

Towards a Benchmark for ETL Workflows

Panos Vassiliadis Anastasios Karagiannis Vasiliki Tziovara Alkis Simitsis
Dept. of Computer Science, Univ. of Ioannina

Ioannina, Hellas
IBM Almaden Research Center

San Jose, California, USA
{pvassil, ktasos, vickit}@cs.uoi.gr asimits@us.ibm.com

ABSTRACT
Extraction–Transform–Load (ETL) processes comprise complex
data workflows, which are responsible for the maintenance of a
Data Warehouse. Their practical importance is denoted by the fact
that a plethora of ETL tools currently constitutes a multi-million
dollars market. However, each one of them follows a different
design and modeling technique and internal language. So far, the
research community has not agreed upon the basic characteristics
of ETL tools. Hence, there is a necessity for a unified way to
assess ETL workflows. In this paper, we investigate the main
characteristics and peculiarities of ETL processes and we propose
a principled organization of test suites for the problem of
experimenting with ETL scenarios.

1. INTRODUCTION
Data Warehouses (DW) are collections of data coming from
different sources, used mostly to support decision-making and
data analysis in an organization. To populate a data warehouse
with up-to-date records that are extracted from the sources, special
tools are employed, called Extraction – Transform – Load (ETL)
tools, which organize the steps of the whole process as a
workflow. To give a general idea of the functionality of these
workflows we mention their most prominent tasks, which include:
(a) the identification of relevant information at the source side; (b)
the extraction of this information; (c) the transportation of this
information to the Data Staging Area (DSA), where most of the
transformation usually take place; (d) the transformation, (i.e.,
customization and integration) of the information coming from
multiple sources into a common format; (e) the cleansing of the
resulting data set, on the basis of database and business rules; and
(f) the propagation and loading of the data to the data warehouse
and the refreshment of data marts.

Due to their importance and complexity (see [1, 12] for relevant
discussions and case studies), ETL tools constitute a multi-million
market. There is a plethora of commercial ETL tools available.
The traditional database vendors provide ETL solutions built in
the DBMS’s: IBM with WebSphere DataStage [5], Microsoft
with SQL Server 2005 Integration Services (SSIS) [7], and Oracle
with Oracle Warehouse Builder [8]. There also exist independent
vendors that cover a large part of the market (e.g., Informatica
with Powercenter 8 [6]). Nevertheless, an in-house development
of the ETL workflow is preferred in many data warehouse

projects, due to the significant cost of purchasing and maintaining
an ETL tool. The spread of existing solutions comes with a major
drawback. Each one of them follows a different design approach,
offers a different set of transformations, and provides a different
internal language to represent essentially similar necessities.

The research community has only recently started to work on
problems related to ETL tools. There have been several efforts
towards (a) modeling tasks and the automation of the design
process, (b) individual operations (with duplicate detection being
the area with most of the research activity) and (c) some first
results towards the optimization of the ETL workflow as a whole
(as opposed to optimal algorithms for their individual
components). For lack of space, we refer the interested reader to
[11] for a detailed survey on research efforts in the area of ETL
tools and to [14] for a survey on duplicate detection.

The wide spread of industrial and ad-hoc solutions combined with
the absence of a mature body of knowledge from the research
community is responsible for the absence of a principled
foundation of the fundamental characteristics of ETL workflows
and their management. Here is a small list of shortages
concerning these fundamental characteristics: no principled
taxonomy of individual activities is present, few research efforts
have been made towards the optimization of ETL workflows as a
whole, and, practical problems like the recovery from failures
have mostly been ignored. To add a personal touch to this
landscape, in various occasions during our research, we have
faced the problem of constructing ETL suites and varying several
parameters of them; unfortunately, there is no commonly agreed
benchmark for ETL workflows. Thus, a commonly agreed,
realistic framework for experimentation is also absent.

In this paper, we take a step towards this latter issue. Our goal is
to provide a principled categorization of test suites for the
problem of experimenting with a broad range of ETL workflows.
First, we provide a principled way for constructing ETL
workflows. We identify the main functionality provided by
representative commercial ETL tools and we categorize the most
frequent ETL operations into abstract logical activities. Based on
that, we propose a categorization of ETL workflows, which covers
frequent design cases. Then, we describe the main configuration
parameters and a set of crucial measures to be monitored in order
to capture the generic functionality of ETL tools. Also, we discuss
how different parallelism techniques may affect the execution of
ETL processes. Finally, we provide a set of specific ETL
scenarios based on the aforementioned analysis, which can be
used as an experimental testbed for the evaluation of ETL
methods or tools.

Contributions. Our main contributions are as follows:

− A principled way of constructing ETL workflows based on an
abstract categorization of frequently used ETL operations.

Permission to copy without fee all or part of this material is granted
provided that the copies are not made or distributed for direct commercial
advantage, the VLDB copyright notice and the title of the publication and its
date appear, and notice is given that copying is by permission of the Very
Large Database Endowment. To copy otherwise, or to republish, to post on
servers or to redistribute to lists, requires a fee and/or special permissions
from the publisher, ACM.
VLDB ’07, September 23-28, 2007, Vienna, Austria.
Copyright 2007 VLDB Endowment, ACM 978-1-59593-649-3/07/09.

− The provision of a set of measures and parameters, which are
crucial for the efficient execution of an ETL workflow.

− A principled organization of test suites for the problem of
experimenting with ETL scenarios.

Outline. In Section 2, we discuss the nature and structure of ETL
activities and workflows, and provide a principled way for
constructing the latter. In Section 3, we present the main measures
to be assessed by a benchmark and the basic problem parameters
that should be considered for the case of ETL workflows. In
Section 4, we give specific scenarios that could be used as a test
suite for the evaluation of ETL scenarios. In section 5, we discuss
issues that are left open and mention some parameters that require
further tuning when constructing test suites. In Section 6, we
discuss related work and finally, in Section 7, we summarize our
results and propose issues of future work.

