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d is the largest eigenvalue of A
§ G is d-regular	connected,	A is	its	adjacency	matrix
§ Claim:	

• d is	largest	eigenvalue	of A,	
• d has	multiplicity	of	1	(there	is	only	1	eigenvector	associated	with	eigenvalue d)

§ Proof:	Why	no	eigenvalue	𝒅" > 𝒅?
• To	obtain	d we	need	𝒙𝒊 = 𝒙𝒋 for	every	𝑖, 𝑗
• This	means	𝒙 = 𝑐 ⋅ (1,1, … , 1) for	some	const.	𝑐
• Define: 𝑺 =	nodes	𝒊 with	maximum	possible	value	of	𝒙𝒊
• Then	consider	some	vector	𝒚 which	is	not	a	multiple	of	vector	(𝟏, … , 𝟏).	So	not	
all	nodes	𝒊 (with	labels 𝒚𝒊 )	are	in	𝑺

• Consider	some	node	𝒋 ∈ 	𝑺 and	a	neighbor	𝒊 ∉ 𝑺 then	
node	𝒋 gets	a	value	strictly	less	than	𝒅

• So	𝑦	is	not	eigenvector!	And	so	𝒅 is	the	largest	eigenvalue!
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Facts about the Laplacian L

(a) All	eigenvalues	are	≥ 0
(b) 𝑥;𝐿𝑥 = ∑ 𝐿>?𝑥>𝑥?�

>? ≥ 0 for	every	𝑥
(c) 𝐿	 = 	𝑁; ⋅ 𝑁
• That	is,	𝐿 is	positive	semi-definite

§ Proof:
• (c)Þ(b):	𝑥;𝐿𝑥 = 𝑥;𝑁;𝑁𝑥 = 𝑥𝑁 ; 𝑁𝑥 ≥ 0
⁃ As	it	is	just	the	square	of	length	of	𝑁𝑥 (it’s	a	quadratic	form	of	a	matrix)

• (b)Þ(a):	Let	𝝀 be	an	eigenvalue	of	𝑳.	Then	by	(b) 𝑥;𝐿𝑥 ≥ 0 so	𝑥;𝐿𝑥 = 𝑥;𝜆𝑥 =
𝜆𝑥;𝑥Þ 𝝀 ≥ 𝟎

• (a)Þ(c):	is	also	easy!	Do	it	yourself.

4

Details!

GRAPH MINING WS 2016



λ2 as optimization problem

§ What	else	do	we	know	about	x?
• 𝒙 is	unit	vector:	∑ 𝒙𝒊𝟐 = 𝟏�

𝒊
• 𝒙 is	orthogonal	to	1st eigenvector	(𝟏, … , 𝟏)	thus:	∑ 𝒙𝒊 ⋅ 𝟏�

𝒊 = ∑ 𝒙𝒊�
𝒊 = 𝟎

§ Remember:
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All labelings
of nodes 𝑖 so 
that ∑𝑥> = 0

We want to assign values 𝒙𝒊 to nodes i such 
that few edges cross 0.

(we want xi and xj to subtract each other) 𝑥> 0
x

𝑥?
Balance to minimize
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Proof:

§ Write	𝑥 in	axes	of	eigenvectors	𝑤H,𝑤I,… ,𝑤J of	𝑴.	So,	𝑥 =
∑ 𝛼>𝑤>J
>

§ Then	we	get:	𝑀𝑥 = ∑ 𝛼>𝑀𝑤>�
> = ∑ 𝛼>𝜆>𝑤>�

>

§ So,	what	is	𝒙𝑻𝑴𝒙?
• 𝑥;𝑀𝑥 = ∑ 𝛼>𝑤>�

>
; ∑ 𝛼>𝜆>𝑤>�

> = ∑ 𝛼>𝜆?𝛼?𝑤>𝑤?�
>?

= ∑ 𝛼>𝜆>𝛼>𝑤>𝑤>�
> = ∑ 𝝀𝒊𝜶𝒊𝟐�

𝒊 (since	𝑤> = 1)
• To	minimize	this	over	all	unit	vectors	x	orthogonal	to:	(1,1,..1)
• Well	… if	you	have	to	find	a	vector	orthogonal	to	(1,1,…1)	that	minimizes	the	above	
quantity

• Then,	considering	that	all	the	eigenvectors	are	orthogonal	the	only	choice	is	to	pick	
⁃ 𝛼I = 1, 𝛼P = ⋯ = 𝛼J = 0
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𝝀𝒊𝒘𝒊
= 𝟎 if 𝒊 ≠ 𝒋
1 otherwise
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Approx. Guarantee of Spectral

§ Suppose	there	is	a	partition	of	G into	A and	B	where	 𝐴 ≤ |𝐵|,	
s.t. 𝜶 = (#	YZ[Y\	]^_`	a	b_	c)

a
then	2𝜶 ≥ 𝝀𝟐

• This	is	the	approximation	guarantee	of	the	spectral	clustering.	It	says	the	cut	
spectral	finds	is	at	most	2 away	from	the	optimal	one	of	score	𝜶.

§ Proof:	
• Let:	a=|A|,	b=|B| and	e= #	edges	from	A to	B

• Enough	to	choose	some	𝒙𝒊 based	on	A and B such	that:	𝜆I ≤
∑ efgeh

i

∑ ef
i�

f
≤ 2𝛼

(while	also	∑ 𝑥> = 0�
> )
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𝝀𝟐 is only smaller 
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Approx. Guarantee of Spectral

§ Proof	(continued):	

• 1)	Let’s	set:	𝒙𝒊 = j
− 𝟏
𝒂

+ 𝟏
𝒃

					𝒊𝒇	𝒊 ∈ 𝑨𝒊𝒇	𝒊 ∈ 𝑩

⁃ Let’s	quickly	verify	that	∑ 𝑥> = 0: 	𝑎 − H
t
+ 𝑏 H

v
= 𝟎�

>

• 2)	Then:	
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Which proves that the cost 
achieved by spectral is better 
than twice the OPT cost

e … number of edges between A and B
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Approx. Guarantee of Spectral

§ Putting	it	all	together:

𝟐𝜶 ≥ 𝝀𝟐 ≥
𝜶𝟐

𝟐𝒌𝒎𝒂𝒙
• where	𝑘`te is	the	maximum	node	degree	
in	the	graph
⁃ Note	we	only	provide	the	1st part:	𝟐𝜶 ≥ 𝝀𝟐
⁃ We	did	not	prove	𝝀𝟐 ≥

𝜶𝟐

𝟐𝒌𝒎𝒂𝒙
• Overall	this	always	certifies	that	𝝀𝟐 always	gives	a	useful	bound
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