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Finding Number of Distinct Values Problem
A Polyonymous Problem

How many distinct 
voice actors are there 

in our series?
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■ Statistics: number of species in a 

population.

■ DB: „COUNT DISTINCT“

■ Streaming: The zeroth-frequency 

moment of a multiset [Alon96]



Why cardinality is an important statistic?
How Many Distinct …

… queries did I get?

…pairs 
(sourceIP,destinationIP) 

have I seen?
…distinct messages have 

I seen?

…values have I seen for 
this attribute x?

… connections have been 
established from same 

source?

… visitors to this website in 
order to advertise in it?
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Query Optimizer



Is exact cardinality sufficient? 
Big Data: Exact Counting is Not Easy! 

Exact cardinality of multiset determined with storage 
proportional to dataset size!
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Is exact cardinality sufficient? 
Big Data-Scale! Estimate! 

Or/and 

■ Scale-up the computation

□ Expensive (hardware, 

equipment, energy).

□ Not always fast. 
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■ Scale-down the data

□ Create synopsis: data structure 

maintained by the estimation algorithm 

in main memory.

– Temporary: static scenarios.

– Compact representation: streaming 

applications

□ Need to fit the problem.

How to find the 
cardinality of Big 

Data?



Cardinality Estimation Approaches (1-6)
Exact cardinality: Sorting

■Sorting eliminates duplicates.

■Problem: 

□Expensive operation.

□Synopsis size is at least as large as the dataset.

□ Impractical for current big datasets.
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Cardinality Estimation Approaches (2-6)
Exact Cardinality: Bitmap

■Synopsis: is a bitmap of size equals to 
universe size and initialized to 0s.

□Scan dataset once and set the bit 𝑖 to 1 
whenever an item with the 𝑖 −th value of 
the universe is observed.

□Cardinality= Number of 1s.

■Problem: The synopsis size is a function of 
the universe size N, which is potentially 
much larger than the size of the dataset 
itself.
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0! Still used in another approached.



Cardinality Estimation Approaches (3-6)
Exact Cardinality: Hashing

■Hashing eliminates duplicates without sorting, scale-
down synopsis size and requires one pass.

■Simple application of hashing can be worse than sorting 
in terms of memory consumption.
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00..

10..

01..

00..

Duplicate

Collision

! All exact approaches are expensive 
in both size and runtime. 



Cardinality Estimation Approaches (4-6)
Estimation: Bitmap of hash values

■Scales down the synopsis size by don’t store the hash values. 

■Synopsis: a bitmap keeps track of the hashed values.

□The hash function maps each item to a bit in the bitmap.

□ Like Bloom filters
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0 0 1 0 0 1 0 … 0 0 0 0 0 1 0 0

bitmap[hash(x)]=1

!
A prior knowledge of the maximum cardinality 

is required to choose a good bitmap size.

Hash function



Cardinality Estimation approaches (5-6)
Estimation: Sampling

■Reduces the synopsis size

■Several negative results.

□ For every estimate based on a small-sample, there is a 
dataset where the ratio error can be made arbitrarily 
large [Charikar00].

□Almost all the dataset needs to be sampled to bound 
the estimation error within a small constant [Haas95, 
Haas98].
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Cardinality Estimation approaches (6-6)
Estimation: Observations in hash values
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■ Bit pattern observables 
depends on the occurrence of 
particular bit patterns at the 
binary string representation.

■ Order statistic observables 
consider the hash values as real 
numbers. 

■ The order statistic of rank k is 
the k-th smallest value in the 
dataset.

Smallest value seen≈

Hash values can be seen 
as:

Bit 
strings

Range of 
real 

numbers

1/𝐹0



Cardinality Estimation
Classification of 12 Algorithms
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[Durand-Flajolet03] [Metwally08] 



Counting trailing 1`s Algorithm (1-2)
Flajolet-Martin (FM) [Flajolet-Martin85]
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Photos:https://speakerdeck.com/timonk/philippe-flajolets-contribution-to-streaming-algorithms



Counting trailing 1`s Algorithm (2-2)
Flajolet Martin (FM) [Flajolet-Martin85]

0 0 0 0 0 0 1 … 0 1 0 1 1 1 1 1
• Bitmap[rho(hash(x))]=1

• rho(y)=position of the 
LSB=1 in y.

