

Non Overlapping Communities -Proofs and Theory

Davide Mottin, Konstantina Lazaridou

Hasso Plattner Institute

Graph Mining course Winter Semester 2016

Acknowledgements

- Most of this lecture is taken from: <u>http://web.stanford.edu/class/cs224w/slides</u>
- Some other material:
 - https://www.ismll.uni-hildesheim.de/lehre/cmie-11w/script/lecture5.pdf

d is the largest eigenvalue of A

G is **d**-regular connected, **A** is its adjacency matrix

Claim:

- d is largest eigenvalue of A,
- **d** has multiplicity of **1** (there is only **1** eigenvector associated with eigenvalue **d**)

• Proof: Why no eigenvalue d' > d?

- To obtain **d** we need $x_i = x_j$ for every i, j
- This means $\mathbf{x} = c \cdot (1, 1, \dots, 1)$ for some const. c
- Define: S = nodes i with maximum possible value of x_i
- Then consider some vector y which is not a multiple of vector (1, ..., 1). So not all nodes i (with labels y_i) are in S
- Consider some node *j* ∈ *S* and a neighbor *i* ∉ *S* then node *j* gets a value strictly less than *d*
- So y is not eigenvector! And so **d** is the largest eigenvalue!

Facts about the Laplacian L

(a) All eigenvalues are ≥ 0

(b)
$$x^T L x = \sum_{ij} L_{ij} x_i x_j \ge 0$$
 for every x

(c) $L = N^T \cdot N$

• That is, *L* is positive semi-definite

Proof:

• (c)
$$\Rightarrow$$
(b): $x^T L x = x^T N^T N x = (xN)^T (Nx) \ge 0$

- As it is just the square of length of Nx (it's a quadratic form of a matrix)
- (b) \Rightarrow (a): Let λ be an eigenvalue of L. Then by (b) $x^T L x \ge 0$ so $x^T L x = x^T \lambda x = \lambda x^T x \Rightarrow \lambda \ge 0$
- (a)⇒(c): is also easy! Do it yourself.

λ_{2} as optimization problem

What else do we know about x?

- x is unit vector: $\sum_i x_i^2 = 1$
- x is orthogonal to 1^{st} eigenvector (1, ..., 1) thus: $\sum_i x_i \cdot 1 = \sum_i x_i = 0$

• Remember:

$$\lambda_{2} = \min_{\substack{\text{All labelings} \\ \text{of nodes } i \text{ so} \\ \text{that } \sum x_{i} = 0}} \frac{\sum_{(i,j) \in E} (x_{i} - x_{j})^{2}}{\sum_{i} x_{i}^{2}}$$

We want to assign values x_i to nodes *i* such that few edges cross 0. (we want x_i and x_j to subtract each other)

Balance to minimize

Proof:
$$\lambda_2 = \min_x \frac{x^T M x}{x^T x}$$

- Write x in axes of eigenvectors $w_1, w_2, ..., w_n$ of **M**. So, $x = \sum_{i=1}^{n} \alpha_i w_i$
- Then we get: $Mx = \sum_i \alpha_i M w_i = \sum_i \alpha_i \lambda_i w_i$
- So, what is $x^T M x$? $\lambda_i w_i = 0$ if $i \neq j$ 1 otherwise
 - $x^T M x = (\sum_i \alpha_i w_i)^T (\sum_i \alpha_i \lambda_i w_i) = \sum_{ij} \alpha_i \lambda_j \alpha_j w_i w_j$ = $\sum_i \alpha_i \lambda_i \alpha_i w_i w_i = \sum_i \lambda_i \alpha_i^2$ (since $w_i = 1$)
 - To minimize this over all unit vectors x orthogonal to: (1,1,..1)
 - Well ... if you have to find a vector orthogonal to (1,1,...1) that minimizes the above quantity
 - Then, considering that all the eigenvectors are orthogonal the only choice is to pick

-
$$\alpha_2 = 1, \alpha_3 = \dots = \alpha_n = 0$$

Approx. Guarantee of Spectral

- Suppose there is a partition of **G** into **A** and **B** where $|A| \le |B|$, s.t. $\alpha = \frac{(\# \ edges \ from \ A \ to \ B)}{|A|}$ then $2\alpha \ge \lambda_2$
 - This is the approximation guarantee of the spectral clustering. It says the cut spectral finds is at most **2** away from the optimal one of score α .

Proof:

- Let: a=|A|, b=|B| and e= # edges from A to B
- Enough to choose some x_i based on **A** and **B** such that: $\lambda_2 \leq \frac{\sum (x_i x_j)^2}{\sum_i x_i^2} \leq 2\alpha$ (while also $\sum_i x_i = 0$) λ_2 is only smaller

Approx. Guarantee of Spectral

Proof (continued):

• 1) Let's set:
$$x_i = \begin{cases} -\frac{1}{a} & \text{if } i \in A \\ +\frac{1}{b} & \text{if } i \in B \end{cases}$$

- Let's quickly verify that $\sum_i x_i = 0$: $a\left(-\frac{1}{a}\right) + b\left(\frac{1}{b}\right) = \mathbf{0}$

• 2) Then:
$$\frac{\Sigma(x_i - x_j)^2}{\Sigma_i x_i^2} = \frac{\Sigma_{i \in A, j \in B} \left(\frac{1}{b} + \frac{1}{a}\right)^2}{a\left(-\frac{1}{a}\right)^2 + b\left(\frac{1}{b}\right)^2} = \frac{e \cdot \left(\frac{1}{a} + \frac{1}{b}\right)^2}{\frac{1}{a} + \frac{1}{b}} = e\left(\frac{1}{a} + \frac{1}{b}\right) \le e\left(\frac{1}{a} + \frac{1}{a}\right) \le e\left(\frac{1}{a} + \frac{1}{a}$$

Which proves that the cost achieved by spectral is better than twice the OPT cost

Approx. Guarantee of Spectral

Putting it all together:

 $2\alpha \geq \lambda_2 \geq \frac{\alpha^2}{2k}$

- where k_{max} is the maximum node degree in the graph
 - Note we only provide the 1st part: $2lpha \geq \lambda_2$
 - We did not prove $\lambda_2 \geq rac{lpha^2}{2k_{max}}$
- Overall this always certifies that λ_2 always gives a useful bound