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Abstract. The handwritten signature is widely employed and accepted
as a proof of a person’s identity. In our everyday life, it is often verified
manually, yet only casually. As a result, the need for automatic signature
verification arises. In this paper, we propose a new approach to the writer
independent verification of offline signatures. Our approach, named Sig-
nature Embedding, is based on deep metric learning. Comparing triplets
of two genuine and one forged signature, our system learns to embed sig-
natures into a high-dimensional space, in which the Euclidean distance
functions as a metric of their similarity. Our system ranks best in nearly
all evaluation metrics from the ICDAR SigWiComp 2013 challenge. The
evaluation shows a high generality of our system: being trained exclu-
sively on Latin script signatures, it outperforms the other systems even
for signatures in Japanese script.

1 Introduction

The handwritten signature is a widely employed method to verify a person’s
identity in our everyday life. It plays an important role in the legitimation of
legal contracts, is used to authorize transactions of money, and serves as an
evidence to the provenance of documents. As a part of these processes, a large
number of signatures is verified daily, often by visual, human inspection. This
verification is done only casually in most cases—especially in everyday scenarios
such as at the supermarket checkout counter—and the signature’s correctness is
not questioned until legal issues arise.

This situation motivates the creation of automatic signature verification sys-
tems. Such systems are required to be robust and accurate due to the widespread
and momentous employment of handwritten signatures in our society.

In this paper, we propose a new approach to writer independent offline sig-
nature verification. Our approach is based on deep learned similarity metrics.
It is able to produce a soft classification decision, which entails an application
independent system design.

Offtine signature verification, as opposed to online signature verification,
describes the scenario where no additional information about the process of
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creating the signature is available. Such information could include the position
of the pen, the inclination of the pen, or the pressure exerted onto the pen at
each point in time. The approach we present does not rely on such information.
It operates on static images of signature, as they could be obtained, for example,
by scanning a signature.

In addition, our approach is writer independent, meaning it can be employed
independently of the author of the signature. The system can operate without
being specifically attuned to the user whose signature should be verified and does
not require an underlying database of users’ signatures. Instead, it is provided
with a small number of reference signatures when it is applied. The reference
signatures are then compared to a questioned signature.

The method we propose is designed to handle skilled signature forgeries.
This means the forger possesses knowledge about the original signature and has
sufficient time to practice the creation of a hard to detect imitation.

Our system produces a soft decision about the genuineness of a questioned
signature, meaning it can be employed independently of the application at hand.
The system conveys a measure of certainty that the given signature is genuine
of forged, allowing users to condition the interpretation of the result on the
particular situation.

Our approach is based on deep metric learning: The system learns to em-
bed signatures into a high-dimensional space, in which the Euclidean distance
functions as a metric of their similarity. The distance between two embedded
signatures can hence be utilized to confirm or refute that both have been cre-
ated by the same author. Due to the pivotal role of the embedding, we name our
approach Signature Embedding.

In this paper, we discuss how a system that produces such embeddings can
be created using a deep neural network (DNN). We describe how the distances
between embedded signatures can be employed in order to derive both hard and
soft decisions.

In order to evaluate the system we created, we make use of the established
evaluation metrics in this domain. We compare our results to the results of
the ICDAR SigWiComp 2013 [1] challenge on offline signature verification. Our
system compares favorably. It outperforms the systems that participated in the
challenge in near to all respects.

As we want to allow for the best possible reproducibility of our results, all
source code for the creation and usage of our system is openly available!.

2 Related Work

In 2015, Hafemann et al. [2] provided a comprehensive literature review about
the domain of offline signature verification. They found that the use of deep
learning approaches is not yet widely spread in this community.

The state-of-the-art in this domain is hence defined by a method that makes
use of handcrafted features: Yilmaz et al. [3] combined a histogram of oriented
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gradients (HOG) and local binary patterns (LBP), which computes histograms
of a pixels neighborhood. With this approach and support vector machine (SVM)
classification, they achieved the highest score in the ICDAR SigWiComp chal-
lenge in both the years 2013 [1] and 2015 [4].

Khalajzadeh et al. [5] made use of a DNN for feature extraction on offline
signatures. However, they did not consider skilled forgeries. Instead, they dis-
tinguished the signatures of the 22 users in their experiment. In order to do so,
they trained one writer dependent classifier for each of the users.

