Information Quality Measurement in Data Integration Schemas

10/2/2007

Maria da Conceição Moraes Batista & Ana Carolina Salgado *Centro de Informática, UFPE Recife - Brazil*

Motivation

- Information Quality (IQ) has become a critical aspect in organizations and research areas
- IQ is a multidimensional aspect:
 - Consistency,
 - Availability,
 - Response Time,
 - Minimality,
 - Completeness,
 - •

In Data Integration Systems

- Data is spread over multiple, distributed and heterogeneous sources
- Our data integration system:
 - Mediator-based architecture
 - Global-as-view (GAV) approach to provide a unified view of several data sources: the integrated schema

Quality in Data Integration Systems

- The query execution quality is an essential feature
- Not so much is known about incorporating IQ aspects into data integration processes:
 - Query results integration,
 - Schema maintenance,
 - Mediator evolution,

```
•
```

- Our goal:
 - Quality of query execution
- Our hypothesis:
 - The construction of good schemas with high quality scores will improve query execution

• Our proposal:

- IQ analysis to address schema maintenance, specially the integrated schema
- IQ criteria for data integration aspects
- The specification of schema IQ criteria minimality, completeness and type consistency

10/2/2001

Outline

- Data Integration IQ Criteria
- Schema IQ Criteria Specification
 - Minimality
 - Schema Completeness
 - Type Consistency
- Schema Quality Improvement
- Conclusions & Ongoing Work

Data Integration IQ Criteria

QDB / VLDB'07 10/2/2007

Schema Quality

- The user submits queries to the *integrated* schema
 - A set of views over a number of data sources
- The data integration system reformulates a user query into queries that refers directly to schemas on the sources.
 - Schema mappings: correspondences between data sources and integrated schema elements

Data Integration IQ Criteria Classification

• Three classes of components: *data*, *schemas* and *data sources*

Data Integration Element	IQ Criteria
Data Sources	Reputation, Verifiability, Availability, Response Time
Schemas	Schema Completeness, Minimality, Type Consistency
Data	Data Completeness, Timeliness, Accuracy

Schema IQ Criteria

Schema Completeness

 Percentage of real-world objects modeled in the integrated schema that can be found in the sources

Minimality

- The extent in which the schema is compactly modeled without redundancies.
- The more minimal the integrated schema is, the least redundancies it contains, and, consequently, the more efficient the query execution

Schema IQ Criteria

• Type Consistency

 The extent in which the attributes corresponding to the same real world concept are represented with the same data type across all schemas

IQ Manager

- A module of the data integration system
- It executes the IQ criteria analysis, assessment and adjustments over the schema to improve its IQ scores

Schema Representation

QDB / VLDB'07 10/2/2007

The X-Entity Model

- E-R extension for XML data
- X-Entity Components
 - Entity = XML Elements
 - Relationships = XML relationships
 - Contains
 - Refers
 - Attributes

Representation

Integrated Schema S_{med} =
({book_m({<u>title</u>, publisher_m}, {book_m_chapter_m}),
 chapter_m({<u>chapter_title</u>_m}, {})},
 {book_m_chapter_m(book_m, chapter_m, (1,N))})
 ODB/VLDB'07 10/2/2007

Schema Mappings

 Correspondences between X-Entities elements of source and integrated schemas representing the same real world concept (*semantically equivalent*)

```
MP_:book_m = publication_1
MP_2:book_m.title_m = publication_1.title_1
MP_3:book_m.publisher_m = publication_1.publisher_1
MP_4:chapter_m = section_1
MP_5:chapter_m.chapter_title_m = section_1.section_title_1
MP_6:book_m.book_m_chapter_m.chapter_m =
    (section_1.section_ref_ publication _1.publication _1)^{-1}
MP_7:book_m = novel_2
MP_8:book_m.title_m = novel_2.name_2
MP_9:chapter_m = chapter_2
MP_10:book_m.book_m_chapter_m.chapter_m = novel_2.
    novel_2_chapter_2.chapter_2
MP_11:chapter_m.chapter_title_m = chapter_2.ch_title_2
MP_12:book_m.publisher_m = novel_2.name_2
```

QDB / VLDB'07 10/2/2007

Some Definitions

Redundancy

Attribute Redundancy:

 An attribute A₁ in schema S_m is considered redundant, i.e.

