Solving Substitution Ciphers for OCR with a Semi-supervised Hidden Markov Model

Erik Scharwächter
Stephan Vogel
Problem

- Variety of fonts, writing styles
- Commercial OCR system fails
- Training shapes for every document infeasible

Images: QNLib, ALTEC

Tirana Observer
Unsupervised OCR

• No shape training
• View OCR as cryptanalysis problem

General procedure

1. Perform segmentation into words and characters
2. Cluster character images by shape similarity
3. Generate ciphertext from cluster identifiers
4. Solve resulting substitution cipher
Step 1: Character segmentation

The text is in Arabic and discusses the migration of Arab Muslims from the Arabian Peninsula, mentioning their countries of residence and the regions they migrated to, such as Spain and Italy. The text also talks about the consequences of their migration on their cultures and the regions they settled in.
Step 2: Clustering

Challenge in Arabic: up to 4 different shapes per character
Step 2: Clustering

Challenge in Arabic: up to 4 different shapes per character
Step 2: Clustering

Challenge in Arabic: up to 4 different shapes per character

different shapes (initial and medial)

same shape (medial)
Step 2: Clustering

Challenge in Arabic: up to 4 different shapes per character

- Different shapes (initial and medial)
- Same shape (medial)
- Different characters (alif, lam) and shapes
Step 3: Generate ciphertext

61 10 11 18 53 57 36 58 70 62 51 68 26 13 54 3 75 56 60 35 65 65 11 47 28 19 2 47 36 2 17 58 43 17 7 61 63 44 40 46 44 59 70 62 55 2 40 46 67 55 70 25 70 3 24 59 48 51 9 20 61 1 50 46 33 55 8 63 41 34 38 4 32 6 4 5 6 2 35 58 2 5 21 50 61 63 77 40 46 7 67 31 78 3 49 2 40 48 65 59 8 56 60 21 17 67 11 70 33 30 6 55 62 16 78 6 58 30 17 65 11 62 33 73 68 53 36 11 64 65 11 75 60 21 58 55 70 50 46 65 62 33 14 24 45 54 5 37 62 65 60 17 4 32 64 55 29 71 36 50 71 32 75 2 25 71 1 49 32 55 43 19 54 6 58 43 21 77 25 62 64 65 66 62 33 73 68 53 10 61 65 6 68 26 71 5 52 3 68 53 46 41 11 61 10 61 20 61 10 11 68 26 16 63 36 19 70 55 11 68 26 7 19 62 54 39 8 68 53 16 63 17 4 11 27 22 27 15 9 20 56 58 70 62 51 68 26 16 34 74 70 3 23 47 46 7 59 11 30 47 35 44 6 62 20 69 40 74 52 1 6 30 46 40 33 65 61 47 20 6 58 68 70 71 67 76 6 25 16 65 6 76 62 46 41 6 62 64 17 32 58 2 65 46 7 27 64 37 10 59 55 50 46 65 62 33 73 31 40 4 38 5 57 62 54 20 70 13 80 20 25 5 63 46 10 58 6 30 38 5 65 61 71 6 68 53 65 71 44 73 70 62 14 46 1 54 62 32 40 20 31 45 16 57 36 70 27 57 71 74 11 37 28 46 6 38 5 65 49 22 62 15 70 16 54 3 75 56 30 35 65 27 17 76 24 23 5 65 61 71 6 68 26 65 31 68 70 65 11 62 14 66 30 33 25 40 6 38 35 7 27 19 38 13 3 8 58 80 71 65 24 68 70 61 33 11 68 26 21 44 62 58 2 61 13 63 5 62 25 29 21 65 30 35 4 61 36 58 70 62 51 68 53 46 50 6 62 39 2 40 21 44 27 17 15 62 14 19 42 44 19 62 64 65 42 55 76 42 3 69 42 3 39 61 5 35 25 25 79 64 35 51 8 62 71 27 35 67 73 70 62 14 71 1 57 62 54 39 31 40 6 38 28 18 8 37 38 16 65 75 52 63 44 60 46 46 7 61 51 60 50 46 44 24 68 70 6 38 35 12 11 30 64 71 7 8 62 14 64 65 59 27 34 21 71 41 73 55 49 11 49 2 11 69 72 4 70 55 19 72 22 44 61 57 44 40 46 67 76 24 27 3 49 2 72 48 8 44 19 70 21 51 8 62 65 60 15 70 6 38 6 61 51 32 68 70 65
Step 4: Deciphering with HMMs

- Estimate emission probabilities with EM
- Compute Viterbi hypothesis for plaintext sequence
Our approach: Semi-supervised HMM

- Full manual deciphering is laborious
- What about: one line, paragraph, page of a book…?
- Idea: manually uncover some hidden states

![Diagram](image)

- Perform EM and Viterbi on remaining hidden states
- How much ground-truth data do we need?
Increasing complexity of ciphers

• **One-to-one cipher**
 Single cluster for each character

• **Many-to-one cipher**
 Cluster for each shape of a character

• **Many-to-many cipher**
 Clusters with mix of shapes and characters
Experimental setup

ALTEC data
- 1 page, 18 lines
- 700 chars, punctuation
- 36+5(+5) target symbols
- 1:1, N:1, N:M

Quran data
- 500 lines
- 42,170 chars, no punctuation
- 36 target symbols
- 1:1, N:1

