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Subgraph Isomorphism - Approaches 

 search problem: find all embeddings of a query graph in a data 

graph 

 NP-hard, but can often be solved efficiently in practice 

 general approach: iteratively map query vertices to data 

vertices -> ordering very important 

 but finding optimal order is NP-hard as well… 
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Query Vertex Ordering 
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Core-Forest-Leaf Decomposition 

A 

B C 

u1 

u5 u2 

B C 

D 

u5 u2 

u3 

D 

F 

u3 

u4 

C 

E 

u5 

u6 

 Core: dense subgraph of Query Graph 

 

 

 Forest: number of trees connected to 

Core via one vertex 

 

 Leafs: leafs of trees in the Forest 

structure 
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Core-Forest-Leaf Decomposition 
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Compact Path Index – Idea 
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Compact Path Index - Construction 

 criteria for data vertices in candidate set of a query vertex: 

1. matching label 

2. neighbor in candidate set of each already processed 

neighbor query vertex 
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Compact Path Index – Construction 
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Compact Path Index – Construction 
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Compact Path Index - Application 
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Compact Path Index - Application 

 matching sequence: start with P1 = (u1, u2), add P2 = (u1, u5) 

  → S = (u1, u2, u5) 

 iteratively map query vertices to candidates in the index, 

check data graph for non-tree edges 
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Improved Query Vertex Ordering 
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Evaluation 

 compared to QuickSI and TurboISO 

 several datasets of varying size (3 000 – 1 000 000 nodes) 

 real Protein Interaction Networks 

 synthetic graphs 

 several generated queries of varying size (25 – 200 nodes) 
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Evaluation 

 

 

 

 

 

 
 

 → faster by multiple orders of magnitude 
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Introduction

Link Prediction

Network consisting of nodes and edges

Between which two nodes will new edges (links) be created?
[In a specific timeframe]
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Introduction

Challenges

Motivation

Author working at Facebook - motivation obvious

Every new Link (Friendships, etc.) is increasing Network value

Challenges of real Networks

Extremely sparse

Facebook has nearly 2 billion users, how many friends do you have?
To predict that no new Links will be create is nearly 100% accurate!

What network features have an influence on the creation of new links?
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Introduction

Present Work

Method for link prediction and recommendation with supervised
random walks

Combines network structure and network properties

PageRank-like random walk that visits given nodes (positive training
examples) more often

LEARN edge strength (transition probabilities)
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Supervised Random Walks

Random Walks

Random Walks!
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Supervised Random Walks

Transition Matrix

Probability after one step:0.7 0.3 0.0
0.3 0.4 0.3
0.0 0.3 0.7

 ·
1

0
0
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0.3
0.0


Stationary Probability:0.7 0.3 0.0

0.3 0.4 0.3
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 ·
1/3
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1/3
1/3


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Supervised Random Walks

Overview

Given is a graph G

Starting from a single node s with already existing Links and for
which new links should be predicted

Also required is a set of ”positive” and ”negative” training Nodes

General approach - can also be used for link prediction,
recommendation, link anomaly detection, missing link prediction, etc.
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Supervised Random Walks

Approaches

We have two general approaches for this problem:

As Classification task:

Each candidate node is either a created Link in the training data
(positive example), or not (negative example)
But: Has high class imbalance, which makes learning very hard!
How to take the structure of the Network into account?
And: The choice and extraction of useful features is very hard!
There are countless ways to describe node proximity alone!

As Ranking Task:

Give Nodes with new created Links a higher Score
For Example PageRank and Random Walks with Restarts (RWR) are
used
Stationary Distribution of a Random Walk gives a measure of
”closeness”
Takes the structure into account, but not the properties
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Supervised Random Walks

This Approach

Combination of Both Approaches - Uses Network Structure and Node
and Edge Properties

Idea: Control a RWR via its transisiton properties to visit positive
training nodes more often than the negative training nodes

Trivial Approach by setting the transition properties manually would
massively overfit

Solution: Find transition properties depending on node and edge
properties via a learning algorithm!
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Supervised Random Walks

Problem Formulation

Given

Directed Graph: G(V, E)
Start node: s
Set of candidate nodes: C = ci = D ∪ L
Set of destination nodes (positive training examples): D = di
Set of no-link nodes (negative training examples): L = li
Feature Vector for each Edge (u, v): ψuv

Includes the Properties of both, the Nodes and the Edge!

