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Abstract
Correlation analysis is one of the key elements
of statistics, and has various applications in data
analysis. Whereas most existing measures can
only detect pairwise correlations between two di-
mensions, modern analysis aims at detecting cor-
relations in multi-dimensional spaces.

We propose MAC, a novel multivariate corre-
lation measure designed for discovering multi-
dimensional patterns. It belongs to the powerful
class of maximal correlation analysis, for which
we propose a generalization to multivariate do-
mains. We highlight the limitations of current
methods in this class, and address these with
MAC. Our experiments show that MAC outper-
forms existing solutions, is robust to noise, and
discovers interesting and useful patterns.

1. Introduction
In data analysis we are concerned with analyzing large and
complex data. One of the key aspects of this exercise is to
be able to tell if a group of dimensions is mutually corre-
lated. The ability to detect correlations is essential to very
many tasks, e.g., feature selection (Brown et al., 2012),
subspace search (Nguyen et al., 2013), multi-view acoustic
feature learning for speech recognition (Arora & Livescu,
2013; Andrew et al., 2013), causal inference (Janzing et al.,
2010), and subspace clustering (Müller et al., 2009).

In this paper, we specifically target at multivariate corre-
lation analysis, i.e., the problem of detecting correlations
among two or more dimensions. In particular, we want to
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detect complex interactions in high dimensional data. For
example, genes may reveal only a weak correlation with a
disease if each gene is considered individually, while when
considered as a group of genes the correlation may be very
strong (Zhang et al., 2008). In such applications pairwise
correlation measures are not sufficient as they are unable to
detect complex interactions of a group of genes.

Here we focus on maximal correlation analysis. It does
not require assumptions on the data distribution, can de-
tect non-linear correlations, is very efficient, and robust to
noise. Maximal correlation analysis is our generalization of
a number of powerful correlation measures that, in a nut-
shell, discover correlations hidden in data by (1) looking at
various admissible transformations of the data (e.g., dis-
cretizations (Reshef et al., 2011), measurable mean-zero
functions (Breiman & Friedman, 1985)), and (2) identi-
fying the maximal correlation score (e.g., mutual infor-
mation (Reshef et al., 2011), Pearson’s correlation coeffi-
cient (Breiman & Friedman, 1985)) correspondingly.

The key reason these measures first transform the data
is that otherwise only simple correlations can be de-
tected: kernel transformations allow non-linear structures
to be found that would go undetected in the original data
space (Breiman & Friedman, 1985; Hardoon et al., 2004).
In contrast, more complex measures such as mutual infor-
mation can detect complex interactions without transfor-
mation, at the expense of having to assume and estimate the
data distribution (Yin, 2004). Reshef et al. (2011) showed
that instead of making assumptions, we should use the dis-
cretizations that yield the largest mutual information.

All these existing proposals, however, focus on pairwise
correlations: Their solutions are specific for discover-
ing correlations in two dimensions. While the search
space of optimizing the transformations, e.g., discretiza-
tions (Reshef et al., 2011), is already large in this basic
case, it grows exponentially with the number of dimen-
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sions. Hence, existing methods cannot straightforwardly
be adapted to the multivariate setting, especially as their
optimization heuristics are designed for pairwise analysis.

We address this problem by proposing Multivariate
Maximal Correlation Analysis (MAC), a novel approach
to discovering correlations in multivariate data spaces.
MAC employs a popular generalization of the mutual in-
formation called total correlation (Han, 1978), and discov-
ers correlation patterns by identifying the transformations
(e.g., discretizations in our case) of all dimensions that
yield the maximal total correlation. While naive search
for the optimal discretizations has issues regarding both ef-
ficiency and quality, we propose an efficient approximate
algorithm that yields high quality. Our contributions are:
(a) a generalization of Maximal Correlation Analysis to
more than two dimensions, (b) a multivariate correlation
measure for complex non-linear correlations without distri-
bution assumptions, and (c) a simple and efficient method
for estimating MAC that enables multivariate maximal cor-
relation analysis. Note that MAC measures correlation for
a given set of dimensions. To detect correlated sets one can
use MAC in, e.g., subspace search frameworks (Nguyen
et al., 2013) as used in our experiments.

2. Maximal Correlation Analysis
Definition 1 The maximal correlation of real-valued ran-
dom variables {Xi}di=1 is defined as:

CORR∗(X1, . . . , Xd) = max
f1,...,fd

CORR(f1(X1), . . . , fd(Xd))

with CORR being a correlation measure, fi : dom(Xi) →
Ai being from a pre-specified class of functions, Ai ⊆ R.

That is, maximal correlation analysis discovers correlations
in the data by searching for the transformations of the Xi’s
that maximize their correlation (measured by CORR). Fol-
lowing Definition 1, to search for maximal correlation, we
need to solve an optimization problem over a search space
whose size is potentially exponential to the number of di-
mensions. The search space in general does not exhibit
structure that we can exploit for an efficient search. Thus, it
is infeasible to examine it exhaustively, which makes maxi-
mal correlation analysis on multivariate data very challeng-
ing. Avoiding this issue, existing work focuses on pairwise
maximal correlations. More details are given below.