Character language model (2-gram, 3-gram)
- MADCAT Phase 1 (news articles)
- 18,096 lines
- 792,764 characters
Building ciphers of different complexity

- **One-to-one cipher**
 Artificial: take plaintext as ciphertext

- **Many-to-one cipher**
 Artificial: simulate clustering into shapes

- **Many-to-many cipher**
 Outlined OCR approach: manual segmentation, PCA (95%), k-Means (80)
CER on ALTEC data

... after 20 iterations of EM

<table>
<thead>
<tr>
<th>ALTEC</th>
<th>1:1</th>
<th>N:1</th>
<th>N:M</th>
</tr>
</thead>
<tbody>
<tr>
<td>unsupervised</td>
<td>36.1</td>
<td>50.2</td>
<td>56.8</td>
</tr>
<tr>
<td>semi-supervised, 1 line</td>
<td>18.6</td>
<td>38.5</td>
<td>51.9</td>
</tr>
<tr>
<td>semi-supervised, 2 lines</td>
<td>13.0</td>
<td>31.2</td>
<td>46.4</td>
</tr>
<tr>
<td>semi-supervised, 4 lines</td>
<td>4.8</td>
<td>21.2</td>
<td>36.2</td>
</tr>
<tr>
<td>semi-supervised, 8 lines</td>
<td>2.0</td>
<td>13.0</td>
<td>24.7</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>2-gram</th>
<th>unsupervised</th>
<th>12.4</th>
<th>47.9</th>
<th>48.9</th>
</tr>
</thead>
<tbody>
<tr>
<td>semi-supervised, 1 line</td>
<td>9.5</td>
<td>32.8</td>
<td>44.2</td>
<td></td>
</tr>
<tr>
<td>semi-supervised, 2 lines</td>
<td>8.5</td>
<td>27.8</td>
<td>39.8</td>
<td></td>
</tr>
<tr>
<td>semi-supervised, 4 lines</td>
<td>8.4</td>
<td>14.1</td>
<td>25.9</td>
<td></td>
</tr>
<tr>
<td>semi-supervised, 8 lines</td>
<td>5.5</td>
<td>10.8</td>
<td>19.6</td>
<td></td>
</tr>
</tbody>
</table>

Number of ground-truth lines in training

- One-to-one (bi)
- Many-to-one (bi)
- Many-to-many (bi)
- One-to-one (tri)
- Many-to-one (tri)
- Many-to-many (tri)
CER on Quran data

… after 20 iterations of EM

<table>
<thead>
<tr>
<th>Quran</th>
<th>1:1</th>
<th>N:1</th>
</tr>
</thead>
<tbody>
<tr>
<td>unsupervised</td>
<td>19.0</td>
<td>53.3</td>
</tr>
<tr>
<td>semi-supervised, 1 line</td>
<td>17.0</td>
<td>52.0</td>
</tr>
<tr>
<td>semi-supervised, 5 lines</td>
<td>13.1</td>
<td>49.9</td>
</tr>
<tr>
<td>semi-supervised, 10 lines</td>
<td>4.2</td>
<td>46.0</td>
</tr>
<tr>
<td>semi-supervised, 25 lines</td>
<td>2.1</td>
<td>34.6</td>
</tr>
<tr>
<td>semi-supervised, 50 lines</td>
<td>2.1</td>
<td>24.2</td>
</tr>
<tr>
<td>semi-supervised, 100 lines</td>
<td>2.1</td>
<td>15.1</td>
</tr>
<tr>
<td>semi-supervised, 250 lines</td>
<td>0.4</td>
<td>6.2</td>
</tr>
</tbody>
</table>

Still high CER values for many-to-one case, although we have...
• longer ciphertext
• less target symbols
CER on Quran data

... after 20 iterations of EM

<table>
<thead>
<tr>
<th>Quran</th>
<th>1:1</th>
<th>N:1</th>
</tr>
</thead>
<tbody>
<tr>
<td>unsupervised</td>
<td>19.0</td>
<td>53.3</td>
</tr>
<tr>
<td>semi-supervised, 1 line</td>
<td>17.0</td>
<td>52.0</td>
</tr>
<tr>
<td>semi-supervised, 5 lines</td>
<td>13.1</td>
<td>49.9</td>
</tr>
<tr>
<td>semi-supervised, 10 lines</td>
<td>4.2</td>
<td>46.0</td>
</tr>
<tr>
<td>semi-supervised, 25 lines</td>
<td>2.1</td>
<td>34.6</td>
</tr>
<tr>
<td>semi-supervised, 50 lines</td>
<td>2.1</td>
<td>24.2</td>
</tr>
<tr>
<td>semi-supervised, 100 lines</td>
<td>2.1</td>
<td>15.1</td>
</tr>
<tr>
<td>semi-supervised, 250 lines</td>
<td>0.4</td>
<td>6.2</td>
</tr>
</tbody>
</table>

2% of lines

50% of lines

Still high CER values for many-to-one case, although we have...
- longer ciphertext
- less target symbols
Conclusion

- Works well for one-to-one ciphers
- Many-to-one/many ciphers need a lot of ground-truth

Future Work
- Compare with other deciphering approaches
- Higher-order language models, in-domain data
- Assign ground-truth to „hard instances“
- Joint model for clustering and deciphering

Thank you for your attention!