A more general, writer independent approach has been proposed very recently
by Hafemann et al. [6]. In order to allow for writer independent classification,
the authors trained a DNN on a training set that does not include any authors
from the evaluation set. The trained DNN is then used to obtain a feature
representation of each signature in the evaluation set. As the DNN is trained as
a classification task, no similarity metric can be obtained. Instead, an additional
binary (“genuine” or “forged”) classifier is trained for the samples in the evaluation
set. The binary classifier provides a hard decision, rather than a soft decision. In
addition to the writer independent component, the system of Hafemann et al.
is equipped with a writer dependent component, which is able to leverage the
feature representations obtained by the DNN.

An approach closely related to ours, though not based on deep learning, was
proposed by Bromley et al. [7]. The authors trained a neural network to learn
a similarity metric based on handcrafted features. The system they proposed is
a writer dependent online signature verification system. However, their Siamese
classifier architecture is the first application of similarity metrics to the problem
of signature verification that we are aware of.

Schroff et al. [8] applied an approach similar to ours to the problem of face
recognition. They used a DNN in order to learn a similarity metric of faces. Just
like in our system, the training of their DNN is based on embedding triplets.
However, rather than distinguishing different users, the Signature Embedding
system needs to handle purposefully forged signatures for each of the users. Our
system hence has to cope with a very low inter-class variability [2].

3 Method

The key concept of Signature Embedding is to learn a similarity metric for
signatures. Signatures are embedded into a high-dimensional space, in a way
that their Euclidean distance in that space can be employed as an estimation of
their similarity. Hence, genuine signatures of the same author, which are most
similar, are embedded close to each other, while forgeries are embedded further
away from them.

In our system, a DNN is used for the embedding of samples. The DNN
computes a function f,,, parameterized by its weights w. Thus, the similarity
metric is defined as

My(x1,%x2) = || fuw(x1) — fuw(x2)]2,
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where M, should be small if x; and xg are genuine signatures of the same
author, and large otherwise.
The four major steps involved in the creation and application of our system:

— Preparing input data for training the DNN

Training the DNN to compute the function f,, with the desired properties,
and hence embedding the input samples

— Calculating the distance between embedded signatures

Making a classification decision based on the distance

3.1 Preparing the Data

Prior to training the DNN, signature samples are augmented and preprocessed.
Preprocessing involves cropping white boarders from the signature sample and
resizing it to the input size expected by our DNN (192 x 96 pixel). The choice
of the input size is based on a trade-off: larger input samples require a larger
DNN (and hence more resources); smaller input sizes affect the recognizability
of features.

Augmenting the training data is particularly important in order to apply
deep learning technologies within the domain of signature verification. Creating
a dataset of labeled signature samples requires a large amount of manual effort, as
many authors are required to contribute numerous of their genuine signatures. In
addition, obtaining skilled forgeries is even more laborious, as authors first need
to practice to forge the signatures. Very large datasets are hence not available
for offline signature verification. Consequently, we augment the available training
data by applying different rotations and perspective transforms to the samples.

3.2 Training the Deep Neural Network

In order to embed the signatures into the high-dimensional Euclidean space, they
are forwarded through a DNN. The DNN we employ is based on the VGG-16
network [9]. Table 1 provides an overview of our network layout. It is slightly
reduced compared to the original: Three convolutional layers, one pooling layer,
and one fully connected layer have been removed. Furthermore, layer parameters,
such as input size, output size, and the size of the kernel, have been adjusted.

As our reduced version of VGG still has comparably many layers, we pretrain
the model to perform the simpler task of distinguishing authors of signatures.
As a result, we obtain convolutional layers which are already trained to extract
features related to the task of signature verification. Of the pretrained model,
the convolutional layers are used to initialize the main model, while the fully
connected layers are discarded.

The DNN should embed samples in a way that the Euclidean distance in the
embedding space can be used as a similarity metric. This embedding is learned
from relative comparisons [10]. In other words, the embedding function is not
evaluated based on the absolute positions of embedded samples, but on their
position relative to each other.
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Table 1. Layout of the deep neural network

layer type kernel size, stride, output size (dim X w X h)

padding width or number of neurons
(input data) (does not apply) 1 x 192 x 96
convolution 11,3,1 96 x 62 x 30
convolution 3,1,1 96 x 62 x 30
max pooling 2,2,1 96 x 32 x 16
convolution 51,1 128 x 30 x 14
convolution 3,1,1 128 x 30 x 14
max pooling 2,2,1 128 x 16 x 8
convolution 3,1,1 256 x 16 x 8
convolution 3,1,1 256 x 16 x 8
convolution 3,1,1 256 x 16 x 8
max pooling 2,2,0 256 x 8 x 4
convolution 3,1,1 512 x 8 x4
convolution 3,1,1 512 x 8 x4
convolution 3,1,1 512 x 8 x4
max pooling 2,2,0 512 x4 x 2
fully connected (does not apply) 1024
fully connected (does not apply) 128

Therefore, each batch forwarded through the DNN consists of triplets of
three samples. Each triplet consists of anchor, positive, and megative samples.
Both anchors and positives are genuine signatures of the same author. The neg-
ative samples are skilled forgeries for the respective author or other authors’
signatures.

