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1. Empirical and experimental
2. Theoretical
3. Computational
4. Data-intensive

5. Intelligence-driven and knowledge-centric
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The Fourth Paradigm of Science

We have to do better producing tools to support the 
whole research cycle - from data capture and data 

curation to data analysis and data visualization. Jim Gray
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Quality
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“Even though quality
 cannot be defined, you
 know  what it is.”
   Robert Pirsig
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Data Errors for Database Researchers
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Vandalism in Wikipedia Tables

Example for vandalism in Wikipedia tables: Tampering with the proportions of ethnic minorities. 
[https://en.wikipedia.org/w/index.php?title=Chicago&diff=prev&oldid=654893961]



Hidden Values / Hidden Value
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Source: Joachim Schmid, FUZZY! Informatik AG
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■ Incorrect prices in inventory retail databases
□Costs for consumers 2.5 billion $
□80% of barcode-scan-errors to the disadvantage of 

consumer

■ IRS 1992: almost 100,000 tax refunds not deliverable

■50% to 80% of computerized criminal records in the 
U.S. were found to be inaccurate, incomplete, or 
ambiguous.

■US-Postal Service: of 100,000 mass-mailings 
up to 7,000 undeliverable due to incorrect addresses

■ Poor AI system performance
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DQ-Problems: Effects
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Data Science Pipeline

Felix Naumann                         
Data Quality

Capture

Extraction

Curation Storage

Search

Sharing Querying

Analysis

Visualization

Data Engineering Data Science
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Data preparation in reality

“Cleaning Data: Most Time-Consuming, Least Enjoyable Data Science Task”, Gil Press, Forbes, March 23rd, 2016
http://www.forbes.com/sites/gilpress/2016/03/23/data-preparation-most-time-consuming-least-enjoyable-data-science-task-survey-says/ 

3%

60%

19%

9%
4%5%

What data scientists spend 
the most time doing?

Building training sets:
3%

Cleaning and
organizing data: 60%

Collecting data sets:
19%

Mining data for
patterns: 9%

Refining algorithms:
4%

Others: 5%

10%

57%

21%

3%
4%5%

What is the least enjoyable part 
of data science?

Building training sets:
10%

Cleaning and
organizing data: 57%

Collecting data sets:
21%

Mining data for
patterns: 3%

Refining algorithms:
4%

Others: 5%

Felix Naumann                         
Data Quality

12

http://www.forbes.com/sites/gilpress/2016/03/23/data-preparation-most-time-consuming-least-enjoyable-data-science-task-survey-says/


■Data preparation adds syntactic and structural value
■Data cleaning adds semantic value

Felix Naumann                         
Data Quality

Data Preparation vs. Data Cleaning
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1. Data and Information Quality Research
2. Data Preparation
3. Data Quality and AI Systems
4. Data Quality Assessment

Agenda
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Zooming into Information Quality
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Fitness for use

Accuracy, Objectivity, Believability, 
Reputation, Accessibility, Security, 

Relevance, Value-Added, Timeliness, 
Completeness, Amount of Data,

Interpretability, Understandability, 
Consistency, Concise Representation

179 Dimensions179
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Wang, R. Y. & Strong, D. M.
Beyond Accuracy: What data quality means to data consumers
Management of Information Systems, 1996, 12(4), 5-34 
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New AI-specific Data Quality Dimensions

DeploymentModelingAcquisition

Training 
data

ApplicationApplication 
data

Preparation 
and cleaning Training AI model

Validation 
data

Diversity BiasProvenance LiabilitySecurityPrivacy Explainability
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28 DQ Dimensions
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Timeliness
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https://arxiv.org/pdf/2403.00526

Representativity

18

https://arxiv.org/pdf/2403.00526


1. Data and Information Quality Research
2. Data Preparation
3. Data Quality and AI Systems
4. Data Quality Assessment

Agenda
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Data Preparation for AI: The Challenge

My data won’t load …
… because nobody bothered to use escape symbols.
… because ` is not a proper quotation symbol.
… because the maximum line length is exceeded.
… because there is a header row.
… because there is no header row.
… because the first line is the table-name.
… because some lines are empty.
… because it is encoded in CP-1252.
… because columns are shifted every ten rows.
… because a numeric column contains a string in line 590450.
… because some lines are two fields shorter.
… because Ümlauts are not supported.
… because someone added footnotes.
… because who uses § as a delimiter?
… because the file contains multiple tables.
… because tab and space are not the same thing.
… because someone added a comment in line 3.
… because – is not -.
… because it is split across multiple files.
… because headers are repeated every 80 lines.
… because the file ends mid-row.
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■Data discovery
■Data validation
■Data structuring
■Data enrichment
■Data filtering
■Data cleaning

■And for data scientists
□ Feature selection
□ Feature extraction

Data Preparation: Tasks and Tools
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Data Quality
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■Mondrian
□Dissecting multi-table files