2. Problem Formulation
In this section, we introduce ETL workflows along with their
constituents and internal structure and discuss the way ETL
workflows operate. First, we start with a formal definition and an
intuitive discussion of ETL workflows as graphs. Then, we zoom
in the micro-level of ETL workflows inspecting each individual
activity in isolation and afterwards, and then, we return at the
macro-level, inspecting how individual activities are “tied”
altogether to compose an ETL workflow. Both levels can be
further examined from a logical or physical perspective. The final
section of this section discusses the characteristics of the
operation of ETL workflows and ties them to the goals of the
proposed benchmark.

An ETL workflow at the logical level is a design blueprint for the
ETL process. The designer constructs a workflow of activities,
usually in the form of a graph, to specify the order of cleansing
and transformation operations that should be applied to the source
data, before being loaded to the data warehouse. In what follows,
we will employ the term recordsets to refer to any data store that
obeys a schema (with relational tables and record files being the
most popular kinds of recordsets in the ETL environment), and
the term activity to refer to any software module that processes the
incoming data, either by performing any schema transformation
over the data or by applying data cleansing procedures. Activities
and recordsets are logical abstractions of physical entities. At the
logical level, we are interested in their schemata, semantics, and
input-output relationships; however, we do not deal with the
actual algorithm or program that implements the logical activity or
with the storage properties of a recordset. When in a later stage,
the logical-level workflow is refined at the physical level a
combination of executable programs/scripts that perform the ETL
workflow is devised. Then, each activity of the workflow is
physically implemented using various algorithmic methods, each
with different cost in terms of time requirements or system
resources (e.g., CPU, memory, space on disk, and disk I/O).

Formally, we model an ETL workflow as a directed acyclic graph
G(V,E). Each node v∈V is either an activity a or a recordset r. An
edge (a,b)∈E denotes that b receives data from node a for further
processing. In this provider relationship, nodes a and b play the
role of the data provider and data consumer, respectively. The
following well-formedness constraints determine the interconnec-
tion of nodes in ETL workflows:

− Each recordset r is a pair (r.name, r.schema), with the schema
being a finite list of attribute names.

− Each activity a is a tuple (N,I,O,S,A). N is the activity’s name.
I is a finite set of input schemata. O is a finite set of output
schemata. S is a declarative description of the relationship of
its output schema with its input schema in an appropriate
language (without delving into algorithmic or implementation
issues). A is the algorithm chosen for activity’s execution.

− The data consumer of a recordset cannot be another recordset.
Still, more than one consumer is allowed for recordsets.

− Each activity must have at least one provider, either another
activity or a recordset. When an activity has more than one
data providers, these providers can be other activities or
activities combined with recordsets.

− Feedback of data is not allowed; i.e., the data consumer of an
activity cannot be the same activity.

2.1 Micro-level activities
Concerning the micro level, we consider three broad categories of
ETL activities: (a) extraction activities, (b) transformation and
cleansing activities, and (c) loading activities.

Extraction activities extract the relevant data from the sources and
transport them to the ETL area of the warehouse for further
processing (possibly including operations like ftp, compress, etc).
The extraction involves either differential data sets with respect to
the previous load, or full snapshots of the source. Loading
activities have to deal with the population of the warehouse with
clean and appropriately transformed data. This is typically done
through a bulk loader program; nevertheless the process also
includes the maintenance of indexes, materialized views, reports,
etc. Transformation and cleansing activities can be coarsely
categorized with respect to the result of their application to data
and the prerequisites, which some of them should fulfill. In this
context, we discriminate the following categories of operations:

− Row-level operations, which are locally applied to a single
row.

− Router operations, which locally decide, for each row, which
of the many (output) destinations it should be sent to.

− Unary Grouper operations, which transform a set of rows to a
single row.

− Unary Holistic operations, which perform a transformation to
the entire data set. These are usually blocking operations.

− Binary or N-ary operations, which combine many inputs into
one output.

A taxonomy of activities at the micro level is depicted in Table A1
(in the appendix). For each one of the above categories, a
representative set of transformations, which are provided by three
popular commercial ETL tools, is presented. The table is
indicative and in many ways incomplete. The goal is not to
provide a comparison among the three tools. On the contrary, we
would like to stress out the genericity of our classification. For
most of the ETL tools, the set of built-in transformations is
enriched by user defined operations and a plethora of functions.
Still, as Table A1 shows, all frequently built-in transformations in
the majority of commercial solutions fall into our classification.

Body

Right wing Left wing

n1

n2

nm

n1

n2

nk

V

Figure 1. Abstract butterfly components

γA,Β

4

V

S

R Z

γA

5

W

100000

100000

sel1=0.6

sel2=0.1

sel4=0.2

p1=0.003

p2=0.004

p4=0.001

σA<600

1

σA>300

2

sel5=0.5

p5=0.005

A=A

3

sel3=0.2

p3=0.001

Figure 2. Butterfly configuration

2.2 Macro level workflows
The macro level deals with the way individual activities and
recordsets are combined together in a large workflow. The
possibilities of such combinations are infinite. Nevertheless, our
experience suggests that most ETL workflows follow several
high-level patterns, which we present in a principled fashion in
this section. We introduce a broad category of workflows, called
Butterflies. A butterfly (see also Figure 1) is an ETL workflow
that consists of three distinct components: (a) the left wing, (b) the
body, and (c) the right wing of the butterfly. The left and right
wings (shown with dashed lines in Figure 1) are two non-
overlapping groups of nodes which are attached to the body of the
butterfly. Specifically:

− The left wing of the butterfly includes one or more sources,
activities and auxiliary data stores used to store intermediate
results. This part of the butterfly performs the extraction,
cleaning and transformation part of the workflow and loads
the processed data to the body of the butterfly.

− The body of the butterfly is a central, detailed point of
persistence that is populated with the data produced by the left
wing. Typically, the body is a detailed fact or dimension table;
still, other variants are also possible.

− The right wing gets the data stored at the body and utilizes
them to support reporting and analysis activity. The right wing
consists of materialized views, reports, spreadsheets, as well
as the activities that populate them. In our setting, we abstract
all the aforementioned static artifacts as materialized views.

