
Graph Query Reformulation with Diversity

Davide Mottin

University of Trento

mottin@disi.unitn.eu

Francesco Bonchi

Yahoo Labs, Barcelona

bonchi@yahoo-inc.com

Francesco Gullo

Yahoo Labs, Barcelona

gullof@acm.org

ABSTRACT
We study a problem of graph-query reformulation enabling explo-
rative query-driven discovery in graph databases. Given a query
issued by the user, the system, apart from returning the result pat-
terns, also proposes a number of specializations (i.e., supergraphs)
of the original query to facilitate the exploration of the results.

We formalize the problem of finding a set of reformulations of
the input query by maximizing a linear combination of coverage (of
the original query’s answer set) and diversity among the specializa-
tions. We prove that our problem is hard, but also that a simple
greedy algorithm achieves a 1

2 -approximation guarantee.
The most challenging step of the greedy algorithm is the compu-

tation of the specialization that brings the maximum increment to
the objective function. To efficiently solve this step, we show how
to compute the objective-function increment of a specialization lin-
early in the number of its results and derive an upper bound that we
exploit to devise an efficient search-space visiting strategy.

An extensive evaluation on real and synthetic databases attests
high efficiency and accuracy of our proposal.

Categories and Subject Descriptors
H.3 [Information Storage and Retrieval]: Information Search
and Retrieval—Selection process

Keywords
Graph queries, query reformulation, graph databases

1. INTRODUCTION
Graph databases, i.e., large collections of moderately-sized

graphs, have recently attracted a great deal of attention in the data-
mining/databases literature, fueled by a wide range of applications:
screening and drug design from chemical compounds [23], mo-
tif discovery in protein structures [13], identification of objects
and scenes in computer vision [28], scientific workflows [2], and
so on [1]. One of the most studied primitives in this context is
subgraph-search queries [33]: given a query graph, find all graphs
that the query is subgraph isomorphic to. Answering this type of

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full cita-
tion on the first page. Copyrights for components of this work owned by others than
ACM must be honored. Abstracting with credit is permitted. To copy otherwise, or re-
publish, to post on servers or to redistribute to lists, requires prior specific permission
and/or a fee. Request permissions from Permissions@acm.org.
KDD’15, August 10-13, 2015, Sydney, NSW, Australia.
c� 2015 ACM. ISBN 978-1-4503-3664-2/15/08 ...$15.00.

DOI: http://dx.doi.org/10.1145/2783258.2783343.

O

OH OS

O

OH O S

CH3

O

OH O S

SH

O

OH O S

H3C

O

OH O S

CH3

O

OH O S

CH3
H

S

 510 matches

448 matches 46 matches 114 matches

382 matches 46 matches

Specializations

Figure 1: A graph query and a set of five reformulations (specializations)
produced by our method on the real-world database AIDS.

query is computationally hard, as it relies on the NP-complete
subgraph-isomorphism problem.

Querying and mining graph databases is notoriously affected by
the crucial information-overload (or many-answers) problem [18]:
the answer to a query issued to large graph collections may re-
turn a considerable number of results that are hard to be processed
by hand by a human being. In this paper we attempt to solve the
information-overload problem in graph databases by proposing an
exploratory approach where the user starts with a query to the graph
database, and the system assists her by showing various reformu-
lations of the query originally issued. Here by reformulation we
mean a specialization (i.e., a supergraph) of the original query,
in the spirit of providing the user with more specific queries that
can help her refining her search of other relevant structures. In
fact, as observed by several works focusing on query reformulation
in different domains (e.g., keyword queries issued to search en-
gines [5,25]), a natural approach when searching for information is
to start with a general query for which the result set is unavoidably
large, and then specialize the query in subsequent steps.

While query reformulation has been studied in contexts such
as relational databases [18, 21], keyword search on structured
data [34], or web search [9], to the best of our knowledge, this is the
first work that focuses on query reformulation in graph databases.

Example 1. In the example in Figure 1 the data analyst is search-
ing for sulfonic acids

1 in the database.
Sulfonic acids are made of a sulfonyl hydroxide group

(corresponding to the query in Figure 1) associated with some
organic compound. Instead of directly searching independently
for the various sulfonic acids, the data analyst issues the sulfonyl
hydroxide group as a query, for which the database returns 510
graphs. In order to help the analyst in the exploratory search, the
system proposes several specializations of the original query with
the associated number of matching graphs. This immediately pro-
vides a high-level summary of what the database contains and guid-
ance for the analyst in further inspecting more specific patterns.
1
http://en.wikipedia.org/wiki/Sulfonic_acid

http://en.wikipedia.org/wiki/Sulfonic_acid

Besides the bio/chemical domain, query reformulation in graph
databases finds application in several other scenarios. As an exam-
ple, in the context of scientific workflows, provenance queries are
usually issued in order to find anomalies, i.e., sources of incorrect
or partial information [2, 19]. These queries require to repeatedly
check conditions in the workflows returned and may therefore be
quite time consuming. Query reformulations (specializations) can
be used in this case for easier and faster anomaly detection. Work-
flow analysis is also important to detect subprocesses that can be
reused or optimized [26]: in this context, specializations can pro-
vide clear summaries to detect groups of similar subprocesses.
Our proposal and contributions. The specializations proposed
for a given query must provide an effective high-level description
of the original query results, in such a way that each specialization
can somehow identify one of the different aspects contained in the
result set. More specifically, a set of specializations should exhibit
high coverage of the result set, and high diversity among them. The
first requirement aims at guaranteeing that a large portion of the re-
sults of the original query are captured by the specializations, while
the second requirement ensures a clear differentiation among the
specializations, so that the user can discriminate and easily select
the one(s) that better comply with her search goal.

Following the above intuition, we formalize the problem of find-
ing a set of k specializations that maximize a linear combination of
coverage of the original query results and diversity among them.
We prove that our problem is NP-hard, but we also show that
a simple greedy algorithm provides a 1

2 -approximation guarantee.
However, quality guarantee does not imply efficiency. In fact, the
key step of the greedy algorithm, i.e., finding the specialization
leading to the maximum increment of the objective function, re-
lies on a #P-complete problem. Our goal here is to solve such a
step efficiently while still guaranteeing optimality, as this is needed
to preserve the aforementioned approximation guarantee. To this
end, we provide a number of technical insights into our problem,
namely a fast computation of the objective-function increment and
an upper bound on the maximum increment achievable, and exploit
them to devise an efficient pruning strategy.

Our main contributions are summarized as follows:
• We formalize the novel problem of finding a set of k refor-

mulations (specializations) of an input query graph so as to
maximize a linear combination of coverage and diversity.

• We show that our problem is NP-hard, as well as that our cov-
erage function is monotone submodular, and that our diversity
measure is a pseudometric. These two properties allow us to
adopt a greedy algorithm with provable quality guarantees.

• In order to guarantee efficiency, we devise a fast yet exact al-
gorithm for the computation of the specialization leading to
the maximum objective-function increment.

• We perform an extensive evaluation on real and synthetic
graph databases. Results confirm high quality and efficiency
achieved by our method.

Roadmap. The rest of the paper is organized as follows. In Sec-
tion 2 we define the problem of graph query reformulation with
diversity. Section 3 presents the proposed algorithm(s). In Sec-
tion 4 we report our experiments. Finally, Section 5 overviews the
related literature, while Section 6 concludes the paper.

2. PROBLEM STATEMENT
Let D be a graph database defined over a set of labels L. Each

element of D is a labeled graph G = (V,E, `), where V is a set
of vertices, E ✓ V ⇥ V is a set of edges, and ` : V [E ! L

is a function that assigns a label from L to each vertex in V and
each edge in E. For presentation clarity, we assume the graphs in
D to be undirected; however, all our methods can straightforwardly
handle directed graphs without any significant modifications.

A graph isomorphism between two graphs G1 = (V1, E1, `1)

and G2 = (V2, E2, `2) is a bijective function µ : V1 ! V2 such
that: (i) `1(u) = `2(µ(u)), for each u 2 V1, and (ii) for every
(u, v) 2 E1, (µ(u), µ(v)) 2 E2 and `1(u, v) = `2(µ(u), µ(v)),
and viceversa. If a graph isomorphism exists between G1 and G2,
we say that G1 and G2 are isomorphic. If a graph isomorphism ex-
ists between G1 and a subgraph of G2, we say that G1 is subgraph
isomorphic to G2, and we denote it by G1 v G2.