Find

Edge Strength: auv
Used as transition probability

Use

Learned Function in Training phase fw (ψuv )
w: vector of weights
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Supervised Random Walks

Predicting Process

We take a source node for which we want to predict future links

For each Edge (u, v) in G we compute the strength auv = fw (ψuv)

Then a RWR is run and stationary distribution assigns every node u a
probability value pu

Nodes are ordered by pu values - highest values are predicted as
destinations for future links

→ Weights must be learned!
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Supervised Random Walks

Optimization Problem

minw F (w) = ||w ||2 + λ
∑

d∈D,l∈L h(pl − pd)

Minimization Problem!

pd should be higher than pl

h(): loss function - measures how ”bad” the current prediction is in
form of a penalty

||w ||2: second norm of the weight vector - smaller values are wanted!

λ: trade-off between the loss and the weights vector
A high λ means that the loss is more important than small weights,
used to prevent overfitting to the data

But how do we come from the input (w) to the measurable output
(p)?
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Supervised Random Walks

Optimization Problem

Set a start value of w

For each edge (u,v) calculate the edge transition auv = f (ψuv )

Build the random walk transition probability matrix Q

Incorporate the restart probabability α into Q

Find the vector p of the node probabilities (also known as Personalized
PageRank) via a eigenvalue problem (or stationary distribution)

This process can be written as a single formula

The derivation of this formula is used for a iterative calculation to
converge to the p vector (gradient descent method)

”If I change the weight values like this, is the final result (F(w))
better (smaller)?”

Note: This problem is not generally convex - no global minimum is
guaranteed!
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Experimental Setup

Network

4 physics co-authorship networks,
complete Facebook network of Iceland

Iceland has a very high Facebook penetration
Relatively few Edges link to users from other countries
Timeframe from Nov 1st 2009 (t1) to Jun 13th 2010 (t2)
More than 174.000 users, about 55% of Icelands population
On average 168 friends at t1 and 26 new friends until t2

Focus on predicting Links to Nodes that are 2 hops away

Empirically most new Links close a triangle
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Experimental Setup

Preprocessing

Only ”active” Nodes with more than 20 Links

Candidate Nodes that have less than 4 common friends have been
pruned
Empirically shown that it is very unlikely that they would become
friends

Nodes with too many links have been pruned
Even after just 2 hops some nodes can have several millions
neighbours

These measure speed up the computation but do not influence the
prediction performance much

Ronny Pachel – Uni Potsdam Supervised Random Walks Feb 07th 2017 18 / 28



Experimental Setup

Learner Setup

From these users, 200 have been randomly selected, 100 as training
set to learn the algorithm, and 100 as test set to measure the
performance

These Properties have been used to generate 7 Features:

Edge Age
Edge Initiator
Communication and Observation Features
Number of Common Friends

Two performance metrics have been used:

AUC - Area under ROC curve
Prec@20 - Precision at the Top 20
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Experiments on Facebook Data
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Experiments on Facebook Data

Algorithm

We need to choose 4 aspects of the algorithm:

Loss Function

Edge Strength Function

Choice of RWR Restart Parameter α

Choice of Regularization Parameter λ
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Experiments on Facebook Data

Loss Function

Must be continuous and differentiable to optimize over them

candidates:

Squared loss with margin b:
h(x) = max{x + b, 0}2
Huber Loss with margin b and window z ¿ b:

h(x) =


0 if x ≤ −b,
(x + b)2/(2z) if − b < x ≤ z − b,

(x + b)− z/2 if x > z − b

Wilcoxon-Mann-Whitney (WMW) loss with width b:
h(x) = 1

1+exp(−x/b)

Squared loss and Huber loss can be computed easier

WMW has a slightly better performance

But: Only WMW increases the AUC and Prec@20!
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Experiments on Facebook Data

Strength Function

fw (ψuv) must be non-negative and differentiable

Two candidates, both are basing on the inner product of the weight
vector and the feature vector

candidates:

Exponential edge strength: auv = exp(ψuv · w)
Logistic edge strength: auv = (1 + exp(−ψ · w))−1

