
Accuracy of Approximate String Joins Using Grams

Oktie Hassanzadeh
University of Toronto
10 King’s College Rd.

Toronto, ON M5S3G4, Canada

oktie@cs.toronto.edu

Mohammad Sadoghi
University of Toronto
10 King’s College Rd.

Toronto, ON M5S3G4, Canada

mo@cs.toronto.edu

Renée J. Miller
University of Toronto
10 King’s College Rd.

Toronto, ON M5S3G4, Canada

miller@cs.toronto.edu

ABSTRACT
Approximate join is an important part of many data clean-
ing and integration methodologies. Various similarity mea-
sures have been proposed for accurate and efficient matching
of string attributes. The accuracy of the similarity measures
highly depends on the characteristics of the data such as the
amount and type of the errors and length of the strings. Re-
cently, there has been an increasing interest in using meth-
ods based on q-grams (substrings of length q) made out of
the strings, mainly due to their high efficiency. In this work,
we evaluate the accuracy of the similarity measures used
in these methodologies. We present an overview of several
similarity measures based on q-grams. We then thoroughly
compare their accuracy on several datasets with different
characteristics. Since the efficiency of approximate joins de-
pends on the similarity threshold they use, we study how the
value of the threshold (including values used in recent per-
formance studies) affects the accuracy of the join. We also
compare different measures based on the highest accuracy
they can achieve on different datasets.

1. INTRODUCTION
Data quality is a major concern in operational databases

and data warehouses. Errors may be present in the data due
to a multitude of reasons including data entry errors, lack of
common standards and missing integrity constraints. String
data is by nature more prone to such errors. Approximate
join is an important part of many data cleaning methodolo-
gies and is well-studied: given two large relations, identify
all pairs of records that approximately match. A variety of
similarity measures have been proposed for string data in
order to match records. Each measure has certain charac-
teristics that make it suitable for capturing certain types of
errors. By using a string similarity function sim() for the
approximate join algorithm, all pairs of records that have
similarity score above a threshold θ are considered to ap-
proximately match and are returned as the output.

Performing approximate join on a large relation is a noto-

Permission to copy without fee all or part of this material isgranted provided
that the copies are not made or distributed for direct commercial advantage,
the VLDB copyright notice and the title of the publication and its date appear,
and notice is given that copying is by permission of the Very Large Data
Base Endowment. To copy otherwise, or to republish, to post on servers
or to redistribute to lists, requires a fee and/or special permission from the
publisher, ACM.
VLDB ‘07,September 23-28, 2007, Vienna, Austria.
Copyright 2007 VLDB Endowment, ACM 978-1-59593-649-3/07/09.

riously time-consuming task. Recently, there has been an in-
creasing interest in using approximate join techniques based
on q-grams (substrings of length q) made out of the strings.
Most of the efficient approximate join algorithms (which we
describe in Section 2) are based on using a specific similarity
measure, along with a fixed threshold value to return pairs of
records whose similarity is greater than the threshold. The
effectiveness of the majority of these algorithms depends on
the value of the threshold used. However, there has been
little work studying the accuracy of the join operation. The
accuracy is known to be dataset-dependent and there is no
common framework for evaluation and comparison of accu-
racy of different similarity measures and techniques. This
makes comparing their accuracy a difficult task. Neverthe-
less, we argue that it is possible to evaluate relative perfor-
mance of different measures for approximate joins by using
datasets containing different types of known quality prob-
lems such as typing errors and differences in notation and
abbreviations.

In this paper, we present an overview of several similarity
measures for approximate string joins using q-grams and
thoroughly evaluate their accuracy for different values of
thresholds and on datasets with different amount and types
of errors. Our results include:

• We show that for all similarity measures, the value of
the threshold that results in the most accurate join
highly depends on the type and amount of errors in
the data.

• We compare different similarity measures by compar-
ing the maximum accuracy they can achieve on dif-
ferent datasets using different thresholds. Although
choosing a proper threshold for the similarity measures
without a prior knowledge of the data characteristics
is known to be a difficult task, our results show which
measures can potentially be more accurate assuming
that there is a way to determine the best threshold.
Therefore, an interesting direction for future work is
to find an algorithm for determining the value of the
threshold for the most accurate measures.