A query Q to a graph database D is a connected labeled graph.
The result set to Q is the set R

Q

= {G 2 D | Q v G} of all
graphs in D, which Q is subgraph isomorphic to. We refer to R

Q

as the results or the result set of Q.
Given a query Q, a specialization Q

0 of Q is a connected labeled
graph such that Q v Q

0. We denote by S
Q

the set of all possible
specializations of Q in the entire graph database D, i.e., S

Q

=S
G2D{Q0 | Q

0 6= Q,Q v Q

0 v G, Q

0connected}. It can
be observed that, by definition, the result set of every specialized
query Q

0 is always a subset of the result set of the original query
Q, i.e., R

Q

0 ✓ R
Q

.
Given a graph database D and a query Q, our goal is to find a

set of k specializations of Q that captures well the result set R
Q

of
Q. More specifically, we aim at selecting a set of specializations of
cardinality k that exhibits (i) high coverage of the result set R

Q

,
and (ii) high diversity among the subsets of R

Q

identified by the
single specializations. We next formalize these concepts.

The coverage of a set of specializations Q is defined as the num-
ber of results in R

Q

captured by the specializations:

cov(Q) =

���
S

Q

02Q R
Q

0

��� , (1)

while the diversity between two queries Q

0 and Q

00 is defined as
the number of uncommon results:

div(Q

0
, Q

00
) = |R

Q

0 [R
Q

00 |� |R
Q

0 \R
Q

00 | = (2)
= |R

Q

0 |+ |R
Q

00 |� 2 |R
Q

0 \R
Q

00 | .
Overall, the function we aim at maximizing is:

f(Q) = cov(Q) + �

X

Q

0
,Q

002Q

div(Q

0
, Q

00
), (3)

where � 2 [0, 1] is a parameter that trades off between coverage
and diversity, while also playing the role of a regularization factor
in case of different scales of the two terms. Finally, the problem we
tackle in this work is formally defined as follows:

Problem 1. Given a graph database D, a query Q, and an integer
k, find a set Q⇤ of specializations of Q such that:

Q⇤
= argmax

Q✓SQ
f(Q) subject to |Q| = k.

For � = 0, Problem 1 corresponds to the well-known MAXI-
MUMCOVERAGE problem [12], which is known to be NP-hard.
As a result, Problem 1 is NP-hard as well.

Example 2. Figure 2 shows an example of Problem 1. The
figure depicts a query Q, its corresponding result set R

Q

=

{R1, . . . , R5}, and four specializations Q

0
1, . . . , Q

0
4. The subset

of R
Q

captured by each specialization is as follows: the first four
results and the last four results form the result set of Q0

1 and Q

0
2,

respectively, while the results of Q0
3 and Q

0
4 are {R1, R2} and

{R3, R4}, respectively. We also assume � = 0.3.

Figure 2: An instance of our problem.

For k = 2, it can intuitively be observed that {Q0
3, Q

0
4} detect

two of the main discriminating specialized queries arising from the
result set R

Q

. The solution {Q0
1, Q

0
2} instead does not summarize

R
Q

equally well, as Q0
1 and Q

0
2 identify two very general and not

really informative patterns that are similar to one another and, as
such, are both present in most of the results in R

Q

. This obser-
vation is acknowledged by the notions of coverage and diversity:
{Q0

1, Q
0
2} have indeed slightly larger coverage than {Q0

3, Q
0
4},

but they also exhibit much smaller diversity, which makes the lat-
ter solution preferable. Hence, this example shows that coverage
and diversity are both critical in order to find a valid set of spe-
cializations. Our objective function f captures this main finding:
f({Q0

3, Q
0
4}) is larger than f({Q0

1, Q
0
2}), thus {Q0

3, Q
0
4} is pre-

ferred to {Q0
1, Q

0
2} according to f .

3. ALGORITHMS
We next focus on how to solve Problem 1. We first discuss a

naïve solution based on frequent subgraph mining (Section 3.1).
Then, we shift the attention to the proposed approach: we prove
some properties of our objective function f (Section 3.2) , based on
which we present a greedy algorithm exhibiting a 1

2 -approximation
guarantee, while in Section 3.3 we treat the subproblem of find-
ing the specialization that maximizes the marginal potential gain
(defined next), which is the key step of the greedy algorithm.

3.1 A naïve approach
The objective function defined in Equation (3) reminds a notion

of frequency: the more a specialization covers a result set, the more
frequent that specialization is among the graphs in the result set.

This observation allows for defining a simple heuristic strategy
to attack Problem 1, which is based on the well-known problem of
frequent subgraph mining [14, 22, 32]: given a graph database and
a threshold �, find all subgraphs that are contained into at least �
graphs of the database. In our context we do not have a threshold-
based problem definition; however, a natural yet straightforward
way of adapting the frequent-subgraph-mining problem to our con-
text exists, and it corresponds to ask for the top-k frequent sub-
graphs that are supergraph of the input query graph.

The advantage of using this approach as a solution to Problem 1
is that the literature on frequent subgraph mining can be reused
almost as is, since the adaptation of existing frequent-subgraph-
mining techniques to this variant of the problem is trivial. Unfor-
tunately, this simple approach is not guaranteed to produce high-
quality results. Indeed, while the notion of frequency is related to
the notion of coverage, the notion of diversity is instead completely
ignored. Taking into account diversity is crucial to find meaningful
solutions, as clearly demonstrated in Example 2.

Algorithm 1 Greedy

Input: A graph database D, a query Q, an integer k
Output: A set of specialized queries Q
1: Q ;
2: while |Q| < k do
3: Q

⇤ argmax

Q

02SQ\Q �

f

(Q, Q

0
) . Equation (4)

4: Q Q [{Q⇤}

The poor effectiveness of this naïve strategy is also supported by
experimental evidence (see Section 4).

3.2 An approach with quality guarantees
The algorithm we propose as a more principled solution to Prob-

lem 1 relies on a recent result by Borodin et al. [6]. Given a uni-
verse of elements U , let w : 2

U ! R be a non-negative function
measuring the quality of every subset of U , and d : U ⇥ U ! R
be a distance function between elements of U . Also, let g be a
set function defined as a linear combination of w and the sum of
pairwise distances computed according to d, i.e., for any ˆ

U ✓ U ,
g(

ˆ

U) = w(

ˆ

U) + �

P
u

0
,u

002Û

d(u

0
, u

00
) (with � 2 [0, 1] being a

parameter). Finally, given a subset U 0 ⇢ U and an element u /2 U

0,
let 1

2 (w(U

0 [{u}) � w(U

0
)) + �(

P
u

0
,u

002Û

0[{u} d(u
0
, u

00
) �

P
u

0
,u

002Û

d(u

0
, u

00
)) denote the marginal potential gain2 of the

function g. Borodin et al. [6] show that, for the problem of
maximizing a set function like g under a cardinality constraint, a
greedy algorithm that iteratively selects the element maximizing
the marginal potential gain achieves a 1

2 -approximation guarantee
if (i) the quality function w is monotone submodular, and (ii) the
universe U spans a metric space, i.e., d is a metric. As shown in
more detail next, this result holds even if d is a pseudometric.

In our context, the universe U corresponds to the set S
Q

of all
possible specializations of the input query Q, while the quality
function corresponds to the coverage function cov and the distance
between two elements is measured in terms of the diversity div

between two specializations. Also, given a set of specializations
Q ✓ S

Q

and a specialization Q

0 2 S
Q

\ Q, and denoting by
�

cov

(Q, Q

0
) = cov(Q [{Q0}) � cov(Q) the marginal gain of

the coverage term and by �

div

(Q, Q

0
) =

P
Q̂2Q div(

ˆ

Q,Q

0
) the

marginal gain of the diversity term, the marginal potential gain of
our function f is defined as

�

f

(Q, Q

0
) =

1

2

�

cov

(Q, Q

0
) + ��

div

(Q, Q

0
). (4)

Thus, to exploit the above result by Borodin et al. [6] we need
to prove that (1) the function cov is monotone submodular, and
(2) div is a pseudometric. cov(·) is a classic coverage function,
therefore it is submodular by construction. Moreover, div is the
symmetric difference3 between sets, that is proved to be a pseudo-
metric.

The proposed Greedy algorithm, whose pseudocode is shown as
Algorithm 1, iteratively selects the specialization Q

⇤ that brings the
maximum marginal potential gain to the objective function f , until
k specializations have been selected. The following result holds.

Theorem 1. Greedy is a 1
2 -approximation algorithm for Prob-

lem 1.

Proof. Looking at the proof of Theorem 1 in [6], it is easy to see
that such a theorem remains true even in case of pseudometrics, as
the indescernibility axiom is not exploited at all. ⇤

2The 1
2 is introduced in [6] to prove the approximation bound.

