Search Engines
Chapter 2 – Architecture

14.4.2011
Felix Naumann
Overview

- Basic Building Blocks
- Indexing
 - Text Acquisition
 - Text Transformation
 - Index Creation
- Querying
 - User Interaction
 - Ranking
 - Evaluation
Search Engine Architecture

- Determined by two main requirements
 - **Effectiveness** (quality of results)
 - As good as possible
 - **Efficiency** (response time and throughput)
 - As quickly as possible
- Other requirements fall into these categories
 - Changing documents -> Effectiveness and efficiency
 - Personalization: Effectiveness
 - Spam: Effectiveness and efficiency
 - ...

Felix Naumann | Search Engines | Summer 2011
The Indexing Process

Text Acquisition
- Identifies and stores documents for indexing

Text Transformation
- Transforms documents into *index terms* or *features*

Index Creation
- Takes *index terms* and creates data structures (indexes) to support fast searching

Document data store
- Text and metadata for all documents

Felix Naumann | Search Engines | Summer 2011
The Query Process

Document data store
- Supports creation and refinement of query, display of results

User Interaction

Ranking (retrieval model)
- Uses query and indexes to generate ranked list of documents

Evaluation
- Monitors and measures effectiveness and efficiency (primarily offline)

Index

Log data
Overview

- Basic Building Blocks
- Indexing
 - Text Acquisition
 - Text Transformation
 - Index Creation
- Querying
 - User Interaction
 - Ranking
 - Evaluation
The Indexing Process

- Text Acquisition
 - Crawler
 - Feeds
 - Conversion
 - Document data store

- Index Creation

- Document data store

- Index

- Text Transformation
Text Acquisition – Crawler

- Identifies and acquires documents for search engine
- Many types
 - Web, enterprise, desktop
- Web crawlers follow links to find documents
 - Must efficiently find huge numbers of web pages (coverage) and keep them up-to-date (freshness)
 - Single site crawlers for site search
 - Topical or focused crawlers for vertical search
- Document crawlers for enterprise and desktop search
 - Follow links and scan directories
Text Acquisition – Feeds

- Real-time streams of documents
 - Web feeds for news, blogs, video, radio, TV
- RSS is common standard
 - Rich Site Summary (RSS-Versions 0.9x)
 - RDF Site Summary (RSS-Versions 0.9 und 1.0)
 - Really Simple Syndication (RSS 2.0)
 - RSS “reader” can provide new XML documents to search engine
Text Acquisition – Conversion

- Convert variety of document formats into a consistent text-plus-metadata format
 - e.g., HTML, XML, Word, PDF, etc. → XML
- Convert text encoding for different languages
 - Using a standard like UTF-8
 - Be consistent throughout application
- Non-content data (tags, metadata) is either removed or stored as metadata.
- First step towards text transformation

http://www.uni-mainz.de/Organisationen/TLA/dokumentation/sgml_eng.html
Text Acquisition – Document data store

- Two parts
 - Unstructured text (compressed)
 - Structured metadata

- Stores text, metadata, and other related content for documents
 - Metadata is information about document
 - Type, creation date, ...
 - Other content includes links, anchor text

- Why store documents? They are available on the Web anyway...
 - Provide fast access to document contents for search engine components
 - Result list generation, document summary, snippets

- Could use relational database system
 - More typically, a simpler, more efficient storage system is used due to huge numbers of documents
 - Key-value-stores

More in Chapter 3
The Indexing Process

Document data store

Text Acquisition

Index Creation

Index

Text Transformation

- Parsing
- Stopping
- Stemming
- Link analysis
- Information extraction
- Classifier
Text Transformation – Parsing

- Processing the sequence of text *tokens* in the document to recognize structural elements
 - Titles, links, headings, etc.
- *Tokenizer* recognizes “words” in the text.
 - Must consider issues like capitalization, hyphens, apostrophes, non-alpha characters, separators
 - Many decisions up front:
 - apple vs. Apple
 - O’Conner vs. owner’s
 - Word separation in Chinese
- *Markup languages* such as HTML, XML often used to specify structure
 - *Tags* used to specify document *elements*
 - E.g., `<h2> Overview </h2>`
 - Document parser uses *syntax* of markup language (or other formatting) to identify structure
 - E.g. email format, MS Word metadata etc.
Text Transformation – Stopping

- Remove common words
 - “and”, “or”, “the”, “in”, ...