• We show how the amount and type of errors affect the
best value of the threshold. An interesting result of
this is that many previously proposed algorithms for
enhancing the performance of the join operation and
making it scalable for large datasets are not effective
enough in many scenarios, since the performance of
these algorithms highly depends on choosing a high
value for the threshold which could result in a very

low accuracy. Our evaluation shows the effectiveness
of those join algorithms that are less sensitive to the
value of the threshold and opens another interesting
direction for future work which is finding algorithms
that are both efficient and accurate using the same
threshold.

The paper is organized as follows. In Section 2, we overview
related work on approximate joins. We describe in detail the
approximate join algorithms we will evaluate and compare
in Section 3, along with the similarity measures used. Sec-
tion 4 presents a thorough evaluation of these algorithms
and measures and finally, Section 5 concludes the paper and
explains future directions.

2. RELATED WORK
Approximate join also known as similarity join or record

linkage has been extensively studied in the literature. Sev-
eral similarity measures for string data have been proposed
[14, 4, 5]. A recent survey [9], presents an excellent overview
of different types of string similarity measures. Recently,
there has been an increasing interest in using measures from
the Information Retrieval (IR) field along with q-grams made
out of strings [10, 6, 2, 18, 5]. In this approach, strings are
treated as documents and q-grams are treated as tokens in
the documents. This makes it possible to take advantage
of several indexing techniques as well as various algorithms
that have been proposed for efficient set-similarity joins.
Furthermore, these measures can be implemented declar-
atively over a DBMS with vanilla SQL statements [5].

Recent work addresses the problem of efficiency and scal-
ability of the similarity join operations for large datasets [6,
2, 18]. Many techniques are proposed for set-similarity join,
which can be used along with q-grams for the purpose of
(string) similarity joins. Most of the techniques are based
on the idea of creating signatures for sets (strings) to re-
duce the search space. Some signature generations schemes
are derived from dimensionality reduction for the similar-
ity search problem in high dimensional space. One efficient
approach uses the idea of Locality Sensitive Hashing (LSH)
[13] in order to hash similar sets into the same value with
high probability and therefore is an approximate solution to
the problem. Arasu et al. [2] propose algorithms specifically
for set-similarity joins that are exact and outperform pre-
vious approximation methods in their framework, although
parameters of the algorithms require extensive tuning. An-
other class of work is based on using indexing algorithms,
primarily derived from IR optimization techniques. A recent
proposal in this area [3] presents algorithms based on novel
indexing and optimization strategies that do not rely on ap-
proximation or extensive parameter tuning and outperform
previous state-of-the-art approaches. More recently, Li et
al. [15] propose VGRAM, a technique based on the idea of
using variable-length grams instead of q-grams. At a high
level, it can be viewed as an efficient index structure over the
collection of strings. VGRAM can be used along with pre-
viously proposed signature-based algorithms to significantly
improve their efficiency.

Most of the techniques described above mainly address the
scalability of the join operation and not the accuracy. The
choice of the similarity measure is often limited in these algo-
rithms. The signature-based algorithm of [6] also considers
accuracy by introducing a novel similarity measure called

fuzzy match similarity and creating signatures for this mea-
sure. However, accuracy of this measure is not compared
with other measures. In [5], several such similarity mea-
sures are benchmarked for approximate selection, which is
a special case of similarity join. Given a relation R, the
approximate selection operation, using similarity predicate
sim(), will report all tuples t ∈ R such that sim(tq, t) ≥ θ,
where θ is a specified numerical similarity threshold and tq is
a query string. While several predicates are introduced and
benchmarked in [5], the extension of approximate selection
to approximate joins is not considered. Furthermore, the
effect of threshold values on accuracy for approximate joins
is also not considered.

3. FRAMEWORK
In this section, we explain our framework for similarity

join. The similarity join of two relations R = {ri : 1 ≤
i ≤ N1} and S = {sj : 1 ≤ j ≤ N2} outputs a set of pairs
(ri, sj) ∈ R×S where ri and sj are similar records. Two
records are considered similar when their similarity score
based a similarity function sim() is above a threshold θ. For
the definitions and experiments in this paper, we assume we
are performing a self-join on relation R. Therefore the out-
put is a set of pairs (ri, rj) ∈ R×R where sim(ri, rj) ≥ θ for
some similarity function sim() and a threshold θ. This is a
common operation in many applications such as entity res-
olution and clustering. In keeping with many approximate
join methods, we model records as strings. We denote by r

the set of q-grams (sequences of q consecutive characters of
a string) in r. For example, for t=‘db lab’, t={‘db ’ ,‘b l’,‘
la’, ‘lab’} for tokenization using 3-grams. In certain cases, a
weight may be associated with each token that reflects the
commonality of the token in the relation.