We call triplets whose negative sample is a skilled forgery hard triplets. The
ratio of hard triplets is determined by a hyperparameter passed to our system
initial to the training.

The DNN is trained by computing a loss and propagating it back through
the network. The complete process of embedding the samples and computing
the loss is illustrated in Figure 1.

In order to obtain the loss, anchor, positive, and negative sample are em-
bedded by the DNN. Subsequently, the distance between anchor and positive
is compared to the distance between anchor and negative. The target of the
loss function is to minimize the anchor-positive distances, while maximizing the
anchor-negative distances. Hence, the Euclidean distances between anchors and
positives, as well as between anchors and negatives are computed. Thereafter,
the softmaz function is employed as a ratio measure between these distances,
normalizing the distances to real values in the range of 0 to 1 that add up to 1.

The distance between anchors and negatives is desired to be the larger of the
two. Consequently, mean squared error (MSE) is used to compare the softmax
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o

Fig. 1. After samples have been forwarded through the DNN, the loss is com-
puted based on the softmax ratio between the anchor-positive distances and the
anchor-negative distances.

ratio to the vector [0,1], producing a loss. This loss function is based on the
function Hoffer and Ailon [11] proposed.

3.3 Calculating the Distance

The Euclidean distance between two embedded samples can be calculated as

In order to estimate whether or not a questioned signature is genuine, it is benefi-
cial if more than one reference signature is available. In this case, the embedding
of the questioned signature is compared to the centroid of the embedded reference
signatures. Note that we use the squared Euclidean distance in practice, since
distances only need to be compared to each other. This saves the calculation of
the square root.

3.4 Making a Decision

After signatures have been embedded by the neural network and the distance of
the questioned signature to its reference signatures has been calculated, the final
step is the classification decision based on that distance. This decision can be
done either in the form of a hard decision, applying a threshold to the distance
in order to classify the questioned signature as “genuine” or “forged”; or in the
form of a soft decision, producing a relative value that expresses the system’s
confidence in either of the two hypotheses.

Setting a threshold in order to obtain a hard decision results in a trade-off
between mistakenly accepted forgeries and mistakenly rejected genuine signa-
tures. The decision about this threshold depends on the severity (cost) of each
of these errors in the specific application scenario of the system. Consequently,
systems that produce hard decisions are termed application dependent [12].

In recent years, however, application independent [12] systems, which produce
soft decisions, have been considered more desirable in the signature verification
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community, most notably in ICDAR Signature Verification challenges starting
from the year 2011 [13].

In our system, a soft decision is retrieved based on log-likelihood-ratios, as
described by Van Leeuwen and Briimmer [14]. Therefore, a score s is computed
for each distance, where a smaller distance results in a higher score. The log-
likelihood-ratio L(s) for a score is then calculated as

P(s|genuine signature)

L(s) =1 .
(s) = log P(s|forged signature)

L(s) can be interpreted as “expressing the degree of support that the raw score s
gives to one or the other hypothesis”[14], where the hypotheses are “questioned
sample is genuine” and “questioned sample is a forgery”.

4 Evaluation

We evaluated our system with regards to the metrics that have been employed
in the ICDAR SigWiComp2013 challenge. These metrics include application de-
pendent as well as independent methods.

The application dependent metrics we use are accuracy, false reject rate
(FRR), and false accept rate (FAR). All of these methods depend on the system
to produce hard decisions. Consequently, the chosen threshold has an impact on
these metrics. For example, changing the threshold for the benefit of an improved
FRR will result in a worse FAR. In order to obtain comparable metrics over dif-
ferent systems, the threshold is set to the value that produces the equal error
rate (EER), the point where FRR and FAR are (about) equal. Hence, accuracy,
FRR, and FAR in our evaluation refer to the value of each metric at EER.

Another commonly employed application dependent indicator of a system’s
performance is the ROC-curve. However, in order to allow for better compara-
bility of results we employ the same metrics as the ICDAR challenge.

The application independent metrics we use are the log-likelihood-ratio cost
(Cur) and the optimized Cyy ( ”772?”)7 both of which are based on the log-
likelihood-ratio described above.