Instantiations of Def. 1. Breiman & Friedman (1985)
defined the maximal correlation between two real-
valued random variables X and Y as ρ∗(X,Y ) =
maxf1,f2 ρ(f1(X), f2(Y )) with CORR = ρ being the Pear-
son’s correlation coefficient, and f1 : R→ R and f2 : R→
R being two measurable mean-zero functions of X and Y ,
respectively. If f1 and f2 are non-linear functions, their
method can find non-linear correlations.

Likewise, Rao et al. (2011) searched for a, b ∈ R that max-
imize CORR(X,Y ) = U(aX + b, Y ), which equals to∣∣∫ κ(ax+ b− y)(p(x, y)− p(x)p(y))dxdy

∣∣ where κ is a
positive definite kernel function (p(X), p(Y ), and p(X,Y )
are the pdfs of X , Y , and (X,Y ), respectively). f1 is a lin-
ear transformation function, and f2 is the identity function.
If κ is non-linear, they can find non-linear correlations.

Canonical correlation analysis (CCA) (Hotelling, 1936;
Hardoon et al., 2004; Andrew et al., 2013; Chang et al.,
2013), instead of analyzing two random variables, consid-
ers two data sets of the same size. That is, X ∈ RA
and Y ∈ RB represent two groups of random variables.
CCA looks for (non-)linear transformations of this data
such that their correlation, measured by CORR, is maxi-
mized. In (Yin, 2004), CORR is the mutual information,
f1 : RA → R and f2 : RB → R are linear transformations.
CORR(f1(X), f2(Y )) is computed by density estimation.
Along this line, Generalized CCA (Carroll, 1968; Ketten-
ring, 1971) is an extension of CCA to multiple data sets.
Its focus so far, however, is on linear correlations (van de
Velden & Takane, 2012).

Maximal Information Coefficient (MIC) (Reshef et al.,
2011) analyzes the correlation of X and Y by identify-
ing the discretizations of X and Y that maximize their mu-
tual information, normalized according to their numbers of
bins. Here, CORR is the normalized mutual information.
f1 and f2 are functions mapping values of dom(X) and
dom(Y ) to A1 = N and A2 = N (with counting mea-
sures), respectively. Note that, MIC is applicable to CCA
computation where mutual information is used (Yin, 2004).

Limitations of existing techniques. All of the above tech-
niques are limited to either two dimensions or linear corre-
lations. Regarding the first issue, we use MIC to illustrate
our point. Consider a toy data set with three dimensions
{A,B,C}. MIC can find two separate ways to discretize
B to maximize its correlation with A and C, but it can-
not find a discretization of B such that the correlation with
regard to both A and C is maximized. Thus, MIC is not
suited for calculating correlations over more than two di-
mensions. Further, adapting existing solutions to the mul-
tivariate setting is nontrivial due to the huge search space.

As an attempt towards enabling maximal correlation anal-
ysis for multivariate data without being constrained to spe-
cific types of correlations, we propose MAC, a generaliza-
tion of MIC to more than two dimensions. We pick MIC
since it explicitly handles different types of correlations.
However, we show that a naive heuristic computation like
MIC on multivariate data poses issues to both efficiency
and quality. In contrast, MAC aims to address both aspects.
We defer extending other types of correlation measures to
the multivariate non-linear settings to future work.
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3. Theory of MAC
In this section, we discuss the theoretical model of MAC.
For brevity, we put the proofs of all theorems in the sup-
plementary.1 Consider a d-dimensional data set D with
real-valued dimensions {Xi}di=1 andN data points. We re-
gard each dimension Xi as a random variable, distributed
according to pdf p(Xi). Mapping MAC to Def. 1, we
have that CORR is the normalized total correlation (see
below), and fi : dom(Xi) → N (with counting mea-
sure) is a discretization of Xi. The total correlation, also
known as multi-information, is a popular measure of mul-
tivariate correlation and widely used in data analysis (Srid-
har et al., 2010; Schietgat et al., 2011). The total corre-
lation of {Xi}di=1, i.e., of data set D, written as I(D), is

I(D) =
d∑
i=1

H(Xi) − H(X1, . . . , Xd) where H(.) is the

Shannon entropy. We have:

Theorem 1 I(D) ≥ 0 with equality iff {Xi}di=1 are sta-
tistically independent.

Thus, I(D) > 0 when the dimensions of D exhibit any
mutual correlation, regardless of the particular correlation
types. However, in general the pdfs required for computing
the entropies are unknown in practice. Estimating these is
nontrivial, especially when the data available is finite and
the dimensionality is high. One common practice is to dis-
cretize the data to obtain the probability mass functions.
Yet, such existing methods are not designed towards opti-
mizing correlation (Reshef et al., 2011). MAC in turn aims
at addressing this problem.