Assume the small ETL workflow of Figure 2 with 10 nodes. R and
S are source tables providing 100,000 tuples each to the activities
of the workflow. These activities apply transformations to the
source data. Recordset V is a fact table and recordsets Z and W are
Target tables. This ETL scenario is a butterfly with respect to the
fact table V. The left wing of the butterfly is {R, S, 1, 2, 3} and the
right wing is {4, 5, Z, W}.

Balanced Butterflies. A butterfly that includes medium-sized left
and right wings is called a Balanced butterfly and stands for a
typical ETL scenario where incoming source data are merged to

populate a warehouse table along with several views or reports
defined over it. Figure 2 is an example of this class of butterflies.
This variant represents a symmetric workflow (there is symmetry
between the left and right wings). However, this is not always the
practice in real-world cases. For instance, the butterfly’s triangle
wings are distorted in the presence of a router activity that
involves multiple outputs (e.g., copy, splitter, switch, and so on).
In general, the two fundamental wing components can be either
lines or combinations. In the sequel, we discuss these basic
patterns for ETL workflows that can be further used to construct
more complex butterfly structures. Figure 3 pictorially depicts
example cases of the above variants.

Lines. Lines are sequences of activities and recordsets such that
all activities have exactly one input (unary activities) and one
output. In these workflows, nodes form a single data flow.

Combinations. A combinator activity is a join variant (a binary
activity) that merges parallel data flows through some variant of a
join (e.g., a relational join, diff, merge, lookup or any similar
operation) or a union (e.g., the overall sorting of two
independently sorted recordsets). A combination is built around a
combinator with lines or other combinations as its inputs. We
differentiate combinations as left-wing and right-wing
combinations.

Left-wing combinations are constructed by lines and combinations
forming the left wing of the butterfly. The left wing contains at
least one combination. The inputs of the combination can be:

− Two lines. Two parallel data flows are unified into a single
flow using a combination. These workflows are shaped like
the letter ‘Y’ and we call them Wishbones.

− A line and a recordset. This refers to the practical case where
data are processed through a line of operations, some of which
require a lookup to persistent relations. In this setting, the
Primary Flow of data is the line part of the workflow.

− Two or more combinations. The recursive usage of
combinations leads to many parallel data flows. These
workflows are called Trees.

Observe that in the cases of trees and primary flows, the target
warehouse acts as the body of the butterfly (i.e., there is no right
wing). This is a quite practical situation that covers (a) fact tables
without materialized views and (b) the case of dimension tables
that also need to be populated through an ETL workflow. There
are some cases, too, where the body of the butterfly is not
necessarily a recordset, but an activity with many outputs (see last
example of Figure 5). In these cases, the main goal of the scenario
is to distribute data to the appropriate flows; this task is performed
by an activity serving as the butterfly’s body.

Right-wing combinations are constructed by lines and combina-
tions on the right wing of the butterfly. These lines and
combinations form either a flat or a deep hierarchy.

− Flat Hierarchies. These configurations have small depth
(usually 2) and large fan-out. An example of such a workflow
is a Fork, where data are propagated from the fact table to the
materialized views in two or more parallel data flows.

− Right - Deep Hierarchies. To handle all possible cases, we
employ configurations with right-deep hierarchies. These
configurations have significant depth and medium fan-out.

V WγA,B

3

R σA>300

1

σB>400

2

(a) Linear Workflow (b) Wishbone

(c) Primary Flow (d) Tree

(e) Flat Hierarchy – Fork (f) Right - Deep Hierarchy

Figure 3. Butterfly classes

2.3 Goals of the benchmark
The design of a benchmark should be based upon a clear
understanding of the characteristics of the inspected systems that
do matter. Our fundamental motivation for coming up with the
proposed benchmark was due to the complete absence of a
principled way to experiment with ETL workflows in the related
literature. Therefore, we propose a configuration that covers a
broad range of possible workflows (i.e., a large set of configur-
able parameters) and a limited set of monitored measures.

The goal of this benchmark is to provide the experimental
testbed to be used for the assessment of ETL methods or tools
concerning their basic behavioral properties (measures) over a
broad range of ETL workflows.

The benchmark’s goal is to study and evaluate workflows as a
whole. We are not interested in providing specialized perform-
ance measures for very specific tasks in the overall process. We
are not interested either, in exhaustively enumerating all the
possible alternatives for specific operations. For example, this
benchmark is not intended to facilitate the comparison of
alternative methods for the detection of duplicates in a data set,
since it does not take the tuning of all the possible parameters
for this task into consideration. On the contrary, this benchmark
can be used for the assessment of the integration of such
methods in complex ETL workflows, assuming that all the
necessary knobs and bolts have been appropriately tuned.

There are two modes of operation for an ETL workflow. In the
traditional off-line mode, the workflow is executed during a
specific time window of some hours (typically at night), when
the systems are not servicing their end-users. Due to the low
load of both the source systems and the warehouse, both the
refreshment of data and any other administrative activities
(cleanups, auditing, etc) are easier to complete. In the active

mode, the sources continuously try to send new data to the
warehouse. This is not necessarily done instantly; rather, small
groups of data are collected and sent to the warehouse for
further processing. The difference of the two modes does not
only lie in the frequency of the workflow execution, but also to
the load of the systems whenever the ETL workflow executes.

Independently of the mode under which the ETL workflow
operates, the two fundamental goals that should be reached are
effectiveness and efficiency. Hence, given an ETL engine or a
specific experimental method to be assessed over one or more
ETL workflows, these fundamental goals should be evaluated.
To organize the benchmark better, we classify the assessment of
the aforementioned goals through the following questions:

Effectiveness

Q1. Does the workflow execution reach the maximum possible
(or, at least, the minimum tolerable) level of data freshness,
completeness and consistency in the warehouse within the
necessary time (or resource) constraints?

Q2. Is the workflow execution resilient to occasional failures?

Efficiency

Q3. How fast is the workflow executed?

Q4. What resource overheads does the workflow incur at the
source and the warehouse side?

In the sequel, we elaborate on these questions.