0
L-1

Z:Number of trailing 1s in the bitmap

L: length of the hash bit string (e.g. 32 bit)

Estimate 𝐹0 = 2𝑍/0.77351

Z

0 0 0 0 0 0 1 … 0 1 0 1 1 1 1 1
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..

■ Intuition:

□ Seeing 𝜌 = 𝑘 means there are at least 2𝑘+1 different bit strings.

□ Find the largest 𝜌 and estimate the cardinality by 2𝜌.



Why comparative experiments is needed?  

■Some applications require a very accurate estimation. 
However, others accept a less accurate estimation. 

□ The number of distinct visitors of a website = money.

□ The number of distinct connections ≈ Denial of service.

■Why re-evaluation is good?

□ Is theoretical error analysis matches real-world?

□What is hidden in the Big-O notation in space bound?

□Different hash function assumptions 

□Different error metric
Hazar Harmouch
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Comparative experiments
Experimental setup

■ Implementations (Unified test environment): 

□ Implemented for Metanome

https://hpi.de//en/naumann/projects/repeatability/data-profiling/cardinality-estimation.html

□ MurmurHash 64-bit. (32-bit for AKMV and MinCount)

□ All algorithms were configured to produce theoretical 

(standard/relative) errors of 1%.

■Datasets: 90 synthetic datasets. The exact cardinalities were 
made to be the powers of 10, starting with 10 up to 109.
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https://hpi.de/en/naumann/projects/repeatability/data-profiling/cardinality-estimation.html


Comparative experiments
Sampling-based experiments
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■ Guaranteed Error Estimator (GEE) [Charikar00] uses 
frequency of the values within the sampled data.

■ We used Reservoir sampling without replacement.

■ 1% relative error requires sampling more than 90% of the dataset. 

■ Minimum heap size of at least 13 GByte and 35 GByte is needed to 
guarantee an estimation error below 1% on NCVoter and Openadress-
Europe, respectively. 

■ Runtime noticeably increases with the size of the dataset, but only 
slightly with the sampling rate.



Comparative experiments
Accuracy experiments- synthetic datasets
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Comparative experiments
Accuracy experiments- synthetic datasets
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Comparative experiments
Accuracy experiments-real-world datasets
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■ Openaddress-Europe ■ NCVoter



Comparative experiments
Runtime behavior experiments-synthetic datasets

Hazar Harmouch

Cardinality Estimation

21

Main factors:

■ Dataset size

■ Nb. of hash functions

■ Synopsis type



Comparative experiments
Runtime behavior experiments-real-world datasets
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■ Openaddress-Europe■ NCVoter



Comparative experiments
Memory Consumption experiments-synthetic datasets
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Summary
Counting like Einstein

■ Cardinality estimation is a widely studied problem 

■ Some preliminary solutions, such as sampling and hash tables, are 

valid only when one can scale up the available computational 

resources

■ For a given accuracy, dataset size is obviously the main factor, 

affecting all the algorithms' runtime and memory consumption.

■ FM: extremely high runtime

■ BJKST and Bloom filter have a high memory consumption. 

■ PCSA, LogLog, SuperLogLog: overestimation problem for datasets 

with expected small cardinalities.

■ HyperLogLog, AKMV, and LC are efficient over all cardinality 

ranges by all means.
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How many distinct voice actors?
The Answer

https://en.wikipedia.org/wiki/List_of_The_Simpsons_cast_members
http://edition.cnn.com/2016/10/16/entertainment/simpsons-600th-episode/index.html

https://en.wikipedia.org/wiki/List_of_The_Simpsons_cast_members
http://edition.cnn.com/2016/10/16/entertainment/simpsons-600th-episode/index.html
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