- Some impact on efficiency and effectiveness

- Can be a problem for some queries
 - *To be or not to be*

I a about an are as at be by com de en for from how in is it la of on or that the this to was what when where who will with und the www

See also:
http://www.dcs.gla.ac.uk/idom/ir_resources/linguistic-utils/stop_words

http://www.ranks.nl/stopwords/german.html

aber als am an auch auf aus bei bin bis bist da dadurch daher darum das daß dass dein deine dem den der des dessen deshalb die dies dieser dieses doch dort du durch ein eine einem einen einer eines er es euer eure für hatte hatten hattest hättet hier hinter ich ihr ihre im in ist ja jede jedem jeden jeder jedes jener jenes jetzt kann kannst können könnt machen mein meine mit muß mußt musst müssen müßt nach nachdem nein nicht nun oder seid sein seine sich sie sind soll sollen sollst sollt sonst soweit sowie und unser unsere unter vom von vor wann warum was weiter weitere wenn wer werde werden werdet weshalb wie wieder wieso wir wird wirst wo woher wohin zu zum zur über
Text Transformation – Stemming

- Group words derived from a common *stem*
 - “computer”, “computers”, “computing”, “compute”
 - Fish, fishing, fisherman
- Usually effective, but not for all queries
 - Aggressive vs. conservative vs. not at all
- Benefits vary for different languages
 - Arabic: Very complicated morphology
 - Chinese: Few word variations anyway
Text Transformation – Link Analysis

- Makes use of links and anchor text in web pages.
 - Stored and indexed separately
 - `Information Systems Group`
- Link analysis identifies popularity and community information
 - e.g., PageRank
- Anchor text can significantly enhance the representation of pages pointed to by links
- Significant impact on web search
 - Less importance in other applications
Text Transformation – Information Extraction

- Identify classes of index terms that are important for some applications
- Simple: Bold-face, heading, title
- Part of speech tagging
- Named entity recognizers (NER) identify classes such as
 - People
 - Locations
 - Companies
 - Dates
 - etc.

http://www.dcs.shef.ac.uk/~hamish/IE/
Text Transformation – Classifier

- Identifies class-related metadata for documents
 - i.e., assigns labels to documents
 - e.g., topics, reading levels, sentiment, genre
 - Spam!
 - Advertisements in documents
- Use depends on application

More in Chapter 4
The Indexing Process

- Text Acquisition
- Index Creation
 - Document statistics
 - Weighting
 - Inversion
 - Index distribution
- Index

Steps:
1. Document data store
2. Text Acquisition
3. Index Creation
4. Index

Processes:
- Document statistics
- Weighting
- Inversion
- Index distribution
Index Creation - Document Statistics

- Statistical information about words, features and documents
- Gathers counts and positions of words and other features
 - Within a document
 - Across groups of documents
 - Across all documents
- Used in ranking algorithm
Index Creation – Weighting

- Computes weights for index terms
 - Relative importance of words in documents
- Used in ranking algorithm
 - Global weight
 - Query-dependent weight
- e.g., \textit{tf.idf} weight
 - Combination of \textit{term frequency} in document
 - and \textit{inverse document frequency} in the collection
Index Creation – Inversion

- Core of indexing process
- Converts document-term information to term-document for indexing
 - Difficult for very large numbers of documents
 - Classical Map/Reduce use case
- Format of inverted file is designed for fast query processing
 - Must also handle updates
 - Compression used for efficiency
Index Creation – Index Distribution