Effectiveness. The objective is to have data respect both database
and business rules. A clear business rule is the need to have as
fresh data as possible in the warehouse. Also, we need all of the
source data to be eventually loaded at the warehouse – not
necessarily immediately as they appear at the source side –
nevertheless, the sources and the warehouse must be consistent

at least at a certain frequency (e.g., at the end of a day). Sub-
problems that occur in this larger framework:

− Recovery from failures. If some data are lost from the ETL
process due to failures, then, we need to synchronize sources
and warehouse and compensate the missing data.

− Missing changes at the source. Depending on what kind of
change detector we have at the source, it is possible that
some changes are lost (e.g., if we have a log sniffer, bulk
updates not passing from the log file are lost). Also, in an
active warehouse, if the active ETL engine needs to shed
some incoming data in order to be able to process the rest of
the incoming data stream successfully, it is imperative that
these left-over tuples need to be processed later.

− Transactions. Depending on the source sniffer (e.g., a trigger
-based sniffer), tuples from aborted transactions may be sent
to the warehouse and, therefore, they must be undone.

Minimal overheads at the sources and the warehouse. The
production systems are under continuous load due to the large
number of OLTP transactions performed simultaneously. The
warehouse system supports a large number of readers executing
client applications or decision support queries. In the offline
ETL, the overheads incurred are of rather secondary importance,
in the sense that the contention with such processes is practically
non-existent. Still, in active warehousing, the contention is clear.

− Minimal overhead of the source systems. It is imperative to
impose the minimum additional workload to the source, in
the presence of OLTP transactions.

− Minimal overhead of the DW system. As writer processes
populate the warehouse with new data and reader processes
ask data from the warehouse, the desideratum is that the
warehouse operates with the lightest possible footprints for
such processes as well as the minimum possible delay for
incoming tuples and user queries.

3. Problem Parameters
In this section, we propose a set of configuration parameters
along with a set of measures to be monitored in order to assess
the fulfillment of the aforementioned goals of the benchmark.

Experimental parameters. Given the previous description of
ETL workflows, the following problem parameters, appear to be
of particular importance to the measurement:

P1. the size of the workflow (i.e., the number of nodes
contained in the graph),

P2. the structure of the workflow (i.e., the variation of the
nature of the involved nodes and their interconnection as
the workflow graph)

P3. the size of input data originating from the sources,

P4. the overall selectivity of the workflow, based on the
selectivities of the activities of the workflow,

P5. the values of probabilities of failure.

Measured Effects. For each set of experimental measurement,
certain measures need to be assessed, in order to characterize the
fulfillment of the aforementioned goals. In the sequel, we
classify these measures according to the assessment question
they are employed to answer.

Q1. Measures for data freshness and data consistency. The
objective is to have data respect both database and business
rules. Also, we need data to be consistent with respect to the
source as much as possible. The later possibly incurs a certain
time window for achieving this goal (e.g., once a day), in order
to accommodate high refresh rates in the case of active data
warehouses or failures in the general case. Concrete measures:

− (M1.1) Percentage of data that violate business rules.

− (M1.2) Percentage of data that should be present at their
appropriate warehouse targets, but they are not.

Q2. Measures for the resilience to failures. The main idea is to
perform a set of workflow executions that are intentionally
abnormally interrupted at different stages of their execution. The
objective is to discover how many of these workflows were
successfully compensated within the specified time constraints.
Concrete measures:

− (M2) Percentage of successfully resumed workflow execu-
tions.

Q3. Measures for the speed of the overall process. The objective
is to perform the ETL process as fast as possible. In the case of
off-line loading, the objective is to complete the process within
the specified time-window. Naturally, the faster this is
performed the better (especially, in the context of failure
resumption). In the case of active warehouse, where the ETL
process is performed very frequently, the objective is to
minimize the time that each tuple spends inside the ETL
module. Concrete measures:

− (M3.1) Throughput of regular workflow execution (this may
also be measured as total completion time).

− (M3.2) Throughput of workflow execution including a
specific percentage of failures and their resumption.

− (M3.3) Average latency per tuple in regular execution.

Q4. Measured Overheads. The overheads at the source and the
warehouse can be measured in terms of consumed memory and
latency with respect to regular operation. Concrete measures:

− (M4.1) Min/Max/Avg/ timeline of memory consumed by the
ETL process at the source system.

− (M4.2) Time needed to complete the processing of a certain
number of OLTP transactions in the presence (as opposed to
the absence) of ETL software at the source, in regular source
operation.

− (M4.3) The same as 4.2, but in the case of source failure,
where ETL tasks are to be performed too, concerning the
recovered data.

− (M4.4) Min/Max/Avg/ timeline of memory consumed by the
ETL process at the warehouse system.

− (M4.5) (active warehousing) Time needed to complete the
processing of a certain number of decision support queries in
the presence (as opposed to the absence) of ETL software at
the warehouse, in regular operation.

− (M4.6) The same as M4.5, but in the case of any (source or
warehouse) failure, where ETL tasks are to be performed too
at the warehouse side.

4. SPECIFIC SCENARIOS
A particular problem that arises in designing a test suite for ETL
workflows concerns the complexity (structure and size) of the
employed workflows. The first possible way to deal with the
problem is to construct a workflow generator, based on the
aforementioned disciplines. The second possible way is to come
up with an indicative set of ETL workflows that serve as the
basis for experimentations. Clearly, the first path is feasible;
nevertheless it is quite hard to artificially produce large volumes
of workflows in different sizes and complexities all of which
make sense. In this paper, we follow the second approach. We
discuss an exemplary set of sources and warehouse based on the
TPC-H benchmark [13] and we propose specific ETL scenarios
for this setting.

4.1 Database Schema
The information kept in the warehouse concerns parts and their
suppliers as well as orders that customers have along with some
demographic data for the customers. The scenarios used in the
experiments clean and transform the source data into the desired
warehouse schema. The sources for our experiments are of two
kinds, the storage houses and sales points. Every storage house
keeps data for the suppliers and parts, while every sales point
keeps data for the customers and the orders. The schemata of the
sources and the data warehouse are depicted in Figure 4.