Experiments show no significant difference in performance

But the exponential function has a potential problem with
underflowing or overflowing double precision numbers
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Experiments on Facebook Data

Choice of α

α controls ”how far a walk wanders before it’s reset”

α = 0 : PageRank of a node is it’s degree

α = 1 : After one hop the walk is reset

Big values are short and local walks, low values are long

Have a influence in unweighted graphs, but with edge strengths
assigned the influence diminishes

Empirically 0.3 < α < 0.7 has same performance
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Experiments on Facebook Data

Choice of λ

Overfitting is not an issue

And number of features is small

We chose a λ of 1
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Experiments on Facebook Data

Results

SRW with all weights w = 0 as starting point

Compared to two unsupervised methods (RWR, node degree) and two
supervised machine learning methods (decision trees and logistic
regression)
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Conclusion

Conclusions

Supervised Random Walks - a new learning algorithm for link
prediction and recommendation

Combines two different approaches that see the problem either as
classification task or as ranking task

Demonstrated on real Facebook data

Predictions show large improvements over RWR and easier than
classical machine learning approaches

SRW can be adopted to many other problems
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What is this paper about?

Domain:

▶ Network of susceptible nodes.

▶ Trust and Distrust Relationships

▶ Diffusion Model: Independent Cascade

Problem:

▶ Starting seed-set of size m with the highest expectation of nodes
colored red

Signed Network Influence Maximization (SiNiMax) Problem→ NP-hard
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What is this paper about?
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Signed Networks with competing Cascades

▶ Weighted, directed and signed graph G = (V,E,W )

▶ Weight Matrix W :
▶ sign represents trust or distrust relationships.
▶ Absolute value denotes strength of influence.
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Signed Networks with competing Cascades

▶ Two influnce diffusion processes spreading in discrete time steps
▶ Using the standard Independent Cascade Model (ICM)

▶ Infected node v gets one chance to infect neighbour w with
probability pv,w

▶ On success w becomes infected at step t+ 1.
▶ Infected nodes never return to susceptible state.

0.2

0.9

0.9

0.3

−0.7

−0.1
−0.8

5 / 12



Signed Networks with competing Cascades

▶ Two influnce diffusion processes spreading in discrete time steps
▶ Using the standard Independent Cascade Model (ICM)

▶ Infected node v gets one chance to infect neighbour w with
probability pv,w

▶ On success w becomes infected at step t+ 1.
▶ Infected nodes never return to susceptible state.

0.2

0.9

0.9

0.3

−0.7

−0.1
−0.8

5 / 12



Signed Networks with competing Cascades

▶ Two influnce diffusion processes spreading in discrete time steps
▶ Using the standard Independent Cascade Model (ICM)

▶ Infected node v gets one chance to infect neighbour w with
probability pv,w

▶ On success w becomes infected at step t+ 1.
▶ Infected nodes never return to susceptible state.

0.2

0.9

0.9

0.3

−0.7

−0.1
−0.8

5 / 12



Signed Networks with competing Cascades
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Help of the Unified Model

▶ Reduces computational cost for commonly used diffusion models.

▶ Using: Individual and Collective Influence.

▶ For ICM:

p(v,u)(t) = 0

ru,t = 1− P (no infected neighbor succeeds)

ru,t = 1−
∏

v∈Ni(u)

(1− p(Bv,t−1))

. . .
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Unified Model of Competing Cascades

▶ r+u,t = Collective influence on u to be red.

▶ r−u,t = Collective influence on u to be blue.

▶ B+
u,t = Probability of u being red at or before time t.

▶ B−
u,t = Probability of u being blue at or before time t.

▶ B+
u,t(k,+) = Probability of node u being colored red at time t if

node k is infected with red at time t− 1.
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Online Seed-set Selection using the Unified Model for
Signed Networks: OSSUM±

Algorithm 1 pseudocode for OSSUM±
Input: G,m
Output: S

1: S ← ∅
2: for t = 1 to m do
3: (k, c) = argmax(k,c)

∑
u(B

+
u,t(k, c)−B+

u,t)
4: S ← S ∪ (k, c)
5: end for

Runtime Complexity: O(m(|V |+ |E|))
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Experiment Results

Comparison of OSSUM± to three other heuristics:

▶ Positive Degree: Nodes with highest positive degree are selected

▶ Positive Degree Discount: Variation of Positive Degree

▶ Effective Degree: Nodes with highest effective degree are
selected

Data Set:

Epinions Slashdot
# nodes 131k 82k
# edges 840k 550k
# positive edges 710k 425k
# negative edges 130k 125k
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Experiment Results
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Experiment Results
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Review

Positive:

▶ Introduced novel influence maximization problem SiNiMax

▶ OSSUM± outperforms state-of-the-art heuristics for influence
maximization

▶ Application to real world data

Negative:

▶ Inaccuracies in description of method (missing edge cases)

▶ Unproven claim of extensaibility of this approach

▶ Real world data had to be modified to show advantage of
OSSUM±
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Top-k Link Recommendation
in Social Graphs
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3. Evaluate the algorithm using various datasets 
and metrics

4. ???
5. Profit

TODO List:
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Predictions for user 4:

Ground truth: (1,4),(2,4),(3,4),(4,5),(4,6)

Example prediction 1: (2,4),(3,4),(4,5),(1,4),(4,6)
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Example prediction 2: (2,4),(4,5),(3,4),(1,4),(4,6)

Prediction 1: 0 + 0 + 1
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Predictions for user 4:

Ground truth: (1,4),(2,4),(3,4),(4,5),(4,6)

Example prediction 1: (2,4),(3,4),(4,5),(1,4),(4,6)
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6

Example prediction 2: (2,4),(4,5),(3,4),(1,4),(4,6)

Prediction 1: 0 + 0 + 1

Prediction 2: 0 + 1 + 1
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Sources
Dongjin Song, David A. Meyer, Dacheng Tao, "Top-k Link Recommendation in Social Networks", 2015 IEEE 
International Conference on Data Mining (ICDM), vol. 00, no. , pp. 389-398, 2015, doi:10.1109/ICDM.2015.136
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Structural Graph Clustering
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v4 v5 v6
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Cluster

Hub

Outlier
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Principles of SCAN

Improvements of pSCAN

Experimental Results
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Principles of SCAN

Graph G = (V,E)

Structural Neighborhood:

Nu = {v ∈ V |(u, v) ∈ E} ∪ {u}
du = |Nu|
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v4 v5 v6

v7

v8

v9

v10

Vertex u

Neighborhood Nu
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Principles of SCAN

Structural Similarity:

σ(u, v) =
|Nu ∩Nv|√
du · dv

v1
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v3

v4 v5 v6

v7

v8

v9

v10

Neighborhood Nu

Neighborhood Nv

Nu ∩Nv

σ(v6, v5) =
2√
3·4 ≈ 0.57
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Principles of SCAN

Similarity Threshold and Core Vertices:

N ε
u = {v ∈ Nu|σ(u, v) ≥ ε}

V C = {v ∈ V |N ε
v ≥ µ}
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Principles of SCAN

Structure Reachability:

u is structure reachable by v if there is a Path of ε-edges and intermediate core vertices

Cluster C ⊆ V such that all Vertices v ∈ C are mutually structure reachable and no
Vertex x ∈ V \ C is structure reachable by any Vertex in C
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v4 v5 v6

v7

v8

v9

v10

Core Vertex

ε-edge

ε = 0.7

µ = 4
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Principles of SCAN

Algorithm:

SCAN requires structural similarity calculation along all edges in G

⇒ equivalent to enumeration of all triangles in G

complexity of O(|E|1.5) which is worst case optimum
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Improvements of pSCAN

Paradigm:

1 cluster core vertices

2 expand clusters by core vertices’ structural neighborhood

Effective Degree and Similar Degree:

vertex u ∈ V with incomplete similarity measures in its neighborhood

effective degree: deu = du − x where x is the number of neighbors v ∈ V with σ(u, v) < ε
known

similar degree: dsu number of neighbors v ∈ V with σ(u, v) ≥ ε known

⇒ deu and dsu provide an upper and lower bound for |N ε
u|

calculate structural neighborhoods for vertices in non-increasing de-order

update de and ds for every calculated σ; omit neighborhood calculation if de or ds are
sufficient to identify core vertex
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Improvements of pSCAN
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Improvements of pSCAN
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Improvements of pSCAN
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Improvements of pSCAN
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Improvements of pSCAN
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Improvements of pSCAN
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Improvements of pSCAN
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Improvements of pSCAN
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Experimental Results

