

IT Systems Engineering | Universität Potsdam

Similarity measures

11.6.2013 Felix Naumann

Duplicate Detection – Research

HPI

Hasso Plattner

Institut

Similarity measures

4

sim(x,y)

□ x and y can be strings, numbers, tuples, objects, images, ...

Normalized: $sim(x,y) \in [0,1]$

 \Box sim(x,y) = 1 for exact match

 \Box sim(x,y) = 0 for "completely different" x and y.

 \Box 0 < sim(x,y) < 1 for some approximate similarity

Distance function / distance metric

- $\Box Reflexive: dist(x,x) = 0$
- □ Positive: dist(x,y) ≥ 0
- □ Symmetric: dist(x,y) = dist(y,x)
- □ Triangular inequation: $dist(x,z) \le dist(x,y) + dist(y,z)$
- sim(x,y) = 1 dist(x,y)
- sim(x,y) = 1/dist(x,y)

$$sim_{exact}(x, y) = \begin{cases} 1 & if \ x = y \\ 0 & if \ x \neq y \end{cases}$$

•
$$sim_{trunc_beg}(x, y) = \begin{cases} 1 & if \ x[1:k] = y[1:k] \\ 0 & if \ x[1:k] \neq y[1:k] \end{cases}$$

•
$$sim_{trunc_end}(x, y) = \begin{cases} 1 & if \ x[k:n] = y[k:n] \\ 0 & if \ x[k:n] \neq y[k:n] \end{cases}$$

7

Number of positions in which two strings (of equal length) differ

- Minimum number of *substitutions* required to change one string into the other
- Minimum number of *errors* that could have transformed one string into the other.
- Used mostly for binary numbers and to measure communication errors.

 \square Hamming distance = number of 1s in x XOR y.

dist_{hamming}(peter,pedro) = 3

Edit distances

8

- Compare two strings based on individual characters
- Minimal number of edits required to transform one string into the other.
 - □ Edits: Insert, Delete, Replace (and Match)
 - □ Alternative: Smallest edit cost
 - □ Give different cost to different types of edits
 - □ Give different cost to different letters
- Naive approach: *editdistance*(Jones, Johnson)
 - $\square DDDDDIIIIIII = 12$
 - □ But: Not minimal!
- Levenshtein distance: Basic form
 - Each edit has cost 1

9

- Minimum number of character insertions, deletions, and replacements necessary to transform s₁ into s₂
- Compute transcript based on dynamic programming algorithm
 - Optimality principle: Best transcript of two substrings must be part of best overall solution
 - 1. Initialize matrix *M* of size $(|s_1|+1) \times (|s_2|+1)$
 - **2**. Fill matrix: $M_{i,0} = i$ and $M_{0,j} = j$
 - **3.** Recursion: $M_{i,j} = \begin{cases} M_{i-1,j-1} & \text{if } x[i] = y[j] \\ 1 + \min(M_{i-1,j}, M_{i,j-1}, M_{i-1,j-1}) & \text{else} \end{cases}$
 - **4**. Distance: LevenshteinDist $(x, y) = M_{|x|,|y|}$

Levenshtein Similarity: $sim_{Levenshtein}(x, y) = 1 - \frac{LevenshteinDist(x, y)}{\max(|x|, |y|)}$

Levenshtein Distance

		J	0	Ν	Ε	S			J
	0	1	2	3	4	5		0	.1
J	1						J	1	0
0	2						0	2	
н	3						Н	3	
Ν	4						Ν	4	
S	5						S	5	
Ο	6						0	6	
Ν	7						Ν	7	

$$M_{i,j} = \begin{cases} M_{i-1,j-1} & \text{if } x[i] = y[j] \\ 1 + \min(M_{i-1,j}, M_{i,j-1}, M_{i-1,j-1}) & \text{else} \end{cases}$$

Ν

3

2 3

0

2

1

E

4

S

5

4

Levenshtein Distance – Example

 $sim_{Levenshtein} = 1 - \frac{LevenshteinDist}{\max(|s_1|, |s_2|)}$

\$ ₁	s ₂	Levenshtein Distance	sim _{Levenshtein}
Jones	Johnson	4	0.43
Paul	Pual	2	0.5
Paul Jones	Jones, Paul	11	0