Data Warehouse:

PART (rkey s_partkey, name, mfgr, brand, type, size, container,

comment)

SUPPLIER (s_suppkey, name, address, nationkey, phone,

acctbal, comment, totalcost)

PARTSUPP (s_partkey, s_suppkey, availqty, supplycost, comment)

CUSTOMER (s_custkey, name, address, nationkey, phone,

acctball, mktsegment, comment)

ORDER (s_orderkey, custkey, orderstatus, totalprice, orderdate,

orderpriority, clerk, shippriority, comment)

LINEITEM (s_orderkey, partkey, suppkey, linenumber, quantity,

extendedprice, discount, tax, returnflag, linestatus, shipdate,

commitdate, receiptdate, shipinstruct, shipmode, comment, profit)

Storage House:

PART (partkey, name, mfgr, brand, type, size, container, comment)

SUPPLIER (suppkey, name, address, nationkey, phone, acctbal,

comment)

PARTSUPP (partkey, suppkey, availqty, supplycost, comment)

Sales Point:

CUSTOMER (custkey, name, address, nationkey, phone, acctball,

mktsegment, comment)

ORDER (orderkey, custkey, orderstatus, totalprice, orderdate,

orderpriority, clerk, shippriority, comment)

LINEITEM (orderkey, partkey, suppkey, linenumber, quantity,

extendedprice, discount, tax, returnflag, linestatus, shipdate,

commitdate, receiptdate, shipinstruct, shipmode, comment)

Figure 4. Database schemata

4.2 ETL Scenarios
In this subsection, we propose a set of ETL scenarios, which are
depicted in Figure 5, while some statistics are shown in Table 1.
We consider the butterfly cases discussed in section 2 to be
representative of a large number of ETL scenarios and thus, we

propose a specific scenario for each kind. We provide only
small-size scenarios indicatively (thus, a right-deep scenario is
not given); the rigorous definition of medium and large size
scenarios is still open.

The line workflow has a simple form since it applies a set of
filters, transformations, and aggregations to a single table. This
scenario type is used to filter source tables and assure that the
data meet the logical constraints of the data warehouse. In the
proposed scenario, we start with an extracted set of new source
rows LineItem.D+ and push them towards the warehouse as
follows:

1. First, we check the fields "partkey", "orderkey" and
"suppkey" for NULL values. Any NULL values are replaced
by appropriate special values.

2. Next, a calculation of a value "profit" takes place. This value
is locally derived from other fields in a tuple as the amount
of "extendedprice" subtracted by the values of the "tax" and
"discount" fields.

3. The third activity changes the fields "extendedprice", "tax",
"discount" and "profit" to a different currency.

4. The results of this operation are loaded first into a delta table
DW.D+ and subsequently into the data warehouse DWH.
The first load simply replaces the respective recordset,
whereas the second involves the incremental appending of
these rows to the warehouse.

5. The workflow is not stopped after the completion of the left
wing, since we would like to create some materialized views.
The next operation is a filter that keeps only records whose
return status is "False".

6. Next, an aggregation calculates the sum of "extendedprice"
and "profit" fields grouped by "partkey" and "linestatus".

7. The results of the aggregation are loaded in view View01 by
(a) updating existing rows and (b) inserting new groups
wherever appropriate.

8. The next activity is a router, sending the rows of view
View01 to one of its two outputs, depending on the
"linestatus" field has the value "delivered" or not.

9. The rows with value “delivered” are further aggregated for
the sum of "profit" and "extendedprice" fields grouped by
"partkey".

10. The results are loaded in view View02 as in the case for view
View01.

11. The rows with value different than “delivered” are further
aggregated for the sum of "profit" and "extendedprice" fields
grouped by "partkey".

12. The results are loaded in view View03 as in the case for view
View01.

A wishbone workflow joins two parallel lines into one. This
scenario is preferred when two tables in the source database
should be joined in order to be loaded to the data warehouse or
in the case where we perform similar operations to different data
that are later joined. In our exemplary scenario, we track the
changes that happen in a source containing customers. We
compare the customers of the previous load to the ones of the
current load and search for new customers to be loaded in the
data warehouse.

Line

Wishbone

Primary Flow

Tree

Figure 5. Specific ETL workflows

Fork

Balanced Butterfly (1)

Balanced Butterfly (2)

Figure 5. Specific ETL workflows (cont’d)

Table 1. Summarized statistics of the constituents of the ETL workflows depicted in Figure 5

 Filters Functions Routers Aggr Holistic f. Joins Diff Unions Load Body Load Views
Line 1+1 2+0 0+1 0+3 INCR INCR
Wishbone 1+0 4+0 1+0 INCR -
Pr. Flow 3+0 I/U -
Tree 0+1 1+0 1+0 1+0 I/U I/U
Fork 3+0 0+4 INCR INCR
BB(1) 4+0 0+4 1+0 INCR FULL
BB(2) 0+2 1 - I/U
 2+1 13+2 0+1 0+12 1+0 6+0 1 1+0

1. The first activity on the new data set checks for NULL
values in the "custkey" field. The problematic rows are kept
in an error log file for further off-line processing.

2. Both previous and old data are passed through a surrogate
key transformation. We assume a domain size that fits in
main memory for this source; therefore, the transformation
is not performed as a join with a lookup table, but rather as
a lookup function call invoked per row.

3. Moreover, the next activity converts the phone numbers in
a numeric format, removing dashes and replacing the '+'
character with the "00" equivalent.

4. The transformed recordsets are persistently stored in
relational tables or files which are subsequently compared
through a difference operator (typically implemented as a
join variant) to detect new rows.

5. The new rows are stored in a file C.D+ which is kept for the
possibility of failure. Then the rows are appended in the
warehouse dimension table Customer.

The primary flow scenario is a common scenario in cases where
the source table must be enriched with surrogate keys. This
exemplary primary flow that we use has as input the Orders
table. The scenario is simple: all key-based values
(“orderstatus”, “custkey”, “orderkey”) pass through surrogate
key filters that lookup (join) the incoming records in the
appropriate lookup table. The resulting rows are appended to the
relation DW.Orders. If incoming records exist in the DW.Orders
relation and they have changed values then they are overwritten
(thus, the Slowly Changing Dimension Type 1 tag in the figure);
otherwise, a new entry is inserted in the warehouse relation.