Let gi be a discretization of Xi into ni = |gi| bins. We will
refer to ni as the grid size of Xi. We write Xgi

i as Xi dis-
cretized by gi. We call G = {g1, . . . , gd} a d-dimensional
grid of D. For mathematical convenience, we focus only
on grids G with ni ≥ 2. This has been shown to be ef-
fective in capturing complex patterns in the data, as well as
detecting independence (Reshef et al., 2011). The product
of grid sizes of G is |G| = n1 × . . .× nd. We write DG as
D discretized by G. The grid G induces a probability mass
function on D, i.e., for each cell of G, its mass is the frac-
tion of D falling into it. The total correlation of D given G

becomes: I(DG) =

d∑
i=1

H(Xgi
i )−H(Xg1

1 , . . . , Xgd
d ).

For maximal correlation analysis, one could find an optimal
grid G for D such that I(DG) is maximized. However, the
value of I(DG) is dependent on {ni}di=1:

Theorem 2 I(DG) ≤
d∑
i=1

log ni −max({log ni}di=1).

1http://www.ipd.kit.edu/˜nguyenh/mac

Thus, for unbiased optimization, we normalize I(DG) ac-
cording to the grid sizes. Hence, we maximize

In(D
G) =

I(DG)
d∑
i=1

log ni −max({log ni}di=1)

(1)

which we name the normalized total correlation. From
Theorems 1 and 2, we arrive at In(DG) ∈ [0, 1]. How-
ever, maximizing In(D

G) is not enough. Consider the
case where each dimension has N distinct values. If we
discretize each dimension into N bins, then In(DG) be-
comes 1, i.e., maximal. To avoid this trivial binning, we
need to impose the maximum product of grid sizes B of
the grids G considered. For pairwise correlation (d = 2),
Reshef et al. prove that B = N1−ε with ε ∈ (0, 1).
As generalizing this result to the multivariate case is be-
yond the scope of this paper, we adopt it and hence, restrict
ni×nj < N1−ε for i 6= j. We define MAC(D) as follows

MAC(D) = max
G={g1,...,gd}

∀i 6=j:ni×nj<N1−ε

In(D
G) . (2)

We will write MAC(D) and MAC(X1, . . . , Xd) inter-
changeably. We have MAC(D) ∈ [0, 1]. When
MAC(D) = 0, we consider {Xi}di=1 to be statistically
independent. Due to insufficient sample sizes, the theoreti-
cal zero score might not happen in practice. Nevertheless,
a low score always indicates a low mutual correlation of
{Xi}di=1, and vice versa. We will show that MAC performs
very well in analyzing multivariate data (cf., Section 6).

4. Calculating MAC: Naive Approach
To use MAC in practice, we need to compute it efficiently.
Let us consider naively extending the strategy that MIC
uses. To approximate the optimal discretization of two
dimensions, MIC employs a heuristic: for every equal-
frequency discretization of a dimension, it searches for the
discretization over the other dimension that maximizes the
normalized mutual information.

Naively extending this to the multivariate case, for every set
of grid sizes {ni}di=1 we would partition each set of (d−1)
dimensions into equal-frequency bins. We would then try
to find the optimal discretization of the remaining dimen-
sion. For every set {ni}di=1, we repeat this per dimension,
and report the maximum over these d values.

However, by using ni × nj < N (1−ε) for any i 6= j, one
can prove that n1 × . . . × nd < N (1−ε)d/2. Hence, we
know the size of the search space is O(Nd)—which im-
plies this scheme is infeasible for high dimensional data.
In fact, even for two dimensions MIC already faces effi-
ciency issues (Reshef et al., 2011).
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5. Calculating MAC: Our Approach
We propose a simple and efficient greedy method for es-
timating MAC. To compute MAC(D), one typically has
to find concurrently the discretizations of all dimensions
that maximize their normalized total correlation In(D

G)
(see Eq. (1) and (2)), which is the source of the computa-
tional intractability. Our intuition is to serialize this search.
That is, step-by-step we find the dimension and its dis-
cretization that maximizes its normalized total correlation
with all the dimensions already selected and discretized.
In particular, we first identify two dimensions X ′1 and X ′2
such that MAC(X ′1, X

′
2) is maximal among all pairs of di-

mensions. Then, at each subsequent step k ∈ [2, d − 1],
let Ck = {X ′1, . . . , X ′k} be the set of dimensions already
picked and discretized. We aim to (a) identify the dimen-
sion X ′k+1 that is most likely correlated with Ck without
having to pre-discretize X ′k+1, and (b) find the discretiza-
tion ofX ′k+1 yielding the MAC score ofX ′k+1 and Ck. Fi-
nally, we approximate MAC(D) using the gridG obtained.
From now on, when using Shannon entropy, we imply the
involved dimensions have been discretized, e.g., we leave
the superscript and write Xi for Xgi

i . The details of our
method are as follows.

5.1. Identifying and discretizing X ′1 and X ′2
We compute MAC(X,Y ) for every pair of dimensions
(X,Y ) and pick (X ′1, X

′
2) with the largest MAC score.