3
http://en.wikipedia.org/wiki/Symmetric_difference

http://en.wikipedia.org/wiki/Symmetric_difference

3.3 Maximizing the marginal potential gain
The proposed Greedy needs to face two main challenges:
• Finding the element that maximizes the marginal potential

gain is very difficult in our context, as it corresponds to se-
lecting a specialized query Q

⇤ 2 S
Q

\ Q that achieves the
desired maximum objective-function increment, and, in the
worst case, this requires to enumerate all possible subgraphs
of each graph G 2 D that Q is subgraph isomorphic to. Such
a problem corresponds to counting all subgraph-isomorphic
structures in a graph and is known to be #P-complete [30].

• Our function f is non-monotone in the size of the results: this
makes the design of pruning strategies non-trivial at all (e.g.,
traditional downward-closure-based algorithms do not work).

In the following we present the proposed solution to the most
critical step of the Greedy algorithm, i.e., finding the element that
maximizes the marginal potential gain. We aim at solving this step
efficiently while still guaranteeing optimality, as this is needed to
preserve the approximation guarantee of Theorem 1. To this end,
we devise an algorithm, Fast_MMPG, that visits the search space
in a smart way based on two main findings: (i) an efficient compu-
tation of the marginal potential gain �

f

, and (ii) an upper bound
on the maximum marginal potential gain achievable by a set of spe-
cializations which is used to substantially prune the search space.
Computing �

f

in linear time. We show here how to efficiently
solve the frequently-occurring subproblem of computing �

f

when
a specialization Q

0 is given. According to Equation (4), �
f

is a
linear combination of �

cov

and �

div

. The marginal gain �

cov

can be computed by a simple scan of the results in R
Q

0 , thus tak-
ing O(|R

Q

0 |) time. As far as �
div

concerns, a naïve computation
would instead consider the results of all specializations in the cur-
rent set Q, thus requiring quadratic time. We show how, adopting
a vector that keeps track of how many specializations (among the
ones already computed) capture any result of the input query, the
computation takes only O(|R

Q

0 |) time as well.
Given a query Q, let {R1, . . . , Rn

} denote the graphs in its
result set R

Q

. As stated above, the results of every specialized
query Q

0 of Q is guaranteed to be a subset of R
Q

. Therefore,
one can alternatively keep track of the results of Q

0 by using a
binary n-dimensional vector x

Q

0 , where x

Q

0
[i] = 1 if and only

if R

i

2 R
Q

0 . Given a set of specializations Q ✓ S
Q

, let also
mQ =

P
Q̂2Q x

Q̂

be an n-dimensional integer vector whose i-th
entry contains the number of specializations in Q having R

i

among
their results. We hereinafter refer to mQ as the multiplicity vector.
We also use kvk to denote the L1-norm of a vector v. In the next
theorem we show how to exploit mQ and x

Q

0 to achieve the de-
sired O(|R

Q

0 |)-time computation of �
div

.

Theorem 2. Given a set of specializations Q ✓ S
Q

and a special-
ization Q

0 2 S
Q

\ Q, the marginal gain �

div

(Q, Q

0
) is:

�

div

(Q, Q

0
) = kmQk+ |Q|⇥ |R

Q

0 |� 2 mQ · x
Q

0
.

Proof. �

div

(Q, Q

0
) is equal to:

�

div

(Q, Q

0
) =

X

Q̂2Q

div(

ˆ

Q,Q

0
) =

=

X

Q̂2Q

⇣
|R

Q̂

|+ |R
Q

0 |� 2|R
Q̂

\R
Q

0 |
⌘

=

X

Q̂2Q

|R
Q̂

|
| {z }

kmQk

+

X

Q̂2Q

|R
Q

0 |
| {z }
|Q|⇥|RQ0 |

�2
X

Q̂2Q

|R
Q̂

\R
Q

0 |. (5)

By noting that the i-th entry of the vector mQ can alternatively
be expressed as mQ[i] =

P
Q̂2Q 1[Ri

2 R
Q̂

] (where 1[·] is the

indicator function),
P

Q̂2Q |R
Q̂

\R
Q

0 | in (5) can be rewritten as:X

Q̂2Q

|R
Q̂

\R
Q

0 |=
X

Q̂2Q

X

i2[1..n],
Ri2RQ0

1[R
i

2 R
Q̂

]

=

X

i2[1..n],
Ri2RQ0

X

Q̂2Q

1[R
i

2 R
Q̂

]

| {z }
mQ[i]

=

=

X

i2[1..n]

(x

Q

0
[i]⇥mQ[i]) = mQ · x

Q

0
. (6)

The proof is completed combining (5) and (6). ⇤

It is easy to see that the rewriting in Theorem 2 allows for com-
puting �

div

linearly in |R
Q

0 | as the terms kmQk and |Q|⇥ |R
Q

0 |
are constant, while the scalar product mQ · x

Q

0 requires a scan of
only the |R

Q

0 | non-zero entries of x
Q

0 .
Upper bound on �

f

. Here we derive an upper bound on the
marginal potential gain �

f

(Equation (4)) exhibited by a set of
specializations. Specifically, given a specialized query Q

0, let T
Q

0

denote the set of all specializations that Q0 is subgraph isomorphic
to, i.e., T

Q

0
= {Q00 2 S

Q

\ Q | Q0 v Q

00}. We show how to
bound the maximum marginal potential gain achievable by a spe-
cialization in T

Q

0 in a very efficient manner, that is by looking only
at the specialization Q

0. The ultimate goal is to exploit the resulting
upper bound to early recognize (and skip) unnecessary portions of
the search space.

We derive our upper bound by studying which results in R
Q

should be captured by a specialization in T
Q

0 to achieve maximum
marginal potential gain. To this end, let R

Q

= {R1, . . . , Rn

}
denote the results of the original query Q. We assume that a set
of specializations Q ✓ S

Q

have been computed and kept track
of the results identified by Q by the multiplicity vector mQ intro-
duced above. Let Q1, Q2 2 S

Q

\ Q be two specializations such
that their corresponding result sets differ by only one element, i.e.,
R

Q2 = R
Q1 [{R

j

}. We want to study when the marginal poten-
tial gain brought by Q2 is no less than the one given by Q1, i.e.,
when �

f

= �

f

(Q, Q2) � �

f

(Q, Q1) � 0. We focus here on
a pair of specializations whose result sets differ by only one ele-
ment in order to simplify the presentation of the theoretical results
therein. This however does not result in any loss of generality, as
shown later in Theorem 3.

We start our reasoning by showing how to profitably rear-
range the quantities �

cov

(Q, Q2)��

cov

(Q, Q1) (Lemma 1) and
�

div

(Q, Q2)��

div

(Q, Q1) (Lemma 2).

Lemma 1. Let Q1, Q2 2 S
Q

\Q, s.t. R
Q2 = R

Q1 [{R
j

}. It holds
that �

cov

(Q, Q2)��
cov

(Q, Q1) = 1[mQ[j] = 0].

Proof.
�

cov

(Q, Q2)��

cov

(Q, Q1) =

=

X

i2[1..n],
Ri2RQ2

1[mQ[i] = 0] �
X

i2[1..n],
Ri2RQ1

1[mQ[i] = 0]

=

X

i2[1..n],
Ri2RQ1

1[mQ[i] = 0] + 1[mQ[j] = 0] �
X

i2[1..n],
Ri2RQ1

1[mQ[i] = 0]

= 1[mQ[j] = 0] 2

Lemma 2. It holds that �
div

(Q, Q2) � �

div

(Q, Q1) = |Q| �
2mQ[j].

Proof.
�

div

(Q, Q2)��

div

(Q, Q1) =

=

X

Q̂2Q

div(

ˆ

Q,Q2)�
X

Q̂2Q

div(

ˆ

Q,Q1)

=

X

Q̂2Q

⇣
|R

Q̂

|+ |R
Q2 || {z }

|RQ1
|+1

�2|R
Q̂

\R
Q2 |

⌘

�
X

Q̂2Q

⇣
|R

Q̂

|+ |R
Q1 |� 2|R

Q̂

\R
Q1 |

⌘

= |Q|� 2

X

Q̂2Q

⇣
|R

Q̂

\ (R
Q1 [{R

j

})|� |R
Q̂

\R
Q1 |

⌘

= |Q|� 2

X

Q̂2Q

⇣
|R

Q̂

\R
Q1 |+ 1[Rj

2 R
Q̂

]� |R
Q̂

\R
Q1 |

⌘

= |Q|� 2

X

Q̂2Q

1[R
j

2 R
Q̂

]

| {z }
mQ[j]

= |Q|� 2mQ[j]. ⇤

We now exploit Lemma 1 and 2 to show the desired condition
about �

f

= �

f

(Q, Q2)��

f

(Q, Q1) � 0. We formally state this
in the next lemma.