The tree scenario joins several source tables and applies
aggregations on the result recordset. The join can be performed
over either heterogeneous relations, whose contents are
combined, either over homogeneous relations, whose contents
are integrated into one unified (possible sorted) data set. In our
case, the exemplary scenario involves three sources for the
warehouse relation PartSupp. The scenario evolves as follows:

1. Each new version of the source is sorted by its primary key
and checked against its past version for the detection of new
or updated records. The DIFFI,U operator checks the two
inputs for the combination of pkey, suppkey matches. If a
match is not found, then a new record is found. If a match is
found and there is a difference in the field “availqty” then an
update needs to be performed.

2. These new records are assigned surrogate keys per source

3. The three streams of tuples are united in one flow and they
are also sorted by “pkey” since this ordering will be later
exploited. Then, a delta file PS.D is produced.

4. The contents of the delta file are appended in the warehouse
relation DW.PS.

5. At the same time, the materialized view View04 is refreshed
too. The delta rows are summarized for the available
quantity per pkey and then, the appropriate rows in the view
are either updated (if the group exists) or (inserted if the
group is not present).

The fork scenario applies a set of aggregations on a single
source table. First the source table is cleaned, just like in a line

scenario and the result table is used to create a set of
materialized views. Our exemplary scenario uses the Lineitem
table as the butterfly’s body and starts with a set of extracted
new records to be loaded.

1. First, surrogate keys are assigned to the fields "partkey",
"orderkey" and "suppkey".

2. We convert the dates in the "shipdate" and "receiptdate"
fields into a “dateId”, a unique identifier for every date.

3. The third activity is a calculation of a value "profit". This
value is derived from other fields in every tuple as the
amount of "extendedprice" subtracted by the values of the
"tax" and "discount" fields.

4. This activity changes the fields "extendedprice", "tax",
"discount" and "profit" to a different currency. The result of
this actvity is stored at a delta table D+.LI. The records are
appended to the data warehouse LineItem table and they are
also reused for a number of aggregations at the right wing of
the butterfly. All records pushed towards the views, either
update or insert new records in the views, depending on the
existence (or not) of the respective groups.

5. The aggregator for View05 calculates the sum of the "profit"
and "extendedprice" fields grouped by the "partkey" and
"linestatus" fields.

6. The aggregator for View06 calculates the sum of the "profit"
and "extendedprice" fields grouped by the "linestatus" fields.

7. The aggregator for View07 calculates the sum of the "profit"
field and the average of the "discount" field grouped by the
"partkey" and "suppkey" fields.

8. The aggregator for View08 calculates the average of the
"profit" and "extendedprice" fields grouped by the "partkey"
and "linestatus" fields.

The most general-purpose scenario type is a butterfly scenario.
It joins two or more source tables before a set of aggregations is
performed on the result of the join. The left wing of the butterfly
joins the source tables, while the right wing performs the desired
aggregations producing materialized views.

Our first exemplary scenario uses new source records
concerning Partsupp and Supplier as its input.

1. Concerning the Partsupp source, we generate surrogate key
values for the "partkey" and "suppkey" fields. Then, the
"totalcost" field is calculated and added to each tuple.

2. Then, the transformed records are saved in a delta file
D+.PS and appended to the relation DW.Partsupp.

3. Concerning the Supplier source, a surrogate key is generated
for the “suppkey” field and a second activity transforms the
"phone" field.

4. Then, the transformed records are saved in a delta file D+.S
and appended to the relation DW.Supplier.

5. The delta relations are subsequently joined on the
"ps_suppkey" and "s_suppkey" fields and populate the view
View09, which is augmented with the new records. Then,
several views are computed from scratch, as follows.

6. View View10 calculates the maximum and the minimum
value of the "supplycost" field grouped by the "nationkey"
and "partkey" fields.

7. View View12 calculates the maximum and the minimum of
the "supplycost" field grouped by the "partkey" fields.

8. View View11 calculates the sum of the "totalcost" field
grouped by the "nationkey" and "suppkey" fields.

9. View View13 calculates the sum of the "totalcost" field
grouped by the "suppkey" field.

A second exemplary scenario introduces a Slowly Changing
Dimension plan, populating the dimension table PART and
retaining its history at the same time. The trick is found in the
combination of the “rkey”, “s_partkey” attributes. The
“s_partkey” assigns a surrogate key to a certain tuple (e.g.,
assume it assigns 10 to a product X). If the product changes in
one or more attributes at the source (e.g., X’s “size” changes),
then a new record is generated, with the same “s_partkey” and a
different “rkey” (which can be a timestamp-based key, or
similar). The proposed scenario, works as follows:

1. A new and an old version of the source table Part are
compared for changes. Changes are directed to P.D++ (for
new records) and P.DU for updates in the fields “size” and
“container”

2. Surrogate and recent keys are assigned to the new records
that are propagated to the table PART for storage.

3. An auxiliary table MostRecentPART holding the most
recent “rkey” per “s_partkey” is appropriately updated.

Observe that in this scenario the body of the butterfly is an
activity.

5. OPEN ISSUES
Although we have structured the proposed test suites to be as
representative as possible, there are several other tunable
parameters of a benchmark that are not thoroughly explored. We
discuss these parameters in this section.

Nature of data. Clearly, the proposed benchmark is constructed
on the basis of a relational understanding of the data involved.
Neither the sources, nor the warehouse deal with semi-structured
or web data. It is clear, that a certain part of the benchmark can
be enriched a part of the warehouse schema that (incrementally)
refresh the warehouse contents with HTML / XML source data.

Active vs. off-line modus operandi. We do not specify different
test suites for active and off-line modus operandi of the
refreshment process. The construction of the test suites is
influenced by an off-line understanding of the process. Although
these test suites can be used to evaluate strategies for active
warehousing, (since there can be no compromise with respect to
the transformations required for the loading of source data), it is
understood that an active process (a) should involve some
tuning for the micro-volumes of data that are dispatched from
the sources to the warehouse in every load and (b) could involve
some load shedding activities if the transmitted volumes are
higher that the ETL workflow can process.