To compute MAC(X,Y ), for each pair of grid sizes
(nX , nY ) with nXnY < N1−ε, we maximize H(X) −
H(X|Y ) = H(Y )−H(Y |X). Note that, one could solve
this through MIC. However, since MIC fixes one dimen-
sion to equal-frequency bins before discretizing the other
dimension, we conjecture that the solution of MIC is sub-
optimal. Instead, we compute MAC(X,Y ) by cumulative
entropy (Nguyen et al., 2013).

The cumulative entropy of X , denoted h(X), is defined as

h(X) = −
∫
dom(X)

P (X ≤ x) logP (X ≤ x)dx (3)

where P (X ≤ x) is the probability that X ≤ x.

The conditional cumulative entropy is given as

h(X|Y ) =

∫
h(X|y)p(y)dy (4)

where p(Y ) is the pdf of Y .

It holds h(X|Y ) ≥ 0 with equality iffX is a function of Y .
Also, h(X) ≥ h(X|Y ) with equality iff X is independent
of Y . Thus, the larger h(X)−h(X|Y ), the more correlated
X and Y are. Therefore, by maximizing h(X)− h(X|Y ),
we maximize the correlation between X and Y , and hence,
intuitively maximizes H(X)−H(X|Y ).

W.l.o.g., letX(1) ≤ . . . ≤ X(N) be realizations ofX . We
have (Nguyen et al., 2013):

h(X) = −
N−1∑
j=1

(X(j + 1)−X(j))
j

N
log

j

N
. (5)

Computing h(X|Y ) is more problematic since the pdf of
Y is unknown in practice. We solve the issue as follows.

Since we want to maximize h(X) − h(X|Y ), or, as h(X)
is constant, minimize h(X|Y ), we formulate a novel prob-
lem: Given a grid size of Y , find the respective discretiza-
tion g of Y that minimizes h(X|Y g). Solving this problem,
we essentially find the optimal discretization of Y at the
given grid size that intuitively maximizesH(X)−H(X|Y )
without having to discretize X at the same time. In a nut-
shell, this is our key improvement over MIC.

We prove that our new optimization problem can be solved
at multiple grid sizes simultaneously by dynamic program-
ming. In particular, w.l.o.g., let Y (1) ≤ . . . ≤ Y (N) be
realizations of Y . Further, let

Y (j,m) = {Y (j), Y (j + 1), . . . , Y (m)}

where j ≤ m. Slightly abusing notation, we write Y (1, N)
as Y . We use h(X|〈Y (j,m)〉) to denote h(X) computed
using the (m − j + 1) points of D corresponding to Y (j)
to Y (m), projected onto X . For 1 ≤ l ≤ m ≤ N , we write

f(m, l) = min
g:|g|=l

h(X|Y g(1,m))

where g is a discretization of Y (1,m) in to l bins, and
Y g(1,m) is the discretized version of Y (1,m) by g. For
1 < l ≤ m ≤ N , we have

Theorem 3 We have: f(m, l) =
min

j∈[l−1,m)

j
mf(j, l − 1) + m−j

m h(X|〈Y (j + 1,m)〉).

Theorem 3 shows that the optimal discretization of
Y (1,m) can be derived from that of Y (1, j) with j < m.
This allows us to design a dynamic programming algorithm
to find optimal discretizations of Y at different grid sizes
nY . As nX ≥ 2, we only consider nY < N1−ε/2. Note
that, we search for multiple grid sizes since we need them
for normalization.

We apply the same optimization process for h(Y ) −
h(Y |X). Then, we combine the optimal discretizations
of both X and Y where nXnY < N1−ε. We compute
MAC(X,Y ) accordingly. We identify (X ′1, X

′
2) as the pair

of dimensions with the largest MAC score.

5.2. Efficient heuristic to identify X ′k+1

In practice, one could identify X ′k+1 and its optimal dis-
cretization concurrently by computing MAC(X,Ck) for
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every dimension X left, and select the dimension with the
best MAC score as X ′k+1. Note that since all dimensions
in Ck have already been discretized, we do not discretize
them again. We prove in Section 5.3 that MAC(X,Ck)
can be solved by dynamic programming. Yet, doing this
for each and every dimension X left may become ineffi-
cient for high dimensional data. Thus, our intuition here is
to first heuristically identify X ′k+1 and then find its optimal
discretization.

In particular, let n′i be the grid size of X ′i ∈ Ck. From
Eq. (2), it follows that to compute MAC(X,Ck), we need
to maximize(

k∑
i=1

H(X ′i)

)
+H(X)−H(X|Ck)−H(Ck)

log n+
k∑
i=1

log n′i −max({log n} ∪ {log n′i}ki=1)

(6)

where n < N(1−ε)

max({n′i}ki=1)
and X is discretized into n bins.

