Linear Algebra Recap

Anton Tsitsulin, Davide Mottin

Hasso Plattner Institute

Graph Mining course Winter Semester 2017
Vectors and norms

- Vector is a 1D array with \(n \) numbers

- Main questions:
 - How similar two vectors are?
 - How good our approximation of the vector is?

- Norm of the vector \(\|x\| \) is a qualitative measure of size such that:
 - \(\|\alpha x\| = |\alpha| \cdot \|x\| \)
 - \(\|x + y\| \leq \|x\| + \|y\| \) triangle inequality
 - If \(\|x\| = 0 \) then \(x = 0 \)

- The distance between two vectors \(x \) and \(y \) is defined as:
 - \(d(x,y) = \|x - y\| \)
Standard norms

- The most well-known is **Euclidean norm**:

\[\|x\|_2 = \sqrt{\sum_{i=1}^{n} |x_i|^2} \]

Quiz: Why is the modulo sign here?

A: x may be complex
Standard norms

- The most well-known is **Euclidean norm**:

\[\|x\|_2 = \sqrt{\sum_{i=1}^{n} |x_i|^2} \]

Quiz: Why is the modulo sign here?

A: \(x \) may be complex
Standard norms

- Euclidean norm is a special case of important p-norms:

$$
\|x\|_p = \left(\sum_{i=1}^{n} |x_i|^p \right)^{1/p}
$$

- Two important special cases:
 - **Infinity** norm, or Chebyshev norm is the maximum element: $\|x\|_\infty = \max_i |x_i|
 - L_1 norm, or Manhattan norm is the sum of modules: $\|x\|_1 = \sum_{i=1}^{n} |x_i|$
Standard norms

- Euclidean norm is a special case of important p-norms:

 $$\|x\|_p = \left(\sum_{i=1}^{n} |x_i|^p\right)^{1/p}$$

- Two important special cases:
 - **Infinity** norm, or Chebyshev norm is the maximum element: $\|x\|_\infty = \max_i |x_i|
 - L_1 norm, or Manhattan norm is the sum of modules: $\|x\|_1 = \sum_{i=1}^{n} |x_i|$
Dot product

- Dot product (scalar product or inner product) of two vectors X and Y is the length of projection of X on the unit vector \hat{Y}:
 $$X \cdot Y = ||X|| \cdot ||Y|| \cdot \cos \theta$$

- An easier definition:
 $$X \cdot Y = \sum_{i=1}^{n} x_i y_i$$

- Useful properties:
 - Commutative: $X \cdot Y = Y \cdot X$
 - Distributive: $X \cdot (Y + Z) = X \cdot Y + X \cdot Z$
 - Zero iff X and Y are orthogonal
Dot product

- Dot product (scalar product or inner product) of two vectors X and Y is the length of projection of X on the unit vector \hat{Y}:
 \[X \cdot Y = \|X\| \|Y\| \cos \theta \]

- An easier definition:
 \[X \cdot Y = \sum_{i=1}^{n} x_i y_i \]

- Useful properties:
 - Commutative: $X \cdot Y = Y \cdot X$
 - Distributive: $X \cdot (Y + Z) = X \cdot Y + X \cdot Z$
 - Zero iff X and Y are orthogonal
Matrices

- It is *enough* to think a matrix to be a 2D array of numbers:

 \[
 A = \begin{bmatrix} a_{ij} \end{bmatrix}, \quad i = 1, \ldots, n, \quad j = 1, \ldots, m
 \]

 - If \(n = m \), we have a **square** matrix
 - If \(n > m \), we have a **tall** matrix
 - If \(n < m \), we have a **long** matrix

- A matrix takes \(nm \) memory to store
- If a matrix have (mostly) zeros, it is called **sparse**, otherwise it is said to be **dense**
- \(A^T = \begin{bmatrix} a_{ji} \end{bmatrix} \) is called matrix **transpose**
Matrix norms

- $\|A\|$ is called a **matrix norm** if:
 - $\|A\| \geq 0$
 - $\|A\| = 0$ iff $A = 0$
 - $\|\alpha A\| = |\alpha| \cdot \|A\|$
 - $\|A + B\| \leq \|A\| + \|B\|$

- **Frobenius norm** $\|A\|_F$ is the most simple:

\[
\|A\|_F = \sqrt{\sum_{i=1}^{n} \sum_{j=1}^{m} |a_{i,j}|^2}
\]
Matrix norms

- Important class of norms are **operator norms**:
 \[\|A\|_{op} = \sup_{x \neq 0} \frac{\|Ax\|}{\|x\|} \]

- **Matrix \(p \)-norms** are operator norms:
 - \(p = 2 \), **spectral** norm, denoted by \(\|A\|_2 \)
 - \(p = \infty \), \(\|A\|_\infty = \max_i \sum_j |a_{ij}| \)
 - \(p = 1 \), \(\|A\|_1 = \max_j \sum_i |a_{ij}| \)

- Spectral norm **can not** be computed directly from \(A \) entries!