- Distribute indexes
 - across multiple computers
 - and/or multiple sites
- Essential for fast query processing with large numbers of documents
- Many variations
 - Document distribution: Distribute index for subsets of documents
 - Term distribution: Distribute index for subset of terms
 - Replication
- P2P and Distributed IR involve search across multiple sites

More in Chapter 5
Overview

- Basic Building Blocks
- Indexing
 - Text Acquisition
 - Text Transformation
 - Index Creation
- Querying
 - User Interaction
 - Ranking
 - Evaluation
The Query Process

- Query input
- Query transformation
- Result output

Document data store

User Interaction

Ranking (retrieval model)

Log data

Evaluation

Index
User Interaction - Query input

- Provides interface and parser for internal *query language*
- Most web queries are very simple
 - Other applications may use forms
- Query language used to describe more complex queries and results of query transformation
 - +, -, " " , ~, site:, AND, OR, ...
 - Similar to SQL language used in database applications
 - Not for “end users”
 - IR query languages also allow structure specifications, but focus on content
User Interaction – Query transformation

- Improves initial query
 - both before and after initial search
- Includes same text transformation techniques used for documents
 - Tokenization, stemming, stopping
- Spell checking and query suggestion provide alternatives to original query
 - Based on query logs
- Query expansion and relevance feedback modify the original query with additional terms
User Interaction – Results output

- Constructs the display of ranked documents for a query
- Generates *snippets* to show how queries match documents
- *Highlights* important words and passages
- Retrieves appropriate *advertising* in many applications
- May provide *clustering* and other visualization tools
- May translate results from foreign languages
The Query Process

Document data store

User Interaction

Ranking (retrieval model)

Index

Log data

Evaluation

- Scoring
- Optimization
- Distribution

Felix Naumann | Search Engines | Summer 2011
Ranking – Scoring

- ≈ database query processing
- Calculates scores for documents using a ranking algorithm
 - Based on retrieval model
- Core component of search engine
- Basic form of score is $\sum q_i \cdot d_i$
 - Summation over vocabulary of collection
 - q_i and d_i are query and document term weights for term i
- Many variations of ranking algorithms and retrieval models
- Key requirement: Fast execution!
Designing ranking algorithms for efficient processing
- *Term-at-a time* vs. *document-at-a-time* processing
- *Safe vs. unsafe* optimizations
 - Trade-off between speed and quality
Ranking – Distribution

- Processing queries in a distributed environment
- *Query broker* distributes queries and assembles results
- *Caching* is a form of distributed searching

More in Chapter 7

Felix Naumann | Search Engines | Summer 2011
The Query Process

- Document data store
- User Interaction
- Ranking (retrieval model)
- Index
- Log data
- Evaluation

- Logging
- Ranking Analysis
- Performance Analysis
Logging user queries and interaction is crucial for improving search effectiveness and efficiency.

Query logs and *clickthrough data (& dwell time)* used for

- Query suggestion
- Spell checking
- Query caching
- Ranking
- Advertising search
- ...

Assumption: Pages clicked on are relevant to query.
Evaluation – Ranking and Performance Analysis

■ Ranking analysis
 □ Measuring and tuning ranking effectiveness
 □ Variety of measures

■ Performance analysis
 □ Measuring and tuning system efficiency
 □ Response time, throughput
 □ Simulation

More in Chapter 8

Felix Naumann | Search Engines | Summer 2011
How Does It Really Work?

- This course explains the components of a search engine in more detail.
- Often many possible approaches and techniques for a given component
 - Focus is on the most important alternatives
 - Explain a small number of approaches in detail rather than many approaches
 - “Importance” based on research results and use in actual search engines
 - Alternatives described in references (see book)
Summary

- **Indexing**
 - Text Acquisition
 - Text Transformation
 - Index Creation

- **Querying**
 - User Interaction
 - Ranking
 - Evaluation