4.1 Experimental Setup

In order to train and evaluate our system, we made use of the following datasets:
We trained the model using the datasets MCYT 100 [15|, GPDSsyntheticSigna-
ture [16], and a subset of the Dutch Offline Signatures dataset from the ICDAR
SigWiComp2013 challenge [1], which is the most recent SigWiComp dataset that
is publicly available.

We evaluated the model using the signatures of 20 authors from the Dutch
Offline Signatures that have been excluded from training. In addition, we used
“Japanese Offline Signatures”, also from the ICDAR SigWiComp2013 challenge,
exclusively for evaluation.
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The system is implemented using the deep learning framework Chainer [17].
We trained the DNN using an Nvidia GTX 980 GPU for 48 hours (55 epochs). As
gradient update method, we used Momentum SGD [18]. The learning rate was
initialized with 0.001 and halved every five epoch, where one epoch corresponds
to processing one batch per author. The batch size was set to 180 triplets, or
540 samples. We made use of weight decay regularization with a factor of 0.001.
The ratio of hard triplets was set to 90 %.

In the evaluation, we allowed the system to make use of 12 reference sig-
natures in order to estimate their similarity to a questioned signature. This
corresponds to the number of reference signatures provided per author in the
“Dutch Offline Signatures” dataset.

4.2 Results

The results of our evaluation compare very favorable to the results of the ICDAR
SigWiComp2013 challenge [1], which used the same datasets. Tables 2 and 3 show
the Signature Embedding system in comparison with the three best ranked?
competitors for each of the two tasks of the challenge.

In the first task of the challenge, the verification of Dutch offline signatures
(Table 2), our system achieves the best scores in all metrics, except for the
min In the second task, the verification of Japanese offline signatures (Table 3),
Signature Embedding improves on the results in all of the employed metrics.
Please note that the evaluation of our system is based on a different subset
of the datasets than the results we compare them to. The reason is that the
complete datasets were not available to us anymore. Thus, as described above, we
reserved part of the Dutch training dataset and the complete Japanese training
dataset for evaluation purposes and did not use them in order to train our system.
This process should provide a very good indication of the system’s performance.

4.3 Discussion

Even though Signature Embedding was trained using Latin script signatures
only, it performs better on the Japanese signatures than it does on the Dutch
signatures. The ability to verify signatures of a script that the system has never
been trained on indicates a very good generalizability of our approach. A pos-
sible reason why the system performs even better on the Japanese signatures is
that the task of verifying Japanese signatures—at least on the given data—is
easier. This explanation finds support in the fact that the overall results in the
SigWiComp2013 challenge are better on this dataset as well.
2 The “best ranked” systems from the challenge were selected based on their Cjp"
value. Other participants partly ranked higher in other values. Please refer to the
original results in [1].
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Table 2. Comparison of Signature Embedding to participants of ICDAR Sig-
WiComp2013 Task 1: Dutch Offline Signature Verification

ID in [1] Accuracy (%) FRR (%) FAR (%)  Cur cprn
or our system

2 76.83 23.70 23.10 0.880048 0.642 632
Signature Embedding 81.76 18.24 18.24 0.705924 0.653 741
4 74.93 25.19 25.05  0.979237 0.698 044
3 75.56 24.44 24.44  1.086197 0.706733

Table 3. Comparison of Signature Embedding to participants of ICDAR Sig-
WiComp2013 Task 2: Japanese Offline Signature Verification

ID in [1] Accuracy (%) FRR (%) FAR (%)  Cur e
or our system

Signature Embedding 93.39 6.66 6.57 0.421014 0.316 642
2 90.72 9.74 9.72  0.796040 0.339265
3 89.82 10.23 10.14  0.814598 0.349 146
4 86.95 13.04 13.06 0.831630 0.400977

5 Conclusion

In this paper we presented a new approach to writer independent offline signature
verification that is based on a deep learned similarity metric. Our approach
compares two given signatures based on an embedding in a high-dimensional
space, in order to confirm or to refute that both signatures are created by the
same author. We showed how this can be achieved by training a DNN using a
triplet-based loss function and discussed how our approach can be utilized in
order to obtain an application independent, soft classification decision.

We demonstrated that the system we created outperforms the state-of-the-
art from the ICDAR SigWiComp 2013 challenge on offline signature verification.
Our results also show that our approach generalizes well, even to signature in a
script unknown to the system.

In future investigations, we want to explore how our system can be employed
in domains other than offline signature verification, such as the related problem
of writer identification based on handwriting recognition.
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