Levenshtein discussion

Complexity

- □ Time: $O(|x| \cdot |y|)$ (fill in matrix)
- □ Space: $O(\min(|x|, |y|))$
 - ♦ Trick: Store only two rows of the matrix
- Some properties
 - $\Box \ 0 \leq LevenshteinDist(x, y) \leq \max(|x|, |y|)$
 - $\Box ||x| |y|| \le LevenshteinDist(x, y)$
 - Often: Compare only strings with similar lengths
- Other cost models
 - □ Insert, delete cost 1.0 but replace 0.5
 - change in string length is punished, e.g. for zip codes
 - □ Character based: OCR (m ≃ n, 1 ≃ l) or keyboard (a ≃ s) or brain (6 ≃ 9) or biology (a ≃ t)

14

- Similar to Levenshtein distance, but additionally considers transposed characters
- $M_{i,0} = i$ and $M_{0,j} = j$

$$\bullet M_{i,j} =$$

$$\begin{cases} M_{i-1,j-1} & if x[i] = y[j] \\ M_{i-1,j}, M_{i,j-1}, & \\ 1 + min \begin{pmatrix} M_{i-1,j-1}, & \\ M_{i-1,j-1}, & \\ M_{i-2,j-2} & if x[i] = y[j-1] & and x[i-1] = y[j] \end{pmatrix} & else \end{cases}$$

s ₁	s ₂	Levenshtein Distance	Damerau-Levenshtein Distance	sim_{Damerau-} Levenshtein
Jones	Johnson	4	4	0.43
Paul	Pual	2	1	0.75
Paul Jones	Jones, Paul	11	11	0

Jaro similarity

- Specifically designed for names at US Census Bureau
- Search for common characters
- *m* : number of matching characters

□ Search range matching characters: $\frac{\max(|x|,|y|)}{2} - 1$

•
$$sim_{jaro} = \frac{1}{3} \left(\frac{m}{|x|} + \frac{m}{|y|} + \frac{m-t}{m} \right)$$

Jaro similarity – Example

16

•
$$sim_{jaro} = \frac{1}{3} \left(\frac{m}{|x|} + \frac{m}{|y|} + \frac{m-t}{m} \right)$$

$$S_{1} = \frac{J}{2} = 0$$

$$S_{2} = \frac{1}{3} \cdot \left(\frac{4}{5} + \frac{4}{7} + \frac{4-0}{4}\right) \approx 0.79$$

Winkler similarity

17

- Intuition 1: Similarity of first few letters is most important.
- Let *p* be the length of the common prefix of x and y.

•
$$sim_{winkler}(x, y) = sim_{jaro}(x, y) + (1 - sim_{jaro}(x, y))\frac{p}{10}$$

- \Box = 1 if common prefix is \geq 10
- Intuition 2: Longer strings with even more common letters
- $sim_{winkler_long}(x, y) = sim_{winkler}(x, y) + (1 sim_{winkler}(x, y)) \frac{c (p+1)}{|x| + |y| 2(p-1)}$
 - □ Where *c* is overall number of common letters
 - Apply only if
 - ♦ Long strings: $min(|x|, |y|) \ge 5$
 - ♦ Two additional common letters: $c p \ge 2$
 - ♦ At least half remaining letters of shorter string are in common: $c p \ge \frac{\min(|x|, |y|) p}{2}$

Comparison

	0
1	X
- 1	O

String 1	String 2	C	t	p	Csim	simjan	simwinkler	simumkler_long
shackleford	shackelford	EL	1	4	0	0.9697	0.9818	0.9886
nichleson	nichulson	8	0	4	0.3	0.9259	0.9556	0.9667
jones	johnson	4	0	2	0.3	0.7905	0.8324	0.8491
massey	massie	5	0	4	0.3	0.8889	0.9333	
jeraldine	geraldine	8	0	0	0.3	0.9259	0.9259	0.9519
michelle	michael	6	0	4	0.3	0.8690	0.9214	0.9302

HPI Hasso Plattner Institut

Tokenization

- 21
- Forming words from sequence of characters
- General idea: Separate string into tokens using some separator
 - Space, hyphen, punctuation, special characters
 - Usually also convert to lower-case
- Problems
 - Both hyphenated and non-hyphenated forms of many words are common
 - Sometimes hyphen is *not needed*
 - e-bay, wal-mart, active-x, cd-rom, t-shirts
 - Sometimes hyphens should be considered either as part of the word or a word separator
 - winston-salem, mazda rx-7, e-cards, pre-diabetes, t-mobile, spanish-speaking
 - □ Apostrophes can be a part of a word, a part of a possessive, or just a mistake
 - rosie o'donnell, can't, don't, 80's, 1890's, men's straw hats, master's degree, england's ten largest cities, shriner's
 - Numbers can be important, including decimals
 - nokia 3250, top 10 courses, united 93, quicktime 6.5 pro, 92.3 the beat, 288358
 - Periods can occur in numbers, abbreviations, URLs, ends of sentences, and other situations
 - ♦ I.B.M., Ph.D., cs.umass.edu, F.E.A.R.