The similarity measures discussed here are those based
on q-grams created out of strings along with a similarity
measure that has been shown to be effective in previous
work [5]. These measures share one or both of the following
properties:

• High scalability: There are various techniques pro-
posed in the literature as described in Section 2 for
enhancing the performance of the similarity join oper-
ation using q-grams along with these measures.

• High accuracy: Previous work has shown that in most
scenarios these measures perform better or equally well
in terms of accuracy when compared with other string
similarity measures. Specifically, these measures have
shown good accuracy in name-matching tasks [8] or in
approximate selection [5].

3.1 Edit Similarity
Edit-distance is widely used as the measure of choice in

many similarity join techniques. Specifically, previous work
[10] has shown how to use q-grams for an efficient imple-
mentation of this measure in a declarative framework. Re-
cent work on enhancing performance of similarity join has
also proposed techniques for scalable implementation of this
measure [2, 15].

Edit distance between two string records r1 and r2 is de-
fined as the transformation cost of r1 to r2, tc(r1, r2), which
is equal to the minimum cost of edit operations applied to
r1 to transform it to r2. Edit operations include character

copy, insert, delete and substitute [11]. The edit similarity is
defined as:

simedit(r1, r2) = 1 −
tc(r1, r2)

max{|r1|, |r2|}
(1)

There is a cost associated with each edit operation. There
are several cost models proposed for edit operations for this
measure. The most commonly used measure called Leven-
shtein edit distance, which we will refer to as edit distance
in this paper, uses unit cost for all operations except copy
which has zero cost.

3.2 Jaccard and Weighted Jaccard
Jaccard similarity is the fraction of tokens in r1 and r2

that are present in both. Weighted Jaccard similarity is the
weighted version of Jaccard similarity, i.e.,

simWJaccard(r1, r2) =

∑

t∈r1∩r2
wR(t)

∑

t∈r1∪r2
wR(t)

(2)

where wR(t) is a weight function that reflects the common-
ality of the token t in the relation R. We choose RSJ
(Robertson-Sparck Jones) weight for the tokens which was
shown to be more effective than the commonly-used Inverse
Document Frequency (IDF) weights [5]:

wR(t) = log

(

N − nt + 0.5

nt + 0.5

)

(3)

where N is the number of tuples in the base relation R and
nt is the number of tuples in R containing the token t.

3.3 Measures from IR
A well-studied problem in information retrieval is the prob-

lem of given a query and a collection of documents, return
the most relevant documents to the query. In the measures
in this part, records are treated as documents and q-grams
are seen as words (tokens) of the documents. Therefore, the
same techniques for finding relevant documents to a query
can be used to return similar records to a query string. In
the rest of this section, we present three measures that have
been shown to have higher performance for the approximate
selection problem [5].

3.3.1 Cosine w/tf-idf
The tf-idf cosine similarity is a well established measure in

the IR community which leverages the vector space model.
This measure determines the closeness of the input strings
r1 and r2 by first transforming the strings into unit vectors
and then measuring the angle between their corresponding
vectors. The cosine similarity with tf-idf weights is given
by:

simCosine(r1, r2) =
∑

t∈r1∩r2

wr1(t) · wr2(t) (4)

where wr1(t) and wr2(t) are the normalized tf-idf weights
for each common token in r1 and r2 respectively. The nor-
malized tf-idf weight of token t in a given string record r is
defined as follows:

wr(t) =
w′

r(t)
√

∑

t′∈r
w′

r(t′)2
, w

′
r(t) = tfr(t) · idf(t)

where tfr(t) is the term frequency of token t within string
r and idf(t) is the inverse document frequency with respect
to the entire relation R.

