self.internal_update(parameter_deltas)

 return input_gradient

 compute gradients with respect to inputs and parameters of the layer
LENGTH - Layers
(length/layer.py and length/layers/)

class Layer(Function):
 needs_optimizer = True
 name = "Layer"

 def internal_update(self, parameter_deltas):
 raise NotImplementedError

 def backward(self, gradients):
 gradients = super().backward(gradients)
 input_gradient = gradients[:len(self.inputs)]
 parameter_gradients = gradients[len(self.inputs):]

 if len(parameter_gradients) > 0:
 parameter_deltas = self.optimizer.run_update_rule(parameter_gradients, self)
 self.internal_update(parameter_deltas)
 return input_gradient

use optimizer to compute updates for internal parameters, based on computed gradients
def backward(self, optimizer):
 [...]
 while candidate_layers:
 candidate_layer = candidate_layers.pop()
 if candidate_layer.creator is None:
 continue

 if candidate_layer.creator.needs_optimizer:
 candidate_layer.creator.optimizer = optimizer

 gradients = candidate_layer.creator.backward(candidate_layer.grad)

 for predecessor, gradient in zip(candidate_layer.predecessors, gradients):
 predecessor.grad = gradient
 if gradient is not None:
 # the gradient flows to another layer (does not happen with loss layers)
 add_candidate_layer(predecessor)

find next functions to compute gradients for and scatter gradients to them
do you see any problems with this backward implementation?
do you see any problems with this backward implementation?
- can not handle networks with graphs that split at a certain point
How Can We Improve Our Results?

```python
def __init__(self):
    self.fully_connected_1 = FullyConnected(784, 512)
    self.fully_connected_2 = FullyConnected(512, 512)
    self.fully_connected_3 = FullyConnected(512, 10)

def forward(self, batch, train=True):
    [...]
    hidden = self.fully_connected_1(batch.data)
    hidden = self.fully_connected_2(hidden)
    self.predictions = self.fully_connected_3(hidden)
    self.loss = F.mean_squared_error(self.predictions, batch.labels)
```
Implementing a Neural Network from Scratch

def __init__(self):

```
def __init__(self):
    self.fully_connected_1 = FullyConnected(784, 512)
    self.fully_connected_2 = FullyConnected(512, 512)
    self.fully_connected_3 = FullyConnected(512, 10)

[...]
```  

def forward(self, batch, train=True):

```
def forward(self, batch, train=True):
    [...]
    hidden = self.fully_connected_1(batch.data)
    hidden = self.fully_connected_2(hidden)
    self.predictions = self.fully_connected_3(hidden)
    self.loss = F.mean_squared_error(self.predictions, batch.labels)
```

- replace `mean_squared_error` with `softmax_cross_entropy`
- add dropout
- use adam
- python train.py --optimizer adam

- increase layer size
Task Overview - Time to Hack!

1. Initialization
 - length-initializers/xavier.py
2. Sigmoid
 - length/functions/sigmoid.py
3. ReLU
 - length/functions/relu.py
4. Adam
 - length/optimizers/adam.py
5. Dropout
 - length/functions/dropout.py

Run test with: **pytest**

Run actual training: `python train.py --optimizer [sgd,adam]`

```
$ python train.py --optimizer adam
train: epoch: 0, loss: 0.12, accuracy 0.94, iteration: 900
running test set...
test: epoch: 0, loss: 0.18, accuracy 0.96
train: epoch: 1, loss: 0.14, accuracy 0.94, iteration: 900
running test set...
test: epoch: 1, loss: 0.11, accuracy 0.98
train: epoch: 2, loss: 0.09, accuracy 0.97, iteration: 900
running test set...
test: epoch: 2, loss: 0.08, accuracy 0.99
train: epoch: 3, loss: 0.02, accuracy 0.98, iteration: 900
running test set...
test: epoch: 3, loss: 0.11, accuracy 0.98
train: epoch: 4, loss: 0.03, accuracy 1.00, iteration: 900
running test set...
test: epoch: 4, loss: 0.10, accuracy 0.98
train: epoch: 5, loss: 0.10, accuracy 0.97, iteration: 900
running test set...
test: epoch: 5, loss: 0.08, accuracy 0.99
train: epoch: 6, loss: 0.04, accuracy 0.98, iteration: 900
running test set...
test: epoch: 6, loss: 0.08, accuracy 0.99
train: epoch: 7, loss: 0.05, accuracy 0.98, iteration: 900
running test set...
test: epoch: 7, loss: 0.08, accuracy 0.99
train: epoch: 8, loss: 0.00, accuracy 1.00, iteration: 900
running test set...
test: epoch: 8, loss: 0.07, accuracy 1.00
train: epoch: 9, loss: 0.00, accuracy 1.00, iteration: 900
running test set...
test: epoch: 9, loss: 0.08, accuracy 0.99
```
Next Time

We use a real framework for inference with a trained model.

Send an email or visit us anytime with questions!

Christian: christian.bartz@hpi.de H-1.11
Joseph: joseph.bethge@hpi.de H-1.21
Bitte bringen Sie die Studenten dazu den Raum zu verlassen, um die Präsentation zu beenden.
All Tasks

1. Data Loading
2. Initialization
3. Fully Connected Layer
4. Mean Squared Error
5. SGD
6. Sigmoid
7. ReLU
8. Adam
9. Dropout

Bonus Bonus:
1. tanh