Tuning of the values for the data sizes, workflow selectivity,
failure rate and workflow size. We have intentionally avoided
providing specific numbers for several problem parameters; we
believe that a careful assignment of values based on a large
number of real-world case studies (that we do not possess)
should be a topic for a full-fledged benchmark. Still, we would
like to mention here what we think as reasonable numbers.

Concerning data sizes, the numbers given by TPC-H can be a
valid point of reference for data warehouse contents. Still, in our
point of view, a more important factor is the fraction of source
data over the warehouse contents. In our research we have used
fractions that range from 0.01 to 0.7. We also think numbers
between 0.5 and 1.2 to be reasonable for the selectivity of the
left wing of a butterfly. Selectivity refers to both detected dirty
data that are placed in quarantine and newly produced data due
to some transformation (e.g., unpivot). A low value of 0.5 means
an extremely dirty (50%) data population, whereas a high value
means an intense data generation population. In terms of failure
rates, we think that the probability for a failure during a
workflow execution can range between the reasonable rates of
10-4 and 10-2. Concerning workflow size, although we provide
scenarios of small scale, medium–size and large-size scenarios
are also needed.

Auxiliary structures and processes. We have intentionally
avoided backup and maintenance processes in our test suites. We
have also avoided delving too deep in physical details of our
test suites. A clear consequence of this is the lack of any
discussion on indexes of any type in the warehouse. Still, we
would like to point out that if an experiment should require the
existence of special structures such as indexes, it is quite
straightforward to separate the computation of elapsed time or
resources for their refreshment and to compute the throughput or
the consumed resources appropriately.

Parallelism and Partitioning. Although the benchmark is
currently not intended to be used for system comparison, the
underlying physical configuration in terms of parallelism,
partitioning and platform can play an important role for the
performance of an ETL process. In general, there exist two
broad categories of parallel processing: pipelining and
partitioning. In pipeline parallelism, the various activities are
operating simultaneously in a system with more than one
processor. This scenario performs well for ETL processes that
handle a relative small volume of data. For large volumes of
data, a different parallelism policy should be devised: the
partitioning of the dataset into smaller sets. Then, we use
different instances of the ETL process for handling each
partition of data. In other words, the same activity of an ETL
process would run simultaneously by several processors, each
processing a different partition of data. At the end of the
process, the data partitions should be merged and loaded to the
target recordset(s). Frequently, a combination of the two policies
is used to achieve maximum performance. Hence, while an
activity is processing partitions of data and feeding pipelines, a
subsequent activity may start operating on a certain partition
before the previous activity had finished.

In Figure 6, the execution of an abstract ETL process is
pictorially depicted. In Figure 6(a), the execution is performed
sequentially. In this case, only one instance of it exists. Figures
6(b) and 6(c) show the parallel execution of the process in a
pipelining and a partitioning fashion, respectively. In the latter
case, larger volumes of data may be handled efficiently by more
than one instance of the ETL process; in fact, there are as many
instances as the partitions used.

Platform. Depending on the system architecture and hardware,
the parallel processing may be either symmetric multiprocessing
– a single operating system, the processors communicate

Figure 6. (a) Sequential, (b) pipelining, and (c) partitioning execution of ETL processes

through shared memory – or clustered processing – multiple
operating systems, the processors communicate through the
network. The choice of an appropriate strategy for the execution
of an ETL process, apart from the availability of resources, relies
on the nature of the activities, which are participating in it.

In terms of performance, an activity is bounded by three main
factors: CPU, memory, and/or disk I/O. For an ETL process that
includes mainly CPU-limited activities, the choice of a
symmetric multiprocessing strategy would be beneficial. For
ETL processes containing mainly activities with memory or disk
I/O limitations – sometimes, even with CPU limitations – the
clustering approach may improve the total performance due to
usage of multiple processors, which have their own dedicated
memory and disk access. However, the designer should confront
with the trade-off between the advantages of the clustering
approach and the potential problems that may occur due to
network traffic. For example, a process that needs frequent
repartitioning of data should not use clusters in the absence of a
high-speed network.

6. RELATED WORK
Several benchmarks have been proposed in the database
literature, in the past. Most of the benchmarks that we have
reviewed make careful choices: (a) on the database schema &
instance they use, (b) on the type of operations employed and (c)
on the measures to be reported. Each benchmark has a guiding
goal, and these three parts of the benchmark are employed to
implement it.

To give an example of the above, we mention two benchmarks
mainly coming from the Wisconsin database group. The OO7
benchmark was one of the first attempts to provide a
comparative platform for object-oriented DBMS’s [3]. The OO7
benchmark had the clear target to test as many aspects as
possible of the efficiency of the measured systems (speed of
pointer traversal, update efficiency, query efficiency). The
BUCKY benchmark had a different viewpoint: the goal was to
narrow down the focus only on the aspects of an OODBMS that
were object-oriented (or object-relational): queries over
inheritance, set-valued attributes, pointer navigation, methods
and ADTS [4]. Aspects covered by relational benchmarks were
not included in the BUCKY benchmark.

TPC has proposed two benchmarks for the case of decision
support. The TPC-H benchmark [13 is a decision support
benchmark that consists of a suite of business-oriented ad-hoc
queries and concurrent data modifications. The database
describes a sales system, keeping information for the parts and
the suppliers, and data about orders and the supplier's customers.

The relational schema of TPC-H consists of eight separate tables
with 5 of them being clearly dimension tables, one being a clear
fact table and a couple of them combinations of fact and
dimension tables. Unfortunately, the refreshment operations
provided by the benchmark are primitive and not particularly
useful as templates for the evaluation of ETL scenarios.

TPC-DS is a new Decision Support (DS) workload being
developed by the TPC [10]. This benchmark models the
decision support system of a retail product supplier, including
queries and data maintenance. The relational schema of this
benchmark is more complex than the schema presented in TPC-
H. There are three sales channels: store, catalog and the web.
There are two fact tables in each channel, sales and returns, and
a total of seven fact tables. In this dataset, the row counts for
tables scale differently per table category: specifically, in fact
tables the row count grows linearly, while in dimension tables
grows sub-linearly. This benchmark also provides refreshment
scenarios for the data warehouse. Still, all these scenarios
belong to the category of primary flows, in which surrogate and
global keys are assigned to all tuples.