3.3.2 BM25
The BM25 similarity score for a query r1 and a string

record r2 is defined as follows:

simBM25(r1, r2) =
∑

t∈r1∩r2

ŵr1(t) · wr2(t) (5)

where

ŵr1(t) =
(k3+1)·tfr1 (t)

k3+tfr1 (t)

wr2(t) = w
(1)
R (t)

(k1+1)·tfr2 (t)

K(r2)+tfr2 (t)

and w
(1)
R is the RSJ weight:

w
(1)
R (t) = log

(

N−nt+0.5
nt+0.5

)

K(r) = k1

(

(1 − b) + b
|r|

avgrl

)

where tfr(t) is the frequency of the token t in string record
r, |r| is the number of tokens in r, avgrl is the average
number of tokens per record, N is the number of records in
the relation R, nt is the number of records containing the
token t and k1, k3 and b are set of independent parameters.
We set these parameters based on TREC-4 experiments [17]
where k ∈ [1, 2], k3 = 8 and b ∈ [0.6, 0.75].

3.3.3 Hidden Markov Model
The approximate string matching could be modeled by

a discrete Hidden Markov process which has been shown
to have better performance than Cosine w/tf-idf in the IR
literature [16] and high accuracy and low running time for
approximate selection [5]. This particular Markov model
consists of only two states where the first state models the
tokens that are specific to one particular “String” and the
second state models the tokens in the “General English”,
i.e., tokens that are common in many records. Refer to [5]
and [16] for a complete description of the model and possible
extensions.

The HMM similarity function accepts two string records
r1 and r2 and returns the probability of generating r1 given
r2 is a similar record:

simHMM (r1, r2) =
∏

t∈r1

(a0P (t|GE) + a1P (t|r2)) (6)

where a0 and a1 = 1− a0 are the transition states probabil-
ities of the Markov model and P (t|GE) and P (t|r2) is given
by:

P (t|r2) =
number of times t appears in r2

|r2|

P (t|GE) =

∑

r∈R
number of times t appears in r

∑

r∈R
|r|

3.4 Hybrid Measures
The implementation of these measures involves two simi-

larity functions, one that compares the strings by comparing

their word tokens and another similarity function which is
more suitable for short strings and is used for comparison of
the word tokens.

3.4.1 GES
The generalized edit similarity (GES) [7] which is a mod-

ified version of fuzzy match similarity presented in [6], takes
two strings r1 and r2, tokenizes the strings into a set of
words and assigns a weight w(t) to each token. GES defines
the similarity between the two given strings as a minimum
transformation cost required to convert string r1 to r2 and
is given by:

simGES(r1, r2) = 1 − min

(

tc(r1, r2)

wt(r1)
, 1.0

)

(7)

where wt(r1) is the sum of weights of all tokens in r1 and
tc(r1, r2) is the minimum cost of a sequence of the following
transformation operations:

• token insertion: inserting a token t in r1 with cost
w(t).cins where cins is the insertion factor constant and
is in the range between 0 and 1. In our experiments,
cins = 1.

• token deletion: deleting a token t from r1 with cost
w(t).

• token replacement: replacing a token t1 by t2 in r1

with cost (1 − simedit(t1, t2)) · w(t) where simedit is
the edit-distance between t1 and t2.

3.4.2 SoftTFIDF
SoftTFIDF is another hybrid measure proposed by Cohen

et al. [8], which relies on the normalized tf-idf weight of word
tokens and can work with any arbitrary similarity function
to find the similarity between word tokens. In this measure,
the similarity score, simSoftTF IDF , is defined as follows:

∑

t1∈C(θ,r1 ,r2)

w(t1, r1)·w(arg max
t2∈r2

(sim(t1, t2)), r2)· max
t2∈r2

(sim(t1, t2))

(8)

where w(t, r) is the normalized tf-idf weight of word token
t in record r and C(θ, r1, r2) returns a set of tokens t1 ∈ r1

such that for t2 ∈ r2 we have sim(t1, t2) > θ for some sim-
ilarity function sim() suitable for comparing word strings.
In our experiments sim(t1, t2) is the Jaro-Winkler similarity
as suggested in [8].