Algorithms:

SCAN

SCAN++ (approximative version of SCAN omitting some similarity calculations)

pSCAN (5 variants with different degrees of optimization)

Data:

13 real world networks (13k to 1.2G edges)

11 generated networks with varying characteristics
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Experimental Results

∼ 1 order of magnitude faster than either SCAN or SCAN++
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Clustering Large Probabilistic 
Graphs
Marianne Thieffry
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1. Definition of pClusterEdit
2. Algorithms for pClusterEdit
3. Generalizations of pClusterEdit



Definition of pClusterEdit



Probabilistic Graphs
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Cluster graphs



Edit distance

# edges added + # edges removed



Edit distance

# edges added + # edges removed

[between all deterministic instances of a given probabilistic graph
and a given deterministic graph ]



pClusterEdit
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[while minimizing 
the edit distance]



pClusterEdit



CorrelationClustering



CorrelationClustering



CorrelationClustering



Algorithms for pClusterEdit



pKwikCluster
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pKwikCluster

0.8



pKwikCluster

O(m)



Furthest
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Furthest
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Furthest
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Furthest

O(nk²)



Agglomerative

Singleton clusters

Merge clusters with highest average edge probability, until highest average 
edge probability is at most 0.5

Complexity O(kn log n)
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pKwikCluster

O(kn log n)



Significance



Evaluation - CORE dataset

● protein-protein interaction network
● 2708 nodes
● 7123 edges



Evaluation - CORE dataset
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Evaluation - CORE dataset



Generalizations of pClusterEdit



Noisy cluster graphs



p2ClusterEdit & minα

● Find α-cluster with minimal edit distance
● Find α that produces minimum α-cluster with minimal edit distance



The shortest Path is not always a straight line 
From Vasiliki Kalavri, Tiago Simas & Dionysios Logothetis

Philippe ZOU 
Graph Mining - WS 2016/2017  
Davide Mottin & Konstantina Lazaridou 1



Agenda
1. Overview 

2. Implementation

3. Evaluation

4. Conclusion
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Motivations
● Leverage the Backbone metric 

● “The Blackbone metric is the minimum subgraph that preserves the shortest 
paths of a weighted graph”

 
● Improve graph analysis tools and computing performance

○ Large graph 
○ reduce running time and storage
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Backbone Metric
For instance, in the example they give : 
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Concept of semi-metricity
An edge is semi-metric if you can find an indirect shorter path between the edges.

Let consider the previous graph 
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Concept of semi-metricity
An edge is semi-metric if you can find an indirect shorter path between the edges.

Let consider the previous graph 
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3 + 2 + 1 = 6 < 10
AD is semi-metric

(same for the node CE)



Concept of semi-metricity
Semi-metricity Degree : number of edges to add to reach the shortest path 
compared to the original (straight) one
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AD will be 2nd order 

(and CE will be 1st order)



Concept of semi-metricity
Performed an analysis on data sets
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Implementation
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Backbone algorithm
● 3 phases

○ Find 1st order semi-metric edges
■ Only look at triangles
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Backbone algorithm
● 3 phases

○ Find 1st order semi-metric edges
■ Only look at triangles
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Backbone algorithm
● 3 phases

○ Focus on 2nd order semi-metric edges
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Backbone algorithm
● 3 phases

○ Focus on 2nd order semi-metric edges
■ Lowest weight edge of every node is metric
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Backbone algorithm
● 3 phases

○ Breadth first search
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Backbone algorithm
● 3 phases

○ Breadth first search
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Backbone algorithm
● 3 phases

○ Breadth first search
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    ?
Target reached but with a shorter 
path -> Semi-metric edge



Backbone algorithm
● 3 phases

○ End of algorithm
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Evaluation
20



Execution time for phase 1
Execution time for finding triangles + removal 1st order semi-metric
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Execution time for phase 1
Increase linearly.

15 Minutes for 4 Billions edges.
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Storage
Size reduction of the network after removal
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Conclusion
24



Conclusion
● Provide a new concept in graphs : semi-metricity

● Algorithm to lower the number of edges in order to improve computation and 
reduce time

○ show that direct nodes are not necessarily the shortest ones

● Challenge the large graphes issue
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