Let us consider the following term(
k∑
i=1

H(X ′i)

)
+ h(X)− h(X|Ck)−H(Ck)

h(X) +
k∑
i=1

log n′i −max({log n′i}ki=1)

. (7)

Informally speaking, we can regard both Eq. (6) and (7) to
represent the normalized mutual correlation of X and all
dimensions in Ck. They have very similar properties. First,
their values are in [0, 1]. Second, they are both equal to 0
iff (discretized)X and all dimensions inCk are statistically
independent. Third, they are both maximal when there ex-
ists X ′i ∈ Ck such that (discretized) X and all dimensions
in Ck \ {X ′i}, each is a function of X ′i . The detailed expla-
nation of all three properties is skipped for brevity.

Therefore, instead of solving Eq. (6) for every n and every
X to obtain X ′k+1, we propose to use Eq. (7) as a surrogate
indicator of how likely a dimension X is indeed X ′k+1 (the
larger the indicator, the better). This indicator has three
advantages: (a) it does not require us to discretize X , (b)
it is independent of grid size n, and (c) it can be computed
much more efficiently (see Eq. (5)). Note that we are not re-
stricted to this heuristic: If there are enough computational
resources, one can just skip this step and run the solution in
Section 5.3 for every dimension X not yet processed.

5.3. Discretizing X ′k+1

For readability, we use X to denote X ′k+1 in this section.
To find the optimal discretization ofX , for each grid size n,
we find the respective discretization of X that maximizes

H(X) − H(X,Ck); we ignore
(

k∑
i=1

H(X ′i)

)
as it has a

fixed value. We prove that this can be solved at multiple
grid sizes simultaneously by dynamic programming.

In particular, w.l.o.g., let X(1) ≤ . . . ≤ X(N) be realiza-
tions of X . Further, let

X(j,m) = {X(j), X(j + 1), . . . , X(m)}

where j ≤ m. As before, we write X(1, N) as X . We
use H(Ck|〈X(j,m)〉) to denote H(Ck) computed using
the (m − j + 1) points of D corresponding to X(j) to
X(m), projected onto the dimensions of Ck. Note that the
bins of each dimension in Ck are intact. For 1 ≤ l ≤ m ≤
N , we write

F (m, l) = max
g:|g|=l

H(Xg(1,m))−H(Xg(1,m), Ck)

where g is a discretization of X(1,m) in to l bins, and
Xg(1,m) is the discretized version of X(1,m) by g. For
1 < l ≤ m ≤ N , we have

Theorem 4 We have: F (m, l) =
max

j∈[l−1,m)

j
mF (j, l − 1)− m−j

m H(Ck|〈X(j + 1,m)〉).

We design a dynamic programming search following Theo-
rem 4, and identify the best discretizations ofX at different
grid sizes n < N(1−ε)

max({n′i}ki=1)
. Then, we use Eq. (6) to iden-

tify the optimal discretization of X .

5.4. Complexity analysis

Using the original set of cut points per dimension, the time
complexity of using dynamic programming for each di-
mension is O(N3), which would be restrictive for large
data. To address this, when discretizing a dimension with
maximum grid size max grid , we limit its number of cut
points to c×max grid with c > 1. Similar to MIC, we do
this using equal-frequency binning on the dimension with
the number of bins equal to (c×max grid+1). More elab-
orate pre-processing, such as (Mehta et al., 2005), can be
considered, yet is beyond the scope of this work. Regard-
ing c, the larger it is, the more candidate discretizations we
consider, and hence, the better the result. However, setting
c too high causes computational issues. Our preliminary
empirical analysis shows that c = 2 offers a good balance
between quality and efficiency, and we will use this as the
default value in the experiments.

The time complexity of MAC includes (a) the cost of pre-
sorting the values of all dimensions O(dN logN), (b) the
cost of finding and discretizing X ′1 and X ′2 O(d2N3(1−ε)),
and (c) the cost of finding and discretizing subsequent di-
mensions O(d2N + dN3(1−ε)). The overall complexity is
O(d2N3(1−ε)). As we fix ε to 0.5 in our implementation,
the complexity of MAC is O(d2N1.5).
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6. Experiments
For assessing the performance of MAC in detecting pair-
wise correlations, we compare against MIC (Reshef et al.,
2011) and DCOR (Székely & Rizzo, 2009), two state-of-
the-art correlation measures. However, neither MIC nor
DCOR are directly applicable in the multivariate setting.
In order to make a meaningful comparison, we consider
two approaches for extending these methods: (a) taking the
sum of pairwise correlation scores and normalizing it by
the total number of pairs, and (b) taking the maximum of
these scores. Empirically, we found the second option to
yield best performance, and hence, we use this as the mul-
tivariate extension for both MIC and DCOR.

For comparability and repeatability of our experiments we
provide data, code, and parameter settings on our project
website.2

6.1. Synthetic data

To evaluate how MAC performs in different settings, we
first use synthetic data. We aim to show MAC can success-
fully detect both pairwise and multivariate correlations.