4. EVALUATION

4.1 Datasets
In order to evaluate the effectiveness of different simi-

larity measures described in previous section, we use the
same datasets used in [5]. These datasets were created us-
ing a modified version of the UIS data generator, which
has previously been used for the evaluation of data clean-
ing and record linkage techniques [12, 1]. The data gen-
erator has the ability to inject several types of errors into
a clean database of string attributes. These errors include
commonly occurring typing mistakes (edit errors: character
insertion, deletion, replacement and swap), token swap and
abbreviation errors (e.g., replacing Inc. with Incorporated

and vice versa). The data generator has several parameters
to control the injected error in the data such as the size of

Percentage of
Group Name Erroneous Errors in Token Abbr.

Duplicates Duplicates Swap Error

Dirty D1 90 30 20 50
D2 50 30 20 50

Medium M1 30 30 20 50
Error M2 10 30 20 50

M3 90 10 20 50
M4 50 10 20 50

Low L1 30 10 20 50
Error L2 10 10 20 50

AB 50 0 0 50
Single TS 50 0 20 0
Error EDL 50 10 0 0

EDM 50 20 0 0
EDH 50 30 0 0

Table 1: Datasets Used in the Experiments

the dataset to be generated, the distribution of duplicates
(uniform, Zipfian or Poisson), the percentage of erroneous
duplicates, the extent of error injected in each string, and
the percentage of different types of errors. The data genera-
tor keeps track of the duplicate records by assigning a cluster
ID to each clean record and to all duplicates generated from
that clean record.

For the results presented in this paper, the datasets are
generated by the data generator out of a clean dataset of
2139 company names with average record length of 21.03
and an average of 2.9 words per record. The errors in
the datasets have a uniform distribution. For each dataset,
on average 5000 dirty records are created out of 500 clean
records. We have also run experiments on datasets gener-
ated using different parameters. For example, we generated
data using a Zipfian distribution, and we also used data from
another clean source (DBLP titles) as in [5]. We also cre-
ated larger datasets. For these other datasets, the accuracy
trends remain the same. Table 1 shows the description of
all the datasets used for the results in this paper. We used
8 different datasets with mixed types of errors (edit errors,
token swap and abbreviation replacement). Moreover, we
used 5 datasets with only a single type of error (edit errors,
token swap or abbreviation replacement errors) to measure
the effect of each type of error individually. Following [5],
we believe the errors in these datasets are highly represen-
tative of common types of errors in databases with string
attributes.

4.2 Measures
We use well-known measures from IR, namely precision,

recall, and F1, for different values of the threshold to evalu-
ate the accuracy of the similarity join operation. We perform
a self-join on the input table using a similarity measure with
a fixed threshold θ. Precision (Pr) is defined as the percent-
age of similar records among the records that have a simi-
larity score above the threshold θ. In our datasets, similar
records are marked with the same cluster ID as described
above. Recall (Re) is the ratio of the number of similar
records that have similarity score above the threshold θ to
the total number of similar records. Therefore, a join that
returns all the pairs of records in the two input tables as
output has low (near zero) precision and recall of 1. A join
that returns an empty answer has precision 1 and zero re-
call. The F1 measure is the harmonic mean of precision and

Figure 3: Maximum F1 score for different measures

on datasets with only edit errors

recall, i.e.,

F1 =
2 × Pr × Re

Pr + Re
(9)

We measure precision, recall, and F1 for different values of
the similarity threshold θ. For comparison of different sim-
ilarity measures, we use the maximum F1 score across dif-
ferent thresholds.

4.3 Results
Figures 1 and 2 show the precision, recall, and F1 values

for all measures described in Section 3, over the datasets we
have defined with mixed types of errors. For all measures
except HMM and BM25, the horizontal axis of the preci-
sion/recall graph is the value of the threshold. For HMM
and BM25, the horizontal axis is the percentage of maximum
value of the threshold, since these measure do not return a
score between 0 and 1.
Effect of amount of errors As shown in the precision/recall
curves in Figures 1 and 2, the “dirtiness” of the input data
greatly affects the value of the threshold that results in the
most accurate join. For all the measures, a lower value of
the threshold is needed as the degree of error in the data
increases. For example, Weighted Jaccard achieves the best
F1 score over the dirtiest datasets with threshold 0.3, while
it achieves the best F1 for the cleanest datasets at threshold
0.55. BM25 and HMM are less sensitive and work well on
both dirty and low-error datasets with the same value of the
threshold. We will discuss later how the degree of error in
the data affects the choice of the most accurate measure.
Effect of types of errors Figure 3 shows the maximum
F1 score for different values of the threshold for different
measures on datasets containing only edit-errors (the EDL,