 $Red(A_1, S_m) = 1$

if $\exists A_2$ in schema S_m and $A_1 \equiv A_2$

QDB / VLDB'07 10/2/2007

Redundancy

• Entity Redundancy:

 The number of redundant attributes defines the entity redundancy:

$$Red(E_{k},S_{m}) = \frac{\sum_{i=1}^{a_{k}} Red(A_{ki},E_{k})}{a_{k}}$$

• where $\sum_{k=1}^{a_k} \text{Red}(A_{ki}, E_k)$ is the total number of redundant attributes in entity E

Redundancy

Relationship Redundancy

 A relationship between two entities is redundant if there are other semantically equivalent relationships which paths are connecting the same two entities

Minimality

- A schema is minimal if all relevant domain concepts are described only once
- The minimality of a schema is the degree of absence of redundant elements
- A minimal schema will improve the effectiveness of operations and queries over it

Minimality

- The redundancy of a schema in a data integration system is measured by the sum of all redundancy values: entities redundancy (ER) and relationships redundancy (RR)
- The schema minimality is measured by the formula:

$$Mi_{S_m} = 1 - [ER(S_m) + RR(S_m)]$$

Schema Completeness

 The schema completeness is the percentage of domain concepts represented in the integrated schema when related to the concepts represented in all data source schemas

• Example:

- A data integration system with 10 distinct domain concepts
- Described by entities and relationships in all data sources' published schemas
- If the integrated schema includes 8 of these concepts, then the integrated schema is 80% complete related to the current set of data sources

Schema Completeness

- - S_x can be either a data source schema or the integrated schema;
 - $\sigma_{s_{v}}$ is the number of distinct concepts in the schema S_{x} ;
 - $\sigma_{\mathfrak{P}}$ is the is the number of distinct concepts contained in all the schemas of the data integration system \mathfrak{P}

Type Consistency

- When an integrated schema management system experiences problems with consistency, the same information is stored with more than one data type
- How to fix:
 - To determine which alternative data type is preferable (standard)
 - A schema element is consistent if it adheres to the standard data type

Type Consistency

- The type consistency metric is based in:
 - The number of semantically equivalent attributes in schema that adhere to the standard data type defined for the attribute
- Attribute Type Consistency
 - A given attribute A_{pj} is *consistent* i.e.
 Con(A_{pj},S_p)= 1

if every semantically equivalent attribute to A_{pj} appears in another entity or even in the same entity with the standard data type of A_{pj}

Type Consistency

The overall schema type consistency score in a given data integration system (Con(S_m, Đ)) is obtained by:

- n_m is the total number of entities in the schema **Đ** a_k is the number of attributes of the entity E_k

ODB / VLDB'07

Schema Quality Improvement

Minimality

QDB / VLDB'07 10/2/2007

Minimality Improvement

 In order to improve minimality scores, redundant elements must be removed from the schema, until the value of minimality equal to 1 (no redundancies) is achieved

Algorithm for Schema Minimality Improvement

1	Calculate minimality score and if minimality = 1, then stop;
2	Search for fully redundant entities in S _m ;
3	If there are fully redundant entities then eliminate the redundant entities from S _m ;
4	Search for redundant relationships in S _m ;
5	If there are redundant relationships then eliminate the redundant relationships from S _m ;
6	Search for redundant attributes in S _m ;
7	If there are redundant attributes then eliminate the redundant attributes from S _m ;
8	Go to Step 1

Redundant Entity Elimination

- When removing a redundant entity E₁ (E₁ ≡ E₂), the *IQ Manager* transfers the relationships of E₁ to the remaining equivalent entity E₂.
- Three different situations may occur when moving a relationship R_x , $R_x \in E_1$:
 - If R_x ∈ E₂ then R_x is deleted because it is no longer necessary;
 - If $R_x \notin E_2$ but $\exists R_y, R_y \in E_2$ such as $R_x \equiv R_y$ then R_x is deleted;
 - If $R_x \notin E_2$ and there is no R_y , $R_y \in E_2$ such as $R_x \equiv R_y$, then R_x is connected to E_2 .

Redundant Relationships & Attributes Elimination

- Elimination of redundant relationships by deleting relationships identified as redundant
- Elimination of remaining redundant attributes in schema by deletion
- IQ Manager recalculates and analyzes minimality scores in order to determine if the desired IQ is accomplished

QDB / VLDB'07 10/2/2007

Implementation Issues

- IQ Manager is a Java module of *Integra* system
 - MySQL and PostgreSQL data sources.
 - XML and XML Schema
- Experiment steps:
 - i. Queries were submitted over an integrated schema with 26% of redundant elements;
 - ii. Redundancy elimination algorithm executed generating a minimal schema (100% of minimality);
 - iii. Same queries of step (i) were re-executed.

Initial Experimental Results

• Query performance was improved in an average of 35%.

QDB / VLDB'07 10/2/2007

Conclusions

- We propose a quality approach that serves to analyze and improve the integrated schema definition and query execution
- Contributions:
 - Specification of IQ criteria assessment methods for the maintenance of high quality integrated schemas
 - Algorithm to improve the schemas' minimality scores.
 - The *IQ Manager* module to proceed with all schemas IQ analysis and also the execution of improvement actions by eliminating the redundant items

Ongoing Work

- Specification and implementation of algorithms to evaluate others IQ criteria
 - so far we are working in completeness and type consistency algorithms
- Experimentation of schema IQ improvement actions for each one

Information Quality Measurement in Data Integration Schemas

Maria da Conceição Moraes Batista (mcmb@cin.ufpe.br) Ana Carolina Salgado (acs@cin.ufpe.br) *Centro de Informática, UFPE Brazil*

QDB / VLDB'07 10/2/2007