Assessing functional correlations. As a first experiment,
we investigate whether MAC can detect linear and non-
linear functional correlations. To this end, we create data
sets simulating four different functions.

As performance metric we use the power of the measures,
as in (Reshef et al., 2011): For each function, the null hy-
pothesis is that the data dimensions are statistically inde-
pendent. For each correlation measure, we determine the
cutoff for testing the independence hypothesis by (a) gen-
erating 100 data sets of a fixed size, (b) computing the cor-
relation score of each data set, and (c) setting the cutoff ac-
cording to the significance level α = 0.05. We then gener-
ate 100 data sets with correlations, adding Gaussian noise.
The power of the measure is the proportion of the new 100
data sets whose correlation scores exceed the cutoff.

Results on pairwise functional correlations. We create
data sets of 1000 data points, using respectively a linear,
cubic, sine, and circle as generating functions. Recall that
for pairwise cases, we search for the optimal discretization
of one dimension at a time (Section 5.1). We claim this
leads to better quality than MIC, which heuristically fixes
a discretization on the remaining dimension.

We report the results in Fig. 1. Overall, we find that MAC
outperforms MIC on all four functions. Further, we see that
MAC and DCOR have about the same power in detecting
linear and cubic correlations. For the more complex cor-
relations, the performance of DCOR starts to drop. This

2http://www.ipd.kit.edu/˜nguyenh/mac
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Figure 1. [Higher is better] Baseline results for 2-dimensional
functions, statistical power vs. noise.
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Figure 2. [Higher is better] Statistical power vs. noise for 32-
dimensional functions.

suggests MAC is better suited than DCOR for measuring
and detecting strongly non-linear correlations.

Results on multivariate functional correlations. Next we
consider multivariate correlations. To this end we again
create data sets with 1000 data points, but of differing di-
mensionality. Among the functions is a multi-dimensional
spiral. As a representative, we show the results for 32-
variate functions in Fig. 2. We see that MAC outperforms
both MIC and DCOR in all cases. We also see that MAC
is well suited for detecting multivariate correlations.

Assessing non-functional correlations. Finally, we con-
sider multivariate non-functional correlations. To this end
we generate data with density-based subspace clusters as
in (Müller et al., 2009). For each dimensionality r < d,
we select w subspaces Sc having r dimensions (called cor-
related subspaces), and embed two density-based clusters
representing correlation patterns. Since density-based clus-
ters can have arbitrarily complex shapes and forms, we
can simulate non-functional correlations of arbitrary com-
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Figure 3. [Higher is better] Precision/Recall vs. noise for non-
functional correlations (i.e., clusters).
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Figure 4. [Lower is better] Scalability of correlation measures
with regard to dimensionality and data size.

plexity. For each correlated subspace, we create another
subspace by substituting one of its dimensions by a ran-
domly sampled noisy dimension. Thus, in total, we have
2w subspaces. We compute the correlation score for each
of these subspaces, and pick the top-w subspaces St with
highest scores. The power of the correlation measure is
identified as its precision and recall, i.e., |Sc∩St|w since
|Sc| = |St| = w. We add noise as above.

Results on non-functional correlations. We create data
sets with 1000 data points, of varying dimensionality. For
each value of r andw, we repeat the above process 10 times
and consider the average results, noting that the standard
deviations are very small. As a representative, we present
the results with w = 10 in Fig. 3. We see that compared to
both MIC and DCOR, MAC identifies these correlations
best. Notably, its performance is consistent across different
dimensionalities. In addition, MAC is robust against noise.

Scalability. Finally, we examine scalability of measures
with regard to dimensionality and data size. For the former,
we generate data sets with 1000 data points and dimension-
ality varied. For the latter, we generate data sets with di-
mensionality 4 and data size varied. We show the results
in Fig. 4. Each result is the average of 10 runs. Overall, in
both dimensionality and data size, we find that MAC scales
much better than MIC and is close to DCOR.

The experiments so far show that MAC is a very efficient
and highly accurate multivariate correlation measure.

6.2. Real-world data

Next, we consider real-world data. We apply MAC in two
typical applications of correlations measures in data analy-
sis: cluster analysis and data exploration.

Cluster analysis. For cluster analysis, it has been shown
that mining subspace clusters is particularly useful when
the subspaces show high correlation, i.e., include few or no
irrelevant dimensions (Müller et al., 2009). Thus, in this
experiment, we plug MAC and MIC into the Apriori sub-
space search framework to assess their performance. Here,
we omit DCOR as we saw above that MIC and DCOR
perform similarly on multivariate data. Instead, we con-
sider ENCLUS (Cheng et al., 1999) and CMI (Nguyen
et al., 2013) as baselines. Both are subspace search meth-
ods using respectively total correlation and cumulative mu-
tual information as selection criterion. They internally use
these basic correlation measures, e.g., ENCLUS computes
total correlation using a density estimation rather than max-
imal correlation analysis. We show an enhanced perfor-
mance by using MAC instead.