■ExtracTable
□ Parsing visually delimited files

■Suragh and Tasheeh
□ Identifying ill-formed records

■Strudel
□Classify cell-types

■AggreCol
□ Identify aggregation cells
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Selected Data Preparation Projects – Bringing Order to Files
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Mondrian: Multitable Spreadsheets
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Mondrian: Clustering-based Table Recognition 
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1. Render spreadsheet as image
2. Recognize elements
3. Cluster elements into tables
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ExtracTable: Bad Files – Worse Files
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Strudel: Verbose CSV Files

Metadata

Header

Group header

Data

Aggregation

Notes

Header

Data

Aggregation

Notes

Group header

Metadata

Crime In the US (CIUS): https://ucr.fbi.gov/crime-in-the-u.s
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Strudel: Structure Diversity in Verbose CSV Files

Metadata

Header

Group header

Data

Aggregation

Notes
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AggreCol: Aggregations in CSV Files
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MICROS Systems, Inc.
Financial Summary

% Change

Income Statement Data 2003 vs. 2002 FY2003 FY2002 FY2001 FY2000 FY1999 FY1998 FY1997
Hardware Revenue 2.2% $137,013 $134,121 $116,058 $152,186 $155,237 $126,974 $102,816
Software Revenue 17.8% $71,251 $60,484 $55,873 $66,290 $63,317 $57,744 $45,985
Service Revenue 11.2% $191,927 $172,558 $154,845 $143,378 $118,525 $97,200 $79,368
Total Revenue 9.0% $400,191 $367,163 $326,776 $361,854 $337,079 $281,918 $228,169

Memo Item:

Maintenance Revenue 
(included in Service Revenue) 13.9% $113,274 $99,467 $87,007 $65,628 $54,953 $45,908 $37,382

Hardware Gross Profit 2.3% $38,977 $38,116 $40,683 $51,462 $50,670 $43,947 $39,267
Hardware Gross Profit % - 28.4% 28.4% 35.1% 33.8% 32.6% 34.6% 38.2%
Software Gross Profit 11.5% $54,045 $48,457 $46,875 $51,349 $52,138 $47,235 $37,464
Software Gross Profit % -4.2 Points 75.9% 80.1% 83.9% 77.5% 82.3% 81.8% 81.5%
Service Gross Profit 16.5% $105,538 $90,564 $76,472 $71,741 $61,367 $46,455 $39,447
Service Gross Profit % +2.5 Points 55.0% 52.5% 49.4% 50.0% 51.8% 47.8% 49.7%
Total Gross Profit 12.1% $198,560 $177,137 $164,028 $174,552 $164,175 $137,637 $116,178