EDM and EDH datasets). These figures show that weighted
Jaccard and Cosine have the highest accuracy followed by
Jaccard, and edit similarity on the low-error dataset EDL.
By increasing the amount of edit error in each record, HMM
performs as well as weighted Jaccard, although Jaccard, edit
similarity, and GES perform much worse on high edit error
datasets. Considering the fact that edit-similarity is mainly
proposed for capturing edit errors, this shows the effective-
ness of weighted Jaccard and its robustness with varying
amount of edit errors. Figure 4 shows the effect of token
swap and abbreviation errors on the accuracy of different
measures. This experiment indicates that edit similarity is
not capable of modeling such types of errors. HMM, BM25
and Jaccard also are not capable of modeling abbreviation
errors properly.

Figure 4: Maximum F1 score for different measures

on datasets with only token swap and abbreviation

errors

Figure 5: Maximum F1 score for different measures

on dirty, medium and low-error group of datasets

Comparison of measures Figures 5 shows the maximum
F1 score for different values of the threshold for different
measures on dirty, medium and low-error datasets. Here,
we have aggregated the results for all the dirty data sets
together (respectively, the moderately dirty or medium data
sets and the low error data sets). The results show the
effectiveness and robustness of weighted Jaccard and cosine
in comparison with other measures. Again, HMM is among
the most accurate measures when the data is extremely dirty
and has relatively low accuracy when the percentage of error
in the data is low.
Remark As stated in Section 2, the performance of many
algorithms proposed for improving scalability of the join op-
eration highly depends on the value of similarity threshold
used for the join. Here we show the accuracy numbers on
our datasets using the value of the threshold that makes
these algorithms effective. Specifically we address the re-
sults in [2] although similar observations can be made for
results of other similar work in this area. Table 2 shows the
F1 value for thresholds that results in the best accuracy on
our datasets and the best performance in experimental re-
sults of [2]. PartEnum and WtEnum algorithms presented
in [2] significantly outperform previous algorithms for 0.9
threshold, but have roughly the same performance as previ-
ously proposed algorithms such as LSH when threshold 0.8
or less is used. The results in Table 2 show that there is a
big gap between the value of the threshold that results in the
most accurate join on our datasets and the threshold that
results in the effectiveness of PartEnum and WtEnum in
the studies in [2].

Jaccard Join Weighted Jaccard Join
Threshold F1 Threshold F1

0.5 (Best Acc.) 0.293 0.3 (Best Acc.) 0.528
0.8 0.249 0.8 0.249

Dirty 0.85 0.248 0.85 0.246
0.9 (Best Performance) 0.247 0.9 (Best Performance) 0.244

0.65 (Best Acc.) 0.719 0.55 (Best Acc.) 0.776
Medium 0.8 0.611 0.8 0.581
Error 0.85 0.571 0.85 0.581

0.9 (Best Performance) 0.548 0.9 (Best Performance) 0.560
0.7 (Best Acc.) 0.887 0.55 (Best Acc.) 0.929

Low 0.8 0.854 0.8 0.831
Error 0.85 0.831 0.85 0.819

0.9 (Best Performance) 0.812 0.9 (Best Performance) 0.807

Table 2: F1 score for thresholds that result in best running time in previous performance studies and highest

accuracy on our datasets for two selected similarity measures

5. CONCLUSION
We have presented an overview of several similarity mea-

sures for efficient approximate string joins and thoroughly
evaluated their accuracy on several datasets with different
characteristics and common quality problems. Our results
show the effect of the amount and type of errors in the
datasets, along with the value of the similarity threshold
used for the similarity measures, on the accuracy of the
join operation. Considering the fact that the effectiveness of
many algorithms proposed for enhancing the scalability of
approximate join rely on the value chosen for the similarity
threshold, our results show the effectiveness of those algo-
rithms that are less sensitive to the value of the threshold
and opens an interesting direction for future work which is
finding algorithms that are both efficient and accurate using
the same threshold. Finding an algorithm that determines
the best value of the threshold (regardless of the type and
amount of errors) for the similarity measures that showed
higher accuracy in our work is another interesting subject
for future work.