Our setup follows existing literature (Müller et al., 2009;
Nguyen et al., 2013): We use each measure for subspace
search, and apply DBSCAN (Ester et al., 1996) to the top
100 subspaces with highest correlation scores. Using these
we calculate Accuracy and F1 scores. To do so, we use 7
labeled data sets from different domains (N × d): Musk
(6598× 166), Letter Recognition (20000× 16), PenDigits
(7494 × 16), Waveform (5000 × 40), WBCD (569 × 30),
Diabetes (768 × 8), and Glass (214 × 9), taken from the
UCI ML repository. For each data set, we regard the class
labels as the ground truth clusters.

Fig. 5 shows the results for the 5 most high dimensional
datasets; the remainder is reported in the supplementary
material. Overall, MAC achieves the highest clustering
quality. It consistently outperforms MIC, CMI, and EN-
CLUS. Notably, it discovers higher dimensional subspaces.
Recall that Apriori imposes the requirement that each sub-
space is only considered if all of its child subspaces show
high correlation. Whereas MAC correctly identifies cor-
relations in these lower-order projections, the other meth-
ods assign inaccurate correlation scores more often, which
prevents them from finding the larger correlated subspaces.
As a result, MAC detects correlations in multivariate real-
world data sets better than its competitors.

By applying a Friedman test (Demsar, 2006) at significance
level α = 0.05, we find that the observed differences in
Accuracy and F1 are significant. By performing a post-hoc
Nemenyi test we learn that MAC significantly outperforms
MIC and ENCLUS. We also perform a Wilcoxon signed
rank test with α = 0.05 to compare MAC and CMI. The
result shows MAC to significantly outperform CMI.
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Figure 5. [Higher is better] Clustering results on real-world data
sets taken from the UCI ML repository.

Discovering novel correlations. To evaluate the efficacy
of MAC in data exploration, we apply MAC on a real-
world data set containing climate and energy consump-
tion measures of an office building in Frankfurt, Ger-
many (Wagner et al., 2014). After data pre-processing to
handle missing values, our final data set contains 35601
records and 251 dimensions. Some example dimensions
are room CO2 concentration, indoor temperature, temper-
ature produced by heating systems, drinking water con-
sumption, and electricity consumption. Since this data
set is unlabeled, we cannot calculate clustering quality as
above. Instead, we perform subspace mining to detect cor-
related subspaces, and investigate the discovered correla-
tions. In particular, our objective is to study how climate
and energy consumption indicators interact with each other.

Below we present interesting correlations we discovered
using MAC, that were not discovered using the other mea-
sures. All reported correlations are significant at α = 0.05.
We verified all findings with a domain expert, resulting in
some already known correlations, and others that are novel.

An example of a known multivariate correlation discovered
using MAC is between the temperatures inside different
office rooms located in the same section of the building.
Another example is the correlation between the air tem-
perature supplied to the heating system, the temperature of
the heating boiler, and the amount of heating it produces.
This relation is rather intuitive and expected. The most in-
teresting point is the interaction between the temperature
of the heating boiler and the amount of heating produced.
Intuitively, the higher the former, the larger the latter. How-
ever, the correlation is not linear. Instead, it seems to be a
combination of two quadratic functions (Fig. 6).

MAC also finds an interesting correlation between drink-
ing water consumption, the outgoing temperature of the
air conditioning (cooling) system, and the room CO2 con-
centration. There is a clear tendency: the more water
consumed, the higher the CO2 concentration (Fig. 7(a)).
Besides, there is a sinusoidal-like correlation between the
drinking water consumption and the outgoing temperature

Figure 6. Temperature of boiler and amount of heating.

(a) Water vs. CO2 (b) Water vs. cooling air

Figure 7. Correlation of indoor climate and energy consumption.

of the cooling system (Fig. 7(b)). These correlations, novel
to our domain expert, offer a view on how human behavior
interacts with indoor climate and energy consumption.

7. Conclusions
We introduced MAC, a maximal correlation measure for
multivariate data. It discovers correlation patterns by iden-
tifying the discretizations of all dimensions that maximize
their normalized total correlation. We proposed an efficient
estimation of MAC that also ensures high quality. Experi-
ments showed that MAC successfully discovered interest-
ing complex correlations in real-world data sets.

The research proposed here gives way to computing the to-
tal correlation on empirical data, which has wide applica-
tions in various fields. In addition, it demonstrates the po-
tential of multivariate maximal correlation analysis to data
analytics. Through MAC, we have shown that searching
for the optimal transformations of all dimensions concur-
rently is impractical. Instead, we conjecture that: To effi-
ciently solve the optimization problem in Definition 1, one
needs to find an order of {Xi}di=1 to process as well. Solv-
ing this conjecture for other general cases is part of our
future work on maximal correlation analysis.
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empty, i.e., cz ≥ z. We use H (Ck |bt ) to denote H (Ck )
computed using the points of D corresponding to the real-
izations of X in bt , projected onto Ck .