- \(\|A\|_2 \) is the **largest singular value** of the matrix \(A \), \(\sigma_1(A) \)

Later in the slides
Matrix-vector product

- Multiplication of $n \times n$ matrix A and $n \times 1$ vector x is defined as:
 \[y_i = \sum_{j=1}^{n} a_{ij}x_j \]

- Overall complexity is $O(n^2)$
- For sparse matrices, it is only $O(\text{nnz})$
Matrix multiplication

- Matrix multiplication is a basic building block of many algorithms, including graph mining.
- A product of a $n \times k$ matrix A and $k \times m$ matrix B is defined as $n \times m$ matrix C:
 \[c_{ij} = \sum_{s=1}^{k} a_{is} b_{sj}, \quad i = 1, \ldots, n, \quad j = 1, \ldots, m \]
- Time complexity is $O(nmk)$, $O(n^3)$ if matrices are square.
- More efficient algorithms for large square matrices, $O(n^{2.8})$.
- Efficient implementation is crucial (LAPACK, ATLAS, MKL, ...).
Time complexity refresher

- ~3 * 10^8 users on Twitter, ~1.1 * 10^{10} edges
- ~2 * 10^9 users on Facebook, ~1.5 * 10^{11} edges
- Top i9 processor can do ~1 * 10^{12} FLOPS

<table>
<thead>
<tr>
<th></th>
<th>Sparse matvec</th>
<th>Dense matvec</th>
<th>Dense matmul</th>
</tr>
</thead>
<tbody>
<tr>
<td>Twitter</td>
<td>(\frac{1.1 \times 10^{10}}{10^{12}}) \approx 10^{-2}\ s</td>
<td>(\frac{(3 \times 10^8)^2}{10^{12}}) \approx 1\ day</td>
<td>(\frac{(3 \times 10^8)^{2.8}}{10^{12}}) \approx 20000\ years</td>
</tr>
<tr>
<td>Facebook</td>
<td>(\frac{1.5 \times 10^{11}}{10^{12}}) \approx 10^{-1}\ s</td>
<td>(\frac{(2 \times 10^9)^2}{10^{12}}) \approx 45\ days</td>
<td>(\frac{(2 \times 10^9)^{2.8}}{10^{12}}) \approx 4\ million\ years</td>
</tr>
</tbody>
</table>
Linear dependence

- Matrix can be considered to be a sequence of columns:
 \[A = [a_1, a_2, ..., a_m] \]

- Vectors \(a_i \) are called linearly dependent if there exists non-zero coefficients \(x_i \) such that:
 \[\sum_i a_i x_i = 0 \]

- **Matrix rank** is the number of linearly independent columns
 - In real world, it is reasonable to assume low rank of a matrix
 - Rank of a random \(n \times n \) matrix \(A \sim N(0,1) \) is \(n \)
Matrix rank

- **Matrix rank** is the number of linearly independent columns
- In real world, it is reasonable to assume low ran of a matrix
- Rank of a random $n \times n$ matrix $A \sim N(0,1)$ is n
- Matrix rank is **unstable**:

 $$\forall A \in \mathbb{R}^{n \times n} \exists B: \text{rank}(B) = n \land \|A - B\| = \varepsilon$$

- Q: Does it mean that rank does not make sense numerically?
- A: No. We want to find B: $\|A - B\| = \varepsilon$ and B has minimal rank
Dimensionality reduction

Johnson-Lindenstrauss lemma

Let $N \gg 1$. Given $0 < \epsilon < 1$, a set of m points in \mathbb{R}^N, $n < \frac{8 \log(m)}{\epsilon^2}$, and linear map f from $\mathbb{R}^N \rightarrow \mathbb{R}^n$:

$$(1 - \epsilon)\|u - v\|^2 \leq \|f(u) - f(v)\|^2 \leq (1 + \epsilon)\|u - v\|^2$$

- Not very practical due to dependence on ϵ
- This lemma does not give a recipe how to construct f
Eigenvalues and eigenvectors

- Vector \(s \neq 0 \) is an **eigenvector** of square matrix \(A \) if \(\lambda \) exists:
 \[As = s \]

- \(\lambda \) is an **eigenvalue** corresponding to \(s \)

- If a \(n \times n \) matrix \(A \) has \(n \) eigenvectors \(s_i, i = 1, \ldots, n \), then:
 \[AS = S\Lambda, \text{ where } S = (s_1, \ldots, s_n), \Lambda = diag(\lambda_1, \ldots, \lambda_n) \]

is called eigendecomposition of matrix \(A \)

Not all matrices are diagonalizable, but undirected graphs are
Singular Value Decomposition

Theorem. Any $n \times m$ matrix A can be written as a product:

$$A = U \Sigma V^T$$

where U is $n \times K$ and V is $m \times K$ matrix, $K = \min(m, n)$, Σ is a diagonal matrix with elements $\sigma_1 \geq \cdots \geq \sigma_K$

If $\text{rank}(A) = r$, then $\sigma_{r+1} = \cdots = \sigma_K = 0.$
Singular Value Decomposition

Eckart-Young theorem

The best low-rank approximation can be computed by SVD

More formally, let $r < \text{rank}(A)$, $A_r = U_r \Sigma_r V_r^T$. Then,

$$\min_{\text{rank}(B)=r} \| A - B \|_2 = \| A - A_r \|_2 = \sigma_{r+1}$$

The same holds for $\| \cdot \|_F$, and $\| A - A_r \|_F = \sqrt{\sigma_{r+1}^2 + \cdots + \sigma_K^2}$
Singular Value Decomposition

Singular value decay
Quiz: which is better?
Any Questions?