6. REFERENCES
[1] P. Andritsos, A. Fuxman, and R. J. Miller. Clean

answers over dirty databases: A probabilistic
approach. In ICDE’06, page 30.

[2] A. Arasu, V. Ganti, and R. Kaushik. Efficient exact
set-similarity joins. In VLDB’06, pages 918–929.

[3] R. J. Bayardo, Y. Ma, and R. Srikant. Scaling up all
pairs similarity search. In WWW’07, pages 131–140.

[4] M. Bilenko, R. Mooney, W. Cohen, P. Ravikumar, and
S. Fienberg. Adaptive name matching in information
integration. IEEE Intelligent Systems, 18(5):16–23,
2003.

[5] A. Chandel, O. Hassanzadeh, N. Koudas, M. Sadoghi,
and D. Srivastava. Benchmarking declarative
approximate selection predicates. In SIGMOD’07,
pages 353–364.

[6] S. Chaudhuri, K. Ganjam, V. Ganti, and R. Motwani.
Robust and efficient fuzzy match for online data
cleaning. In SIGMOD’03, pages 313–324.

[7] S. Chaudhuri, V. Ganti, and R. Kaushik. A primitive
operator for similarity joins in data cleaning. In ICDE
’06, page 5.

[8] W. W. Cohen, P. Ravikumar, and S. E. Fienberg. A
comparison of string distance metrics for
name-matching tasks. In IIWeb’03, pages 73–78.

[9] A. K. Elmagarmid, P. G. Ipeirotis, and V. S. Verykios.
Duplicate record detection: A survey. IEEE TKDE,
19(1):1–16, 2007.

[10] L. Gravano, P. G. Ipeirotis, H. V. Jagadish,
N. Koudas, S. Muthukrishnan, and D. Srivastava.
Approximate string joins in a database (almost) for
free. In VLDB’01, pages 491–500.

[11] D. Gusfield. Algorithms on strings, trees, and
sequences: computer science and computational
biology. Cambridge University Press, New York, NY,
USA, 1997.

[12] M. A. Hernández and S. J. Stolfo. Real-world data is
dirty: Data cleansing and the merge/purge problem.
Data Mining and Knowledge Discovery, 2(1):9–37,
1998.

[13] Indyk, Motwani, Raghavan, and Vempala.
Locality-preserving hashing in multidimensional
spaces. In STOC’97, pages 618–625.

[14] N. Koudas and D. Srivastava. Approximate joins:
Concepts and techniques. In VLDB’05 Tutorial, page
1363.

[15] C. Li, B. Wang, and X. Yang. Vgram: Improving
performance of approximate queries on string
collections using variable-length grams. In VLDB’07,
pages 303–314.

[16] D. R. H. Miller, T. Leek, and R. M. Schwartz. A
hidden markov model information retrieval system. In
SIGIR’99, pages 214–221.

[17] S. E. Robertson, S. Walker, M. Hancock-Beaulieu,
M. Gatford, and A. Payne. Okapi at trec-4. In
TREC’95.

[18] S. Sarawagi and A. Kirpal. Efficient set joins on
similarity predicates. In SIGMOD’04, pages 743–754.

(a) Low Error Data Sets (b) Medium Error Data Sets (c) Dirty Data Sets
Edit Similarity

(a) Low Error Data Sets (b) Medium Error Data Sets (c) Dirty Data Sets
Jaccard

(a) Low Error Data Sets (b) Medium Error Data Sets (c) Dirty Data Sets
Weighted Jaccard

Figure 1: Accuracy of Edit-Similarity, Jaccard and Weighted Jaccard measures relative to the value of the

threshold on different datasets

(a) Low Error Data Sets (b) Medium Error Data Sets (c) Dirty Data Sets
Cosine w/tf-idf

(a) Low Error Data Sets (b) Medium Error Data Sets (c) Dirty Data Sets
BM25

(a) Low Error Data Sets (b) Medium Error Data Sets (c) Dirty Data Sets
HMM

(a) Low Error Data Sets (b) Medium Error Data Sets (c) Dirty Data Sets
SoftTFIDF

(a) Low Error Data Sets (b) Medium Error Data Sets (c) Dirty Data Sets
GES

Figure 2: Accuracy of measures from IR and hybrid measures relative to the value of the threshold on

different datasets