We write (t; t 1; : : : ; tk ) as the number of points in the cell
made up by bins b(X )t ; b(X 0

1)t 1 ; : : : ; b(X 0
k )tk . We use

(t; ∗; : : : ; ∗) to also denote b(X )t . We note that
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In the last line,
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is equal to F (cl � 1; l − 1) because otherwise, we could
increase F (m; l ) by choosing a different discretization of
X (1; cl � 1) into l − 1 bins. This in turn contradicts our def-
inition of F (m; l ). Since cl � 1 ∈ [l − 1; m) and F (m; l )
is maximal over all j ∈ [l − 1; m), we arrive at the final
result.

Proof of the properties of Eq. (7) and (8) of the main
paper. For the first property, Eq. (7) is the normalized total
correlation of discretized X and all dimensions in Ck , so
its value is in [0; 1]. Considering Eq. (8), from h(X ) ≥
h(X |Ck ), we have

 
kX

i=1

H (X 0
i )

!

+ h(X )− h(X |Ck )− H (Ck ) ≥ 0 :

Further, from h(X |Ck ) ≥ 0

 
kX
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H (X 0
i )

!

+ h(X )− h(X |Ck )− H (Ck )

≤ h(X ) +

kX

i=1

log n0
i −max({log n0

i }k
i=1) :

Therefore, the value of Eq. (8) is in [0; 1].

For the second property, from Theorem 1, it holds that
Eq. (7) is equal to zero iff discretized X and all dimen-
sions in Ck are statistically independent. Also, Eq. (8) is
equal to zero iff all the dimensions in Ck are statistically
independent, and X is independent of Ck ; hence,

p(X; C k ) = p(X )p(Ck ) = p(X )p(X 0
1) · · · p(X 0

k )

Thus, X and all dimensions in Ck are statistically indepen-
dent. We therefore have proven the second property.

For the third property, following (Han, 1978), it holds that
Eq. (7) is maximal when there exists X 0

i ∈ Ck such that
discretized X and all dimensions in Ck \ {X 0

i }, each is a
function of X 0

i . Considering Eq. (8), it is maximal when (a)
there exists X 0

i ∈ Ck such that all dimensions in Ck \{X 0
i },

each is a function of X 0
i , and (b) X is a function of Ck .

These two conditions imply X is also a function of X 0
i .

Thus, we have the third property proven.

2. Extended Related Work
Canonical correlation analysis (CCA) was first proposed
in (Hotelling, 1936) for analyzing two data sets of the
same size. This seminal work focuses on linear correla-
tions. Prominent subsequent developments could be cat-
egorized into two lines. The first line is to extend CCA
to capture non-linear correlations, for instance, Kernel
CCA (Hardoon et al., 2004), CCA based on mutual infor-
mation (Yin, 2004), Deep CCA (Andrew et al., 2013), and
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Figure 2. [Higher is better] Statistical power vs. noise for 4-
dimensional functions.

CCA based on Hilbert-Schmidt independence criterion and
the centered kernel target alignment (Chang et al., 2013).
All these powerful developments mainly target the pairwise
setting. The second line extends CCA to the multivariate
setting (Carroll, 1968; Kettenring, 1971; van de Velden &
Takane, 2012). Related methods are designed to handle
multiple data sets with the focus so far on linear correla-
tions. It is an interesting research direction to find a merge
of the two lines of CCA extensions to enable CCA to detect
non-linear correlations in the multivariate setting.

3. Extended Set of Experiments
Results on multivariate functional correlations. Figure 1
shows an example 3-d spiral function. Figure 2 displays
the statistical power against different noise levels of MAC,
MIC, and DCOR on 4-variate functions. The results of
128-variate functions are in Figure 3. We can see that MAC
outperforms the other two methods as noise increases.

Cluster analysis. The clustering Accuracy and F1 of all
methods are displayed in Table 1. One can see that MAC
obtains the best clustering results on all datasets given the
same subspace search scheme.
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Figure 3. [Higher is better] Statistical power vs. noise for 128-
dimensional functions.
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MAC MIC CMI ENCLUS

Musk (6598× 166)
F1 0.89 0.66 0.64 0.62
Accuracy 0.88 0.70 0.72 0.63

Letter (20000× 16)
F1 0.82 0.64 0.64 0.64
Accuracy 0.84 0.69 0.72 0.71

PenDigits (7494× 16)
F1 0.85 0.48 0.73 0.50
Accuracy 0.88 0.71 0.81 0.66

Waveform (5000× 40)
F1 0.50 0.28 0.31 0.31
Accuracy 0.65 0.37 0.38 0.40

WBCD (569× 30)
F1 0.74 0.55 0.58 0.57
Accuracy 0.92 0.80 0.82 0.75

Diabetes (768× 8)
F1 0.72 0.54 0.71 0.25
Accuracy 0.78 0.53 0.76 0.67

Glass (214× 9)
F1 0.70 0.32 0.59 0.26
Accuracy 0.70 0.47 0.68 0.52

Table 1. Clustering results on real-world data sets.