Lemma 3. �

f

� 0 if and only if mQ[j] 1
2 |Q|.

Proof. By Lemma 1 and 2 it results that:
�

f

= �

f

(Q, Q2)��

f

(Q, Q1) =

=

1

2

(�

cov

(Q, Q2)��

cov

(Q, Q1)) +

+� (�

div

(Q, Q2)��

div

(Q, Q1))

=

1

2

1[mQ[j] = 0] + �(|Q|� 2mQ[j]).

From the latter equality, it can be noted that, if mQ[j] = 0, then
�

f

=

1
2+�|Q| > 0. Otherwise, if mQ[j] > 0, then �

f

= �(|Q|�
2mQ[j]), which is � 0 when mQ[j] 1

2 |Q|. ⇤

Lemma 3 shows a condition about which results are “worth”
to be captured by a specialization in order to achieve maximum
marginal potential gain: ideally, the best specialization Q

⇤ should
contain in its result set R

Q

⇤ all and only those results R

j

whose
corresponding multiplicity mQ[j] is no more than 1

2 |Q|. To be pre-
cise, actually, the results R

j

such that mQ[j] =

1
2 |Q| do not affect

optimality: they can either be present in R
Q

⇤ or not.
We exploit the above reasoning to derive our upper bound on

the maximum marginal potential gain exhibited by a specializa-
tion in T

Q

0 . We denote such an upper bound by �

f

(Q, Q

0
) and

we formally state it in the next Theorem 3. Particularly, we ex-
press �

f

(Q, Q

0
) in terms of three n-dimensional binary vectors:

uQ and vQ, which keep track of the results in R
Q

exhibiting
null multiplicity and multiplicity no more than 1

2 |Q|, respectively
(uQ[i] = 1 if and only if mQ[i] = 0, and vQ[i] = 1 if and only
if 0 < mQ[i] 1

2 |Q|), and x

Q

⇤ , which keeps track of the results
that the best specialization Q

⇤ should ideally capture and is defined
as the Hadamard (i.e., element-wise) product between vQ and x

Q

0 ,
i.e., x

Q

⇤
= vQ � x

Q

0 . The value of �
f

(Q, Q

0
) is as follows.

Theorem 3. For a specialization Q

02S
Q

\Q it holds that
max

Q

002TQ0
�

f

(Q, Q

00
) �

f

(Q, Q

0
) =

=

1

2

uQ ·x
Q

⇤
+� (kmQk+|Q|⇥kx

Q

⇤k�2mQ ·x
Q

⇤
) ,

R1 R2 R3 R4 R5 R6 R7 R8 R9 R10

mQ = 0 4 2 1 0 5 5 6 6 7 (kmQk = 36)
| {z }

<

1
2 |Q|

| {z }
= 1

2 |Q|
| {z }

>

1
2 |Q|

uQ = 1 0 0 0 1 0 0 0 0 0

vQ = 1 1 1 1 1 1 1 0 0 0

x

Q

0 = 1 1 1 0 0 1 0 1 1 1 (kxQ0k = 7)
| {z }

RQ0={R1,R2,R3,R6,R8,R9,R10}

x

Q

⇤ = 1 1 1 0 0 1 0 0 0 0 (kxQ⇤k = 4)
|{z}

vQ�xQ0
| {z }

RQ⇤={R1,R2,R3,R6}

Figure 3: Illustration of the computation of the upper bound in Theorem 3.

Proof. By Lemma 3, we know how the result set of the best spe-
cialization Q

⇤ should be: the content of this best result set R
Q

⇤ is
expressed by the binary vector x

Q

⇤
= vQ � x

Q

0 . Based on this,
Equation (4) can be rewritten as follows:

�

f

(Q, Q

0
) = �

f

(Q, Q

⇤
) =

=

1

2

�

cov

(Q, Q

⇤
) + ��

div

(Q, Q

⇤
)

=

1

2

uQ ·x
Q

⇤
+� (kmQk+|Q|⇥|R

Q

⇤ |�2mQ ·x
Q

⇤
)

=

1

2

uQ ·x
Q

⇤
+� (kmQk+|Q|⇥kx

Q

⇤k�2mQ ·x
Q

⇤
) ,

where the third equality above derives from Theorem 2. ⇤

The computation of the upper bound �

f

(Q, Q

0
) is really fast:

it takes O(|R
Q

0 |) time, as all the terms of the expression in The-
orem 3 either are constant or can be computed by considering the
|R

Q

0 | non-zero entries of the vector x
Q

0 .

Example 3. Figure 3 shows an example of the computation of the
upper bound �

f

. We consider an input query Q whose results are
R

Q

= {R1, . . . , R10}. We also assume that a set Q of |Q| = 10

specializations have already been computed and that � = 0.5. The
integer vector mQ contains the multiplicity of the results in Q, i.e.,
each entry mQ[i] contains the number of specializations in Q hav-
ing R

i

among their results, while the binary vectors uQ and vQ
keep track of the results in R

Q

having null multiplicity and mul-
tiplicity 1

2 |Q|, respectively. For a given specialization Q

0, the
binary vectors x

Q

0 and x

Q

⇤ denote the actual result set R
Q

0 and
the result set of the ideal specialization Q

⇤ that can be generated
from Q

0, respectively. According to Lemma 3, the result set of Q⇤ is
given by all and only the results of Q0 whose multiplicity is 1

2 |Q|,
that is x

Q

⇤
= vQ � x

Q

0 .
The marginal gain of the coverage term �

cov

(Q, Q

⇤
) is equal

to the scalar product uQ · x
Q

⇤ ; therefore, �

cov

(Q, Q

⇤
) =

1. According to Theorem 2, the marginal gain of the diver-
sity term is �

div

(Q, Q

⇤
) = kmQk + |Q| ⇥ |x

Q

⇤ | � 2mQ ·
x

Q

⇤
= 36 + 10 ⇥ 4 � 2 ⇥ 11 = 54. As a result, the upper

bound of Q0 is �

f

(Q, Q

0
) = �

f

(Q, Q

⇤
) =

1
2�cov

(Q, Q

⇤
) +

��

div

(Q, Q

⇤
) = 27.5, while the actual marginal potential gain

of Q0 is �
f

(Q, Q

0
) =

1
2�cov

(Q, Q

0
) + ��

div

(Q, Q

0
) =

1
2uQ ·

x

Q

0
+ �(kmQk+ |Q|⇥ |x

Q

0 |� 2mQ · x
Q

0
) = 23.5.

The Fast_MMPG algorithm We exploit the findings discussed
above in order to efficiently find a specialization exhibiting the
maximum marginal potential gain. We assume our search space
S
Q

\ Q organized as a tree T , whose root corresponds to the input
query Q, while the children of each node (specialization) Q0 cor-
respond to all specializations generated by adding a single edge to
Q

0. According to this, a specialization can in principle have mul-
tiple fathers; this can however be avoided by borrowing standard

mechanisms from frequent subgraph mining4, hence we can safely
assume that each specialization in T has a single father. As already
anticipated, we also denote by T

Q

0 the subtree of T rooted at Q0.
The proposed Fast_MMPG algorithm, whose outline is reported

as Algorithm 2, visits the various nodes Q

0 of the tree T in non-
increasing ordering of their upper-bound �

f

(Q, Q

0
), the rationale

here is that larger upper bounds correspond to more promising sub-
trees. To this end, a priority queue P is used. At the beginning, P
contains the children of the original query Q (Line 2), and the al-
gorithm processes the specializations in P until it becomes empty
or the maximum upper bound therein does not exceed the best-so-
far value �

⇤
f

(Lines 3–13). For each specialization Q

0 extracted
from P, the algorithm first computes the marginal potential gain
�

f

(Q, Q

0
) (according to Theorem 2), and uses it to possibly up-

date �

⇤
f

(Lines 5–8). �

f

(Q, Q

0
) is also compared to the upper

bound �

f

(Q, Q

0
) in order to early recognize whether it is worth

to keep visiting the subtree T
Q

0 (Line 9): the visit goes ahead only
if �

f

(Q, Q

0
) < �

f

(Q, Q

0
), otherwise T

Q

0 is entirely skipped. If
the subtree T

Q

0 is not pruned, all children Q

00 of Q0 are generated
and, for each of them, the corresponding upper bound �

f

(Q, Q

00
)

is computed according to Theorem 3 (Line 10). All children Q

00

having �

f

(Q, Q

00
) no more than the best-so-far marginal poten-

tial gain �

⇤
f

are discarded, while all others are added to P to be
processed in a later iteration (Line 11).