Die Kapostropheum-Gruselgalerie – Kategorie "Völlig willenlos" http://www.apostroph.de/

n-grams (aka q-grams)

Split string into short substrings of length *n*.

- □ Sliding window over string
- □ *n*=2: Bigrams
- □ *n*=3: Trigrams
- □ Variation: Pad with n 1 special characters
 - Emphasizes beginning and end of string
- Variation: Include positional information to weight similarities
- Number of *n*-grams = |x| n + 1
- Count how many n-grams are common in both strings

String	Bigrams	Padded bigrams	Positional bigrams	Trigrams
gail	ga, ai, il	⊙g, ga, ai, il, l⊗	(ga,1), (ai,2), (il,3)	gai, ail
gayle	ga, ay, yl, le	\odot g, ga, ay, yl, le, e \otimes	(ga,1), (ay,2), (yl,3), (le,4)	gay, ayl, yle
peter	pe, et, te, er	\odot p, pe, et, te, er, r \otimes	(pe,1), (et,2), (te,3), (er,4)	pet, ete, ter
pedro	pe, ed, dr, ro	\odot p, pe, ed, dr, ro, o \otimes	(pe,1), (ed,2), (dr,3), (ro,4)	ped, edr, dro

I CIIN NAUMANIN | DATA FIOMINY AND DATA OFAMSINY | SUMMER 2013

Token-based Similarity Measures

24

Token similarity

□ Overlap coefficient: $sim_{overlap}(x, y) = \frac{|tok(x) \cap tok(y)|}{\min(|tok(x)|, |tok(y)|)}$

□ Jaccard coefficient:

 $sim_{jaccard}(x,y) = \frac{|tok(x) \cap tok(y)|}{|tok(x)| + |tok(y)| - |tok(x) \cap tok(y)|} = \frac{|tok(x) \cap tok(y)|}{|tok(x) \cup tok(y)|}$

Dice's coefficient:
$$sim_{dice}(x, y) = \frac{2 \cdot |tok(x) \cap tok(y)|}{|tok(x)| + |tok(y)|}$$

- Tokens ("Paul Jones")
 - Words / Terms ("Paul" "Jones")
 - Padded n-grams (_P, Pa, au, ul, I_, _J, Jo, on, ne, es, s_)

S ₂	Jaccard	Dice
Johnson	0.17	0.29
Pual	0.33	0.40
Jones, Paul	0.77	0.87
	 <i>S</i>₂ Johnson Pual Jones, Paul 	S2 Jaccard Johnson 0.17 Pual 0.33 Jones, Paul 0.77

Soundex

 Soundex codes a last name based on the way a last name sounds

- Retain first letter of the name and drop all other occurrences of A, E, H, I, O, U, W, Y
- 2. Replace consonants with digits
- Two adjacent letters with the same number are coded as a single number
- 4. Continue until you have one letter and three numbers. If you run out of letters, pad with 0s.
- If a surname has a prefix, such as Van, Con, De, Di, La, or Le, code both with and without the prefix

Felix Naumann | Data Profiling and Data Cleansing | Summer 2013

Digit	Letters
1	B, F, P, V
2	C, G, J, K, Q, S, X, Z
3	D, T
4	L
5	M, N
6	R

- Example
 - PAUL: P400
 - PUAL: P400
 - JONES: J520
 - JOHNSON: J525

Jenkins, Jansen, Jameson

Soundex on WolframAlpha

Soundex Levenshtein	☆
≝- 1 0-⊞- <i>1</i> 7-	∃ Examples 👓 Rand
Input interpretation:	
Soundex Levenshtein	
Soundex code:	
L152	