Gross Profit % +1.4 Points 49.6% 48.2% 50.2% 48.2% 48.7% 48.8% 50.9%

𝐓𝐓𝐓𝐓𝐓𝐓𝐓𝐓𝐓𝐓 𝐆𝐆𝐆𝐆𝐆𝐆𝐆𝐆𝐆𝐆 𝐏𝐏𝐏𝐏𝐏𝐏𝐏𝐏𝐏𝐏𝐏𝐏 = 𝐇𝐇𝐇𝐇𝐇𝐇𝐇𝐇𝐇𝐇𝐇𝐇𝐇𝐇𝐇𝐇 𝐆𝐆𝐆𝐆 + 𝐒𝐒𝐒𝐒𝐒𝐒𝐒𝐒𝐒𝐒𝐒𝐒𝐒𝐒𝐒𝐒 𝐆𝐆𝐆𝐆 + 𝐒𝐒𝐒𝐒𝐒𝐒𝐒𝐒𝐒𝐒𝐒𝐒𝐒𝐒 𝐆𝐆𝐆𝐆

% 𝐂𝐂𝐂𝐂𝐂𝐂𝐂𝐂𝐂𝐂𝐂𝐂 𝟐𝟐𝟐𝟐𝟐𝟐𝟐𝟐 𝐯𝐯𝐯𝐯.𝟐𝟐𝟐𝟐𝟐𝟐𝟐𝟐 =
𝐅𝐅𝐅𝐅𝐅𝐅𝐅𝐅𝐅𝐅𝐅𝐅 − 𝐅𝐅𝐅𝐅𝐅𝐅𝐅𝐅𝐅𝐅𝐅𝐅

𝐅𝐅𝐅𝐅𝐅𝐅𝐅𝐅𝐅𝐅𝐅𝐅

𝐇𝐇𝐇𝐇𝐇𝐇𝐇𝐇𝐇𝐇𝐇𝐇𝐇𝐇𝐇𝐇 𝐆𝐆𝐆𝐆 % =
𝐇𝐇𝐇𝐇𝐇𝐇𝐇𝐇𝐇𝐇𝐇𝐇𝐇𝐇𝐇𝐇 𝐆𝐆𝐆𝐆

𝐇𝐇𝐇𝐇𝐇𝐇𝐇𝐇𝐇𝐇𝐇𝐇𝐇𝐇𝐇𝐇 𝐑𝐑𝐑𝐑𝐑𝐑𝐑𝐑𝐑𝐑𝐑𝐑𝐑𝐑

𝐒𝐒𝐒𝐒𝐒𝐒𝐒𝐒𝐒𝐒𝐒𝐒𝐒𝐒 𝐆𝐆𝐆𝐆 % = 𝐅𝐅𝐅𝐅𝐅𝐅𝐅𝐅𝐅𝐅𝐅𝐅 − 𝐅𝐅𝐅𝐅𝐅𝐅𝐅𝐅𝐅𝐅𝐅𝐅
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Ill-formed Records Abort Data Loading
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Suragh: Row Patterns – Outlier Rows
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Pollock: Benchmarking the Ingestion Ability of Systems
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■Manual Annotation
□1,438 random files from GovUK
□2,274 random files from Mendeley
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Pollock: Raw Data Survey
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Pollock: Benchmark Dimensions and Results

CSV File 
Structure

File Level

File Name

File Extension

File Dimension

File Encoding

Dialect Level

Record Delimiter

Field Delimiter

Quotation 
Character

Escape Character

Table Level

Table Number

Column Number

Row Number

Metadata Rows

Row Level

Header
Structure

Fields Number

Row Dialect

Column Level

Header Content

Column Type 
Formatting
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1. Data and Information Quality Research
2. Data Preparation
3. Data Quality and AI Systems

■ With Hazar Harmouch, Sedir Mohammed et al.

4. Data Quality Assessment

Agenda

Felix Naumann                         
Data Quality
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Empirical Measurement of the Effects of Poor Data Quality 
on ML Results

ML Algorithms

Data quality
dimensions

All 
Combinations

https://arxiv.org/abs/2207.14529 
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Pollutions
■ Consistent representation
■ Completeness
■ Feature accuracy
■ Target accuracy
■ Uniqueness
■ Target balance

Runs
■ 5 runs, average

Datasets
■ TelcoChurn, GermanCredit, 

Contraceptive
■ Houses, IMDB, Cars
■ Bank, Covertype, Letter

Tasks and algorithms
■ Classification
□ LogR, SVM, DT, GB, KNN, MLP

■ Clustering
□GM, k-Means, k-Prototypes, AC, 

OPTICS
■ Regression
□ LR, RR, DT, RF, GB, MLP

Scenarios
■ Pollute only training data
■ Pollute only test data
■ Pollute training and test data

Felix Naumann                         
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Measurement Dimensions

Together: 3,780 experiments
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Example Results

Average F1-Score for Classification of the Telco-Churn dataset

Pollute Training Pollute Test Pollute Training & Test
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Training, validation and testing data sets shall be 
relevant, sufficiently representative, and to the best 
extent possible, free of errors and complete in view of the 
intended purpose. They shall have the appropriate 
statistical properties, including, where applicable, as 
regards the persons or groups of persons in relation to 
whom the high-risk AI system is intended to be used. 

European AI Act Article 10 (3): Data and Data Governance
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https://artificialintelligenceact.eu/article/10/ 
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Data Quality along the AI Pipeline

Capture Extract Curate Storage Search Share Query Analyze Visualize

Timeliness

ReputationBalance

Ease of manipulation

Diversity

Documentation
Uniqueness

Efficiency
Fairness

Precision

Credibility

Consistent representation

Consistency

Accuracy

Reliability

Portability PrivacyRelevance

Traceability

Security

Transparency
Amount

Understandability
Completeness

Added value

Recoverability

Accessibility
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1. Data and Information Quality Research
2. Data Preparation
3. Data Quality and AI Systems
4. Data Quality Assessment

■ With Hazar Harmouch, Lisa Ehrlinger, Sedir Mohammed and Divesh 
Srivastava

Agenda
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Assessing Data Quality

Check AssessMeasureTimeliness

reputation

Balance

Ease of manipulation
Compliance

Diversity

Documentation
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Precision

Believability
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Accuracy
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Portability Privacy

Relevance
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Security
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Added value
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Ingredients for DQ Assessment: Five Facets

Assess-
ment

Data 
etc.

Source

SystemTask

Human

Timeliness
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Balance

Ease of manipulation
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Consistent representation
Consistency
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Privacy

Relevance
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Security
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Amount
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Completeness

Added value

Recoverability

Accessibility
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■ Ambiguity
□Many attempts to compile and define DQ dimensions
□Definitions of the dimensions inherently ambiguous

■ Explainability
□ Assessment results explainable to consumers
□ Results traceable to their root cause, to improve quality

■ Efficiency
□ Assessment effort and time should be low

■ Compliance 
□ Fulfill organizational data governance processes
□ Comply to a legal framework, e.g., GDPR or the AI Act

■ Scoring
□ Aggregate and normalize assessment results to some numeric scale.
□ Allows comparison across datasets and across time

■ Adequacy
□ Is the data of sufficient quality or adequate for the task at hand?
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Further Challenges for DQ Assessment
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Summary
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