The children of a (specialized) query Q

0 (Lines 2 and 10) are
generated according to the following strategy. For each result
R 2 R

Q

0 , we keep track of all the subgraphs of R that are iso-
morphic to Q

0, and we expand each of those subgraphs by one step
of BFS initiated in the vertices of that subgraph. A nice side effect
of this strategy is that, for each children Q

00 of Q0 yielded, we auto-
matically have the corresponding result set R

Q

00 without running
any further subgraph-search query on the database. As a result,
the only subgraph-search query we need is the one to compute the
results R

Q

of the original query Q

5.

Example 4. Figure 4 shows the execution of the Fast_MMPG al-
gorithm on an example query Q and the corresponding special-
ization tree. In the example we assume that a set of specializa-
tions Q have already been computed. The priority queue P is ini-
tialized with the children of Q, which, according to their upper
bounds, follow the ordering Q

0
1!Q

0
2!Q

0
3. In the first itera-

tion, Q0
1 is extracted from P and the best-so-far value is set to

�

⇤
f

= �

f

(Q, Q

0
1) = 18. Among the children of Q0

1, only Q

0
11 is

added to the priority queue as the upper bound of the other child
Q

0
12 is not > �

⇤
f

. The new ordering of the specializations in P is
Q

0
2!Q

0
11!Q

0
3, thus Q0

2 is the next specialization to be processed.
The value of �⇤

f

is updated and set to �

⇤
f

= �

f

(Q, Q

0
2) = 20,

while all children of Q0
2 are pruned as their upper bound are less

than �

⇤
f

. The next specialization processed is Q

0
11, which leads

to a new �

⇤
f

equal to �

f

(Q, Q

0
11) = 22. After that, the algo-

rithm terminates as the maximum upper-bound value in P (i.e.,
�

f

(Q, Q

0
3) = 21) becomes smaller than �

⇤
f

: the subtree T
Q

0
3

is
entirely skipped. The specialization ultimately outputted is Q0

11.

The next theorem states the soundness of Fast_MMPG.

Theorem 4. Algorithm 2 finds an optimal solution to the problem
argmax

Q

02SQ\Q �

f

(Q, Q

0
) stated in Line 3 of Algorithm 1.

4In our implementation we avoid to consider the same specialization multiple times
by keeping track of the DFS code [32] of each specialization visited.
5We use the traditional subgraph-isomorphism algorithm by Ullmann [29] for this.
Our work is however orthogonal to the method used for answering subgraph-search
queries: for further speed-up, one can also resort to some indexing strategy [7, 8].

Figure 4: Illustration of the Fast_MMPG algorithm

Algorithm 2 Fast_MMPG

Input: A graph database D, a query Q, a set of specializations Q
Output: A specialization Q

⇤ 2 S
Q

\ Q maximizing �

f

(Q, Q

⇤
)

1: �

⇤
f

 �1
2: initialize P with {children of Q} \ Q
3: while P is not empty ^max(P) > �

⇤
f

do
4: Q

0 poll(P)
5: if �

f

(Q, Q

0
) > �

⇤
f

then
6: Q

⇤ Q

0

7: �

⇤
f

 �

f

(Q, Q

0
)

8: if |R
Q

0 | > 0 ^ �

f

(Q, Q

0
) < �

f

(Q, Q

0
) then

9: Q0 {children of Q0} \ Q
10: add {Q00 2 Q0 | �

f

(Q, Q

00
) > �

⇤
f

} to P

Proof. Let T 0 ✓ T denote the portion of T visited by the algo-
rithm. According to Lines 5–7, the algorithm returns a specializa-
tion achieving the maximum marginal potential gain among all the
ones in T 0. Then, the correctness of the algorithm follows from the
fact that T \ T 0 does not contain any specialization exhibiting a
larger marginal potential gain. It is easy to see that the specializa-
tions T \ T 0 discarded by the algorithm may only derive from the
pruning rules exploited in Lines 8 and 10: without such rules the al-
gorithm would instead consider every possible child of the current
query Q

0 and, overall, it would visit the entire tree T . The correct-
ness of such pruning rules is guaranteed by the correctness of the
upper bound derived in Theorem 3. This completes the proof. ⇤

4. EXPERIMENTS
In this section we empirically evaluate our approach by assess-

ing its accuracy and efficiency on both real and synthetic graph
databases, and comparing it to a number of baselines.
Methods. We recall that our method corresponds to the Greedy

algorithm (Algorithm 1) equipped with the proposed Fast_MMPG

(Algorithm 2) to perform the marginal potential gain maximization
step. For the sake of brevity, in the following we denote our method
by Fast_MMPG only.

We compare our Fast_MMPG to three baselines. The first base-
line corresponds to the Greedy algorithm when equipped with a
brute-force method to maximize the marginal potential gain, i.e.,
a method that visits the whole specialization search space with-
out exploiting any finding devised in Section 3.3. Such a baseline,
denoted by Greedy_BF, is mainly aimed at efficiency evaluation.
The second baseline is the naïve method inspired by frequent sub-
graph mining and discussed in Section 3.1: this method selects the
most frequent k supergraphs of the input query as specializations.

vertices # edges # labels
database size min avg max min avg max vert. edges dens.
AIDS 10k 2 25 214 1 27 217 51 4 0.1
Financial 13k 5 14 34 4 14 46 45 68 0.2
Web 18k 2 8 48 1 7 53 639 8 0.3

Table 1: Characteristics of the real databases: number of graphs (size);
min, avg, and max number of graph vertices/edges; number of vertex/edge
labels; average density defined as |E|/

�|V |
2

�
, where |V | is the number of

vertices and |E| is the number of edges.

We refer to this baseline as k-freq. The third baseline is a method
that discovers subgraph features from the graph database, indexes
them, and, given a query Q, it returns the immediate (i.e., minimal)
supergraphs of Q among the features present in the index as spe-
cializations. In our implementation we extract discriminative yet
frequent features according to the state-of-the-art methods defined
in [33], while we use the well-known Lindex method [35] (with de-
fault parameter configuration) for indexing such features. We refer
to this baseline as Lindex.

All methods are implemented in Java 1.7, and the experiments
are performed on a i686 Intel Xeon E5-2440 2.40GHz, 125GB
RAM machine over Linux kernel v3.8.0, which we limit to 30GB
in all experiments. The graph database is loaded into main mem-
ory using the ParMol library [17]. We use a copy of Lindex kindly
provided by the authors of [35] both for the Lindex baseline and to
compute the DFS codes of all methods.

Real databases. We use real-world, publicly-available graph
databases, whose main characteristics are shown in Table 1. AIDS6

is a biological database extracted from the well-known AIDS
anti-viral screening dataset7 and traditionally used in the graph-
mining/database literature [7, 16, 27, 31]. Vertices and edges repre-
sent atom and atom bonds, respectively. Financial8 is a trans-
action workflow of loan-request processes submitted to a financial
institute. Every vertex represents a subprocess while edges corre-
spond to a resource exchanged between two processes. Web9 is a
workflow of web interactions between users and a recommender
system for restaurants. A vertex is a restaurant and an edge is a
browsing action.

Synthetic databases. We generate synthetic databases using the
popular GraphGen graph generator [8]10. We consider different
database and graph sizes in order to better assess the scalability of
our proposal (see Section 4.3).

Query generation. We generate random queries of various sizes.
To ensure non-empty answers, we start from a vertex of a graph
in the database (both sampled uniformly at random) and perform
a DFS from that vertex until the desired size has been reached.
DFS, compared to BFS, produces more diversified patterns. To have
meaningful specializations, we discard queries having too few re-
sults (i.e., with number of results less than the number k of output
specializations). For each set of experiments and parameter config-
uration, we report results averaged over 10 random queries.

4.1 Ruling out Greedy_BF and Lindex

Greedy_BF . In Figure 5 we report the running time of our
Fast_MMPG and the Greedy_BF baseline, using a synthetic
database generated with GraphGen [8], where we vary the database
size and set all other parameters to their default values.

6
www.cs.ucsb.edu/~xyan/software.htm

7
http://dtp.nci.nih.gov/docs/aids/aids_data.html.

8
www.win.tue.nl/bpi/2012/challenge

9
kdd.ics.uci.edu/databases/entree/entree.html

10
http://www.cse.ust.hk/graphgen/.