Kölner Phonetik

- Like Soundex, but specialized for German last names
 - Letters get different codes based on the context
 - Code length is not restricted
 - Multiple occurrences of the same code and "0" are removed

Example

- PAUL: 15
- PUAL: 15
- JONES: 68
- JOHNSON: 686

	Letter	Context	Code	
	A, E, I, J, O, U, Y		0	
	Н		-	
	В		1	
	Р	not before H	I	
d	D, T	not before C, S, Z	2	
	F, V, W		2	
	Р	before H	3	
	G, K, Q			
	C	in the initial sound before A, H, K, L, O, Q, R, U, X	4	
	C	before A, H, K, O, Q, U, X but not after S, Z		
	х	not after C, K, Q	48	
	L		5	
	M, N		6	
	R		7	
	S, Z			
		after S, Z		
	С	in the initial sound, but not before A, H, K, L, O, Q, R, U, X	8	
		not before A, H, K, O, Q, U, X		
	D, T	before C, S, Z		
	Х	after C, K, Q		

29

Improves on the Soundex algorithm

- Knows variations and inconsistencies in English spelling and pronunciation
- Further improvements
 - Double Metaphone
 - Includes other languages: Slavic, Germanic, Celtic, Greek, French, Italian, Spanish, Chinese
 - ♦ Accuracy 89%
 - Metaphone 3
 - Accuracy over 99% (says author)

Original Metaphone Algorithm

16 consonant symbols OBFHJKLMNPRSTWXY

□ '0' represents "<u>th</u>", 'X' represents "<u>sh</u>" or "<u>ch</u>"

- 1. Drop duplicate adjacent letters, except for C.
- 2. If the word begins with 'KN', 'GN', 'PN', 'AE', 'WR', drop the first letter.
- **3**. Drop 'B' if after 'M' at the end of the word.
- 4. 'C' transforms to 'X' if followed by 'IA' or 'H' (unless in latter case, it is part of '-SCH-', in which case it transforms to 'K'). 'C' transforms to 'S' if followed by 'I', 'E', or 'Y'. Otherwise, 'C' transforms to 'K'.
- 5. 'D' transforms to 'J' if followed by 'GE', 'GY', or 'GI'. Otherwise, 'D' transforms to 'T'.
- 6. Drop 'G' if followed by 'H' and 'H' is not at the end or before a vowel. Drop 'G' if followed by 'N' or 'NED' and is at the end.
- 7. 'G' transforms to 'J' if before 'I', 'E', or 'Y', and it is not in 'GG'. Otherwise, 'G' transforms to 'K'.
- 8. Drop 'H' if after vowel and not before a vowel.
- 9. 'CK' transforms to 'K'.

30

- 10. 'PH' transforms to 'F'.
- 11. 'Q' transforms to 'K'.
- 12. 'S' transforms to 'X' if followed by 'H', 'IO', or 'IA'.
- 13. 'T' transforms to 'X' if followed by 'IA' or 'IO'. 'TH' transforms to '0'. Drop 'T' if followed by 'CH'.
- 14. 'V' transforms to 'F'.
- 15. 'WH' transforms to 'W' if at the beginning. Drop 'W' if not followed by a vowel.
- 16. 'X' transforms to 'S' if at the beginning. Otherwise, 'X' transforms to 'KS'.
- 17. Drop 'Y' if not followed by a vowel.
- **18**. 'Z' transforms to 'S'.
- 19. Drop all vowels unless it is the beginning

32

Hybrid: Token-based and internal similarity function for tokens
 Find best match for each token

•
$$sim_{MongeElkan}(x, y) = \frac{1}{|x|} \sum_{i=1}^{|x|} \max_{j=1, |y|} sim'(x[i], y[j])$$

- \square |*x*| is number of tokens in *x*
- □ *sim'* is internal similarity function (e.g., Levenshtein)
- If strings contain just one token each
 - $\Box sim_{MongeElkan}(x, y) = sim'(x, y)$

Complexity: Quadratic in number of tokens

Monge-Elkan – Example

• $sim_{MongeElkan}(x, y) = \frac{1}{|x|} \sum_{i=1}^{|x|} \max_{j=1, |y|} sim'(x[i], y[j])$

Peter Christen vs. Christian Pedro

- \Box sim_{jaro}(peter, christian) = 0.3741
- \Box sim_{iaro}(peter, pedro) = 0.7333
- \Box sim_{iaro}(christen, christian