7. CONCLUSIONS
In this paper, we have dealt with the challenge of presenting a
unified experimental playground for ETL processes. First, we
have presented a principled way for constructing ETL
workflows and we have identified their most prominent
elements. We have classified the most frequent ETL operations
based on their special characteristics. We have shown that this
classification adheres to the built-in operations of three popular
commercial ETL tools; we do not anticipate any major
deviations for other tools. Moreover, we have proposed a
generic categorization of ETL workflows, namely butterflies,
which covers frequent design cases. We have identified the main
parameters and measures that are crucial in ETL environment
and we have discussed how parallelism affects the execution of
an ETL process. Finally, we have proposed specific ETL
scenarios based on the aforementioned analysis, which can be
used as an experimental testbed for the evaluation of ETL
methods or tools.

The main message from our work is the need for a commonly
agreed benchmark that realistically reflects real-world scenarios,
both for research purposes and, ultimately, for the comparison of
ETL tools. Feedback from the industry is necessary (both with
respect to the complexity of the workflows and the frequencies
of typically encountered ETL operations) in order to further tune
the benchmark to reflect the particularities of real world ETL
workflows more precisely.

8. REFERENCES
[1] J. Adzic, V. Fiore. Data Warehouse Population Platform. In

DMDW, 2003.

[2] Ascential Software Corporation. DataStage Enterprise
Edition: Parallel Job Developer’s Guide. Version 7.5, Part
No. 00D-023DS75, 2004.

[3] M. J. Carey, D. J. DeWitt, J. F. Naughton. The OO7
Benchmark. In SIGMOD, 1993.

[4] M. J. Carey et al. The BUCKY Object-Relational
Benchmark (Experience Paper). In SIGMOD, 1997.

[5] IBM. WebSphere DataStage. Retrieved, 2007. URL:
http://www-306.ibm.com/software/data/integration/datastage/

[6] Informatica. PowerCenter 8. Retrieved, 2007.
URL: http://www.informatica.com/products/powercenter/

[7] Microsoft. SQL Server 2005 Integration Services (SSIS).
Url: http://technet.microsoft.com/en-us/sqlserver/bb331782.aspx

[8] Oracle. Oracle Warehouse Builder 10g. Retrieved, 2007.
URL: http://www.oracle.com/technology/products/warehouse/

[9] Oracle. Oracle Warehouse Builder Transformation Guide.
10g Release 1 (10.1), Part No. B12151-01, 2006.

[10] R. Othayoth, M. Poess. The Making of TPC-DS. In VLDB,
2006.

[11] A. Simitsis, P. Vassiliadis, S. Skiadopoulos, T. Sellis. Data
Warehouse Refreshment. In "Data Warehouses and OLAP:
Concepts, Architectures and Solutions", IRM Press, 2006.

[12] K. Strange. Data Warehouse TCO: Don’t Underestimate
the Cost of ETL. Gartner Group, DF-15-2007, 2002.

[13] TPC. TPC-H benchmark. Transaction Processing Council.
URL: http://www.tpc.org/.

[14] A.K. Elmagarmid, P.G. Ipeirotis, V.S. Verykios. Duplicate
Record Detection: A Survey. IEEE TKDE (1): 1-16 (2007).

APPENDIX

Table A1. Taxonomy of activities at the micro level and similar built-in transformations provided by commercial ETL tools

Transformation

Category*
SQL Server Information

Services SSIS [7]
DataStage [2] Oracle Warehouse Builder [9]

Row-level: Function that
can be applied locally to a
single row

− Character Map
− Copy Column
− Data Conversion
− Derived Column
− Script Component
− OLE DB Command
− Other filters (not null,

selections, etc.)

− Transformer (A generic
representative of a broad range of
functions: date and time, logical,
mathematical, null handling,
number, raw, string, utility, type
conversion/casting, routing.)

− Remove duplicates
− Modify (drop/keeps columns or

change their types)

− Deduplicator (distinct)
− Filter
− Sequence
− Constant
− Table function (it is applied on a set of

rows for increasing the performance)
− Data Cleansing Operators (Name and

Address, Match-Merge)
− Other SQL transformations (Character,

Date, Number, XML, etc.)
Routers: Locally decide, for
each row, which of the many
outputs it should be sent to

− Conditional Split
− Multicast

− Copy
− Filter
− Switch

− Splitter

Unary Grouper:
Transform a set of rows to
a single row

− Aggregate
− Pivot/Unpivot

− Aggregator
− Make/Split subrecord
− Combine/Promote records
− Make/Split vector

− Aggregator
− Pivot/Unpivot

Unary Holistic: Perform a
transformation to the entire
data set (blocking)

− Sort
− Percentage Sampling
− Row Sampling

− Sort (sequential, parallel, total) − Sorter

T
ra

ns
fo

rm
at

io
n

an
d

C
le

an
si

ng

Binary or N-ary:
Combine many inputs into
one output

Union-like:
− Union All
− Merge
Join-like:
− Merge Join (MJ)
− Lookup (SKJ)
− Import Column (NLJ)

Union-like:
− Funnel (continuous, sort,

sequence)
Join-like:
− Join
− Merge
− Lookup
Diff-like:
− Change capture/apply
− Difference (record-by-record)
− Compare (column-by-column)

Union-like:
− Set (union, union all, intersect, minus)
Join-like:
− Joiner
− Key Lookup (SKJ)

E
xt

r.

 − Import Column
Transformation

− Compress/Expand
− Column import

− Merge
− Import

L
oa

d

 − Export Column
− Slowly Changing Dimension

− Compress/Expand
− Column import/export

− Merge
− Export
− Slowly Changing Dimension

 * All ETL tools provide a set of physical operations that facilitate either the extraction or the loading phase. Such operations include: extraction
 from hashed/sequential files, delimited/fixed width/multi-format flat files, file set, ftp, lookup, external sort, compress/uncompress, and so on.