0.001$

0.01$

0.1$

1$

10$

100$

1000$

10$ 15$ 20$ 25$ 30$

!m
e(
s)
'

database'size'

Greedy_BF$ Fast_MMPG$

Figure 5: Running time of the proposed Fast_MMPG algorithm vs. the
brute-force Greedy_BF baseline.

0%#

20%#

40%#

60%#

80%#

100%#

2# 4# 6# 8# 10# 12# 14#

Fa
ili
ng
'q
ue

rie
s''

AIDS# Financial# Web#

0%#

20%#

40%#

60%#

80%#

100%#

5# 10# 15# 20# 25#

!"
#$

#%
&

'()
*+

#*
,''

AIDS# Financial# Web#

(a) query size (|Q|) (b) number of specializations (k)

Figure 6: Queries for which the Lindex baseline returns no specializations
with varying (a) query size (|Q|), and (b) number of specializations (k).

It is easy to see that Greedy_BF is not suitable for any real-
world settings: on even very small databases of 30 graphs it is four
orders of magnitude slower than Fast_MMPG, and we could not
run it on larger databases due to its excessive running time. For this
reason, we avoid to report efficiency results for Greedy_BF in the
remainder. In terms of accuracy, we recall that both Fast_MMPG

and Greedy_BF employ the greedy scheme in Algorithm 1 and
they both also optimally solve the sub-problem of maximizing the
marginal potential gain (for the optimality of our Fast_MMPG see
Theorem 4). As a consequence, they yield exactly the same results.
Lindex . All the indexes on graph databases proposed in the litera-
ture are expressively designed to split a query graph in features of
smaller size, in order to speed-up subgraph-search queries. Thus,
such indexes usually work well if the task is to find small-sized
subgraphs of the query graph, while being less suited for the task
of finding supergraphs. As a result, for queries of size exceed-
ing the size of the largest feature in the index, the Lindex baseline
would inevitably output an empty answer. As the features indexed
are usually of very small size, this actually happens very often.

Indeed, Figure 6 shows the percentage of queries for which no
specializations are found by Lindex. It can be observed that Lindex

fails in finding specializations in most cases, e.g., 100% of the times
for queries of size larger than 2 on the Financial and Web graphs.
This confirms that Lindex is not really suitable for the problem of
graph query reformulation we tackle in this work. For this purpose
(and due to lack of space), we avoid reporting further details on
Lindex in the remainder of this section.

4.2 Performance with varying parameters
Here we discuss the results of the evaluation on real datasets.

We perform tests with varying the main parameters involved in the
process: (i) size (i.e., number of edges) |Q| of the input query,
(ii) value of the regularization factor � (Equation (3)), and (iii)

number of output specializations k. We vary these parameters in the
following ranges: |Q| 2 [2, 14], � 2 [0, 0.5], k 2 [5, 25]. While
varying one parameter, we keep the other two fixed to (around) their
median values, i.e., we set |Q| = 6, � = 0.3, and k = 10.

We report running times (Figures 7) and quality (in terms of
objective-function value, Tables 2) of the proposed Fast_MMPG

algorithm and the baseline k-freq. Due to space limits, for running
times, we report results for two databases only (AIDS and Web).
We however observe similar results on the dataset omitted.

www.cs.ucsb.edu/~xyan/software.htm
http://dtp.nci.nih.gov/docs/aids/aids_data.html
www.win.tue.nl/bpi/2012/challenge
kdd.ics.uci.edu/databases/entree/entree.html
http://www.cse.ust.hk/graphgen/.

!"!#$

!"#$

#$

#!$

#!!$

!$ %$ &$ '$ ($ #!$ #%$#&$#'$

!"
#$

%
&

'
)*+,-../0$ 123456$

!"!!#$

!"!#$

!"#$

!$ %$ &$ '$ ($ #!$ #%$#&$#'$

!"
#$

%
&

'

)*+,-../0$ 123456$

!"#$

#$

#!$

!$!"%$!"&$!"'$

!"
#$

%
&

'

()*+,--./$ 012345$

!"!!#$

!"!#$

!"#$

!$!"%$!"&$!"'$

!"
#$

%
&

'

()*+,--./$ 012345$

!"

!#"

#" !#" $#" %#"

!"
#$

%
&

'

&'()*++,-" ./0123"

!"!!#$

!"!#$

!$ #!$ %!$ &!$

!"
#$

%
&

'

'()*+,,-.$ /01234$

AIDS Web

Figure 7: Running times of the proposed Fast_MMPG algorithm and the
k-freq baseline on the real datasets with varying query size |Q| (first row),
varying regularization factor ! (second row), and varying number of spe-
cializations k (third row), on datasets AIDS (left) and Web (right).

Query size (|Q|). Figure 7 (first row) reports the efficiency of
Fast_MMPG varying the query size. It can be observed that our
algorithm can easily handle all real databases, with running times
ranging from a few milliseconds (Web) to a few seconds (AIDS).
The difference in time observed through the various databases is
mainly due to the size of the graphs therein: the graphs in AIDS

are indeed generally larger than the other two databases. While
in most cases times decrease as query size increases (conveying
smaller result sets), this also depends on query type: a more com-
plex query can have smaller support set than a query with larger
size but simpler structure. The latter observation is supported by
AIDS dataset. Finally, the running times of our method are compa-
rable to the baseline k-freq: although this baseline employs a much
simpler scheme than our Fast_MMPG, and, as such, is expected
to run faster, we instead do not observe this in practice. The rea-
son is that, even though k-freq may visit less specializations than
Fast_MMPG, the ones visited by k-freq are top-frequent special-
izations for which a quite large number of subgraph isomorphisms
need to be performed. On the contrary, our Fast_MMPG algorithm
does not necessarily visit top-frequent specializations as diversity
is also considered.

The quality results are shown in Table 2 (a), where we report
the objective-function values of Fast_MMPG and k-freq, along
with the percentage gain achieved by Fast_MMPG over k-freq

(last row). In general, Fast_MMPG evidently outperforms k-freq,
with gain ranging from up to 40% on Web to 52% on AIDS (17%
and 34% on average). The reason of the larger improvement exhib-
ited on AIDS is likely due to the type of graphs contained in the
database: the graphs in AIDS are larger and more diversified than

the workflow graphs in Financial and Web, which are instead
more similar to one another and thus capture less results.

Finally, we generally observe that the objective-function value
decreases as the query size increases. This is expected since the
objective-function value is directly proportional to the number of
query results, and, clearly, the larger the query, the fewer the results.
Regularization factor (�). The running time of Fast_MMPG with
varying �, shown in Figure 7 (second row), follows a fluctuating
trend for smaller values of �, while converging for � > 0.1. In all
cases, the running time is again very small: it ranges from 3.2ms
(Web) to 3.6s (AIDS). Again, our Fast_MMPG is really close to
the baseline k-freq.

As far as accuracy reported in Table 2 (b), as expected, larger �
values lead to larger improvements by our Fast_MMPG over the
baseline. The motivation is that a larger value of � steers the objec-
tive function towards the maximization of diversity. Since coverage
is implicitly captured, as a side effect, by the top-k frequent special-
izations output by the k-freq baseline, the latter is unsurprisingly
closer to Fast_MMPG for values of � close to zero. However, we
restate that a value of � too small is not generally a good choice,
because it would practically correspond to ignore diversity, which
instead plays a key role, as extensively discussed above.
Number of specializations (k). The efficiency of Fast_MMPG

with varying the number of output specializations is reported in
Figure 7 (third row). Clearly, the running time is increasing as k

increases. However, the trends on all datasets are low exponential
in k, which attests the scalability of our method with respect to the
output size. Again, Fast_MMPG is really close to k-freq.

The quality results reported in Table 2 (c) show that, while be-
ing better than the baseline in all settings, Fast_MMPG exhibits
(slightly) decreasing gain as k increases. This is reasonable as
the greedy scheme of Fast_MMPG implies that the maximum
marginal-gain value gets progressively smaller as more specializa-
tions are added to the solution.

4.3 Scalability
We test the scalability of our Fast_MMPG algorithm (and the k-

freq baseline) on synthetic databases. Particularly, we analyze the
efficiency performance from two main perspectives, that is varying
(i) the database size (i.e., number of graphs), and (ii) the average
size (expressed as number of edges) of the graphs in the database.
To this end, we use GraphGen [8] to generate databases of sizes
in the range [25K, 250K] and average graph sizes in [10, 50]. All
other parameters are set to the default values suggested by the gen-
erator. The main parameter values are: number of vertex labels
(20), number of edge labels (20), average graph density (0.3), con-
sistently observed on our real datasets.

The results of this evaluation are reported in Figure 8. The main
message of the left figure is that Fast_MMPG can handle query
specialization in a database of 250K graphs in a few seconds. More
specifically, the trend is linear in the database size: the running time
ranges from almost 0.1s (25K graphs) to 2.2s (250K graphs). This
attests full scalability of Fast_MMPG on very large database sizes.

The scalability of Fast_MMPG is also confirmed by the exper-
iment with varying the graph size: our algorithm takes less than
one second for handling databases with average graph size of 50.
We remark that this value is far beyond the graph size that is com-
monly encountered in real-world scenarios (in our three real-world
databases, the average graph size is 4, 14 and 27 as reported in Ta-
ble 1). However, here Fast_MMPG (and k-freq too) is more sensi-
tive to changes than the previous experiment: this is expected since,
like most methods on querying graph databases, our technique re-
lies on subgraph-isomorphism, whose running time is notoriously

Table 2: Quality (in terms of the objective function f defined in Equation (3)) of the proposed Fast_MMPG algorithm and the k-freq baseline on real
databases with (a) varying the query size |Q|, (b) varying regularization factor ! , and (c) varying number of specializations k.

AIDS Financial Web

(a)

|Q| 2 4 6 8 10 12 14 2 4 6 8 10 12 14 2 4 6 8 10 12 14
Fast_MMPG 30 086 14 121 5 917 1 478 1 803 1 624 1 087 34 135 6 437 1 555 1 487 1 147 686 389 675 103 73 65 23 21 12
k-freq 22 818 11 435 4 336 795 1 317 786 621 33 865 5 800 1 224 830 956 581 274 557 88 43 63 19 19 10
gain (%) 24 19 27 46 27 52 43 1 10 21 44 17 15 30 18 15 40 3 18 8 15

AIDS Financial Web

(b)

! 0 0.01 0.05 0.1 0.5 0 0.01 0.05 0.1 0.5 0 0.01 0.05 0.1 0.5
Fast_MMPG 433 613 1 345 2 260 9 566 201 244 422 649 2 461 4 5.2 9.3 14.3 54.7
k-freq 409 540 1 063 1718 6 954 188 222 360 533 1 914 4 5 8.4 12.7 46.6
gain (%) 6 12 21 24 27 7 9 15 18 22 0 3 9 11 15

AIDS Financial Web

(c)

k 5 10 15 20 25 5 10 15 20 25 5 10 15 20 25
Fast_MMPG 1 791 5 917 12 462 21 235 32 029 629 1 555 2 904 4 630 6 645 12 35 68 99 134
k-freq 1 373 4 336 9 709 17 061 25 667 535 1 224 2 241 3 410 5 400 7 30 62 92 123
gain (%) 23 27 22 20 20 15 21 23 26 19 41 14 8 7 8

!"!!#$

!"!#$

!"#$

#$

#!$

!$ #!!$ %!!$ &!!$

!"
#$

%
&

'

'()*+,,-.$ /01234$

!"!!#$

!"!#$

!"#$

#$

!$ #!$ %!$ &!$ '!$ (!$)!$

!"
#$

%
&

'

*+,-.//01$ 234567$

(a) database size (in thousands) (b) average graph size

Figure 8: Scalability of the proposed Fast_MMPG algorithm on synthetic
databases: (a) running time vs. database size (avg graph size set to 30); (b)
running time vs. average graph size (database size set to 10K).

more affected by the size of the graph than the number of graphs,
as larger graphs typically lead to more isomorphisms.

4.4 Qualitative evaluation
We provide here some visual examples of the results produced

by our Fast_MMPG algorithm and the k-freq baseline. Figure 9a
shows a query issued to the AIDS dataset. The query corresponds
to a well-known chemical compound, i.e., formaldehyde. The spe-
cializations output by our Fast_MMPG correspond to chemical
compounds that span the search space horizontally, thus show-
ing non-overlapping molecules, among which one can recognize
two very common compounds of formaldehyde, namely formamide
(fourth specialization) and acetone (fifth specialization). On the
other hand, the k-freq specializations are very close to each other
(some of them are even subgraphs of other specializations, e.g., first
and fourth specialization): such specializations are therefore much
less informative than the ones found by our Fast_MMPG.

The second example on the Financial database (Figure 9b)
shows that methods based only on frequency (like k-freq) are not
suitable for capturing the various (diverse) alternatives from the re-
sults of a query. Indeed, once a frequent structure (specialization)
has been encountered, all other specializations are most likely gen-
erated starting from there, meaning that every subsequent special-
ization is a supergraph of the previous one. This is exactly what
happens with the specializations output by k-freq for the exam-
ple in Figure 9b. Instead, our Fast_MMPG returns specializations
whose common structure mostly corresponds to the query itself.

5. RELATED WORK
Querying graph databases. Efficient query answering (without
reformulation) in graph databases has been long studied. The types
of query considered include full-graph search [4], whose goal is

k-freq

Fast_MMPG

C O

O OH

C

O CH3

C

O Fe

C

O NH2

C

O

CH3

C

CH3

O CH3

C

O CH3

C C

O CH2

C C

O NH2

C

O CH2

C NH

Query

(a) AIDS

k-freq

Fast_MMPG

!"#$%&'&(
)*+(,*--*./ (0121(

!"#$%&'&(
3445(0678*.60(

!"#$%&'&(
)*+(,*--*./ (0121(

!"#$%&'&(
3445(0678*.60(

9'3:'(
)*+(,*--*./ (0121(

!"#$%&'&(
)*+(,*--*./ (0121(

!"#$%&'&(
3445(0678*.60(

9'3:'(
)*+(,*--*./ (0121(

!"#$%&'&(
)*+(,*--*./ (0121(

!"#$%&'&(
3445(0678*.60(

9'3:'(
)*+(,*--*./ (0121(

!"#$%&'&(
)*+(,*--*./ (0121(

!"#$%&'&(
3445(0678*.60(

9'3:'(
)*+(,*--*./ (0121(

9'3:'(
)*+(,*--*./ (0121(

!"#$%&'&(
)*+(,*--*./ (0121(

!"#$%&'&(
3445(0678*.60(

9'3:'(
)*+(,*--*./ (0121(

9'3:'(
)*+(,*--*./ (0121(

!"#$%&'&(
)*+(,*--*./ (0121(

!"#$%&'&(
3445(0678*.60(

9'3:'(
)*+(,*--*./ (0121(

!"#$%&'&(
)*+(,*--*./ (0121(

!"#$%&'&(
3445(0678*.60(

9'3:'(
)*+(,*--*./ (0121(

9!;&<=%&(
)*+(,*--*./ (0121(

!"#$%&'&(
)*+(,*--*./ (0121(

!"#$%&'&(
3445(0678*.60(

9'3:'(
)*+(,*--*./ (0121(

9!;&<=%&(
)*+(,*--*./ (0121(

!"#$%&'&(
3445($1>25(9?@,5(

!"#$%&'&(
)*+(,*--*./ (0121(

!"#$%&'&(
3445(0678*.60(

9'3:'(
)*+(,*--*./ (0121(

9!;&<=%&(
)*+(,*--*./ (0121(

!"#$%&'&(
3445($1>25(9?@,5(

!"#$%&'&(
3445(9?@,*A60(

!"#$%&'&(
)*+(,*--*./ (0121(

!"#$%&'&(
3445(0678*.60(

9'3:'(
)*+(,*--*./ (0121(

9!;&<=%&(
)*+(,*--*./ (0121(

!"#$%&'&(
3445($1>25(9?@,5(

!"#$%&'&(
3445(9?@,*A60(

Query

(b) Financial
Figure 9: Examples queries on the AIDS and Financial datasets and
the specializations returned by Fast_MMPG and k-freq (k = 5).

to retrieve all graphs that are isomorphic to the input query; sub-
graph/supergraph search [7, 8, 33], which finds all graphs that
are supergraph/subgraph of the input query; generalized subgraph
search [16], which is a generalization of subgraph search where
exact edge matching is replaced with the notion of path matching
constrained by a path length; similarity search [27], which aims at
returning all graphs that are similar enough to a given query.

This work treats subgraph-search queries and studies for the first
time the problem of finding specializations for this type of query.

Query reformulation. Query reformulation (also known as query
modification or query rewriting) is a classic problem in data mining,
databases, and information retrieval, whose main goal is to provide
the user with a set of alternative queries that may better capture her
search intent. Depending on the specific goal, query reformulation
is also referred to as query refinement [18], query relaxation [21],
query recommendation/suggestion [3], or query expansion [3].

Query reformulation has been studied for web-search queries [9],
as well as structured queries [18, 21] and keyword queries [34] on
structured databases. As far as web search, query reformulation
has also been used as a tool for a different problem, i.e., result
diversification, that is the problem of selecting a subset of query
results that are diverse from each other [10]. Diversity (along with

coverage) is also part of our objective function, but with a different
purpose: we want to find other patterns that identify diverse subsets
of the results of the original query rather than simply selecting a
number of diverse query results.

However, none of those contributions deal with graph queries:
to the best of our knowledge, this is the first work focusing on the
problem of query reformulation in graph databases.
Graph pattern mining. Finding patterns in graph databases is a
well-studied problem. Research in this field has mainly focused
on frequent subgraph mining [14, 22, 32], which aims at finding
all structures (usually subgraphs, but also trees or paths) that occur
frequently in the graphs of the database, and optimal graph pattern
mining, that is the problem of finding substructure(s) that maximize
a given quality function [20, 31].

A naïve approach to graph query reformulation might be to re-
sort to existing frequent-subgraph-mining methods: find the su-
pergraphs of the query that appear frequently in the database and
just interpret them as specializations (see Section 3.1). However,
we experimentally show the superiority of our proposal over this
frequent-subgraph-based approach in Section 4.
Result-set reduction in graph databases. The problem of reduc-
ing the answers to a query issued to a graph database has also re-
ceived some attention. Existing solutions rely on either clustering
the graphs in the result set [11, 15] (not to be confused with the
problem of clustering the vertices of a single graph) or returning
top-k representative results [24].

That problem follows the general line of overcoming information
overload, but is only marginally related to the problem tackled in
this work. Rather than aiming at reducing the result set, our query-
reformulation problem indeed asks for something more, i.e., we
want to output a set of reformulated (i.e., more specific) queries
that can help the user better comprehend the results and refine her
search. Existing approaches to result-set reduction cannot instead
output query reformulations, as our problem requires.

6. CONCLUSIONS
This paper studies the problem of query reformulation in graph

databases. Given a graph database and a query graph, the goal is to
produce a set of specializations, i.e., queries that are more specific
than the original query and, as such, capture a subset of its results
and represent a useful guidance for refining the user search.

We formalize our problem by asking for a set of k specializations
of the input query so as to maximize both coverage and diversity.
We characterize the hardness of the problem and show that it allows
a greedy algorithm with provable quality guarantees. We also de-
vise a principled strategy to efficiently solve the most critical step
of the greedy algorithm, i.e., finding the specialization maximizing
the marginal potential gain. Experiments on both real-world and
synthetic graph databases attest that our method runs in real-time,
scales well on large databases, and provides high-quality results.

7. REFERENCES
[1] C. C. Aggarwal and H. Wang. Managing and Mining Graph Data.

Springer, 2010.
[2] M. K. Anand, S. Bowers, and B. LudÃd’scher. Techniques for

efficiently querying scientific workflow provenance graphs. In EDBT,
pages 287–298, 2010.

[3] R. A. Baeza-Yates and B. A. Ribeiro-Neto. Modern Information
Retrieval - the concepts and technology behind search, Second
edition. Pearson Education Ltd., 2011.

[4] S. Berretti, A. D. Bimbo, and E. Vicario. Efficient matching and
indexing of graph models in content-based retrieval. TPAMI,
23(10):1089–1105, 2001.

[5] P. Boldi, F. Bonchi, C. Castillo, and S. Vigna. Query reformulation
mining: models, patterns, and applications. Inf. Retr., 14(3), 2011.

[6] A. Borodin, H. C. Lee, and Y. Ye. Max-sum diversification,
monotone submodular functions and dynamic updates. In PODS,
pages 155–166, 2012.

[7] J. Cheng, Y. Ke, A. W.-C. Fu, and J. X. Yu. Fast graph query
processing with a low-cost index. VLDBJ, 20(4):521–539, 2011.

[8] J. Cheng, Y. Ke, W. Ng, and A. Lu. Fg-index: Towards verification
free query processing on graph databases. In SIGMOD, 2007.

[9] V. Dang and B. W. Croft. Query reformulation using anchor text. In
WSDM, pages 41–50, 2010.

[10] M. Drosou and E. Pitoura. Disc diversity: Result diversification
based on dissimilarity and coverage. PVLDB, 6(1):13–24, 2012.

[11] M. Ferrer, E. Valveny, F. Serratosa, I. Bardají, and H. Bunke.
Graph-based k-means clustering: A comparison of the set median
versus the generalized median graph. In X. Jiang and N. Petkov,
editors, CAIP, volume 5702, pages 342–350. 2009.

[12] D. S. Hochbaum, editor. Approximation Algorithms for NP-hard
Problems. PWS Publishing Co., 1997.

[13] J. Huan, W. Wang, D. Bandyopadhyay, J. Snoeyink, J. Prins, and
A. Tropsha. Mining protein family specific residue packing patterns
from protein structure graphs. In RECOMB, pages 308–315, 2004.

[14] J. Huan, W. Wang, J. Prins, and J. Yang. SPIN: mining maximal
frequent subgraphs from graph databases. In KDD, 2004.

[15] X. Huang, H. Cheng, J. Yang, J. X. Yu, H. Fei, and J. Huan.
Semi-supervised clustering of graph objects: A subgraph mining
approach. In DASFAA, pages 197–212, 2012.

[16] W. Lin, X. Xiao, J. Cheng, and S. S. Bhowmick. Efficient algorithms
for generalized subgraph query processing. In CIKM, 2012.

[17] T. Meinl, M. Wörlein, O. Urzova, I. Fischer, and M. Philippsen. The
parmol package for frequent subgraph mining. ECEEASST, 1, 2007.

[18] C. Mishra and N. Koudas. Interactive query refinement. In EDBT,
pages 862–873, 2009.

[19] P. Missier, N. W. Paton, and K. Belhajjame. Fine-grained and
efficient lineage querying of collection-based workflow provenance.
In EDBT, pages 299–310, 2010.

[20] S. Morishita and J. Sese. Transversing itemset lattices with statistical
metric pruning. In SIGMOD, pages 226–236, 2000.

[21] D. Mottin, A. Marascu, S. B. Roy, G. Das, T. Palpanas, and
Y. Velegrakis. A probabilistic optimization framework for the
empty-answer problem. PVLDB, 6(14):1762–1773, 2013.

[22] S. Nijssen and J. N. Kok. A quickstart in frequent structure mining
can make a difference. In KDD, pages 647–652, 2004.

[23] S. A. Rahman et al. Small molecule subgraph detector (smsd) toolkit.
J. Cheminformatics, 1:1–12, 2009.

[24] S. Ranu, M. Hoang, and A. Singh. Answering top-k representative
queries on graph databases. In SIGMOD, pages 1163–1174, 2014.

[25] S. Y. Rieh and H. Xie. Analysis of multiple query reformulations on
the web: the interactive information retrieval context. Inf. Process.
Manage., 42(3), 2006.

[26] C. E. Scheidegger, H. T. Vo, D. Koop, J. Freire, and C. T. Silva.
Querying and re-using workflows with vstrails. In SIGMOD, 2008.

[27] H. Shang, X. Lin, Y. Zhang, J. X. Yu, and W. Wang. Connected
substructure similarity search. In SIGMOD, pages 903–914, 2010.

[28] A. Shokoufandeh and S. J. Dickinson. Graph-theoretical methods in
computer vision. In Theoretical Aspects of Computer Science, 2000.

[29] J. R. Ullmann. An algorithm for subgraph isomorphism. J. ACM,
23(1):31–42, 1976.

[30] L. G. Valiant. The complexity of computing the permanent. TCS,
8(2):189–201, 1979.

[31] X. Yan, H. Cheng, J. Han, and P. S. Yu. Mining significant graph
patterns by leap search. In SIGMOD, pages 433–444, 2008.

[32] X. Yan and J. Han. gSpan: Graph-based substructure pattern mining.
In ICDM, pages 721–724, 2002.

[33] X. Yan, P. S. Yu, and J. Han. Graph indexing based on discriminative
frequent structure analysis. TODS, 30(4):960–993, 2005.

[34] J. Yao, B. Cui, L. Hua, and Y. Huang. Keyword query reformulation
on structured data. In ICDE, 2012.

[35] D. Yuan and P. Mitra. Lindex: a lattice-based index for graph
databases. VLDBJ, 22(2):229–252, 2013.

	Introduction
	Problem statement
	Algorithms
	A naïve approach
	An approach with quality guarantees
	Maximizing the marginal potential gain

	Experiments
	Ruling out Greedy_BF and Lindex
	Performance with varying parameters
	Scalability
	Qualitative evaluation

	Related work
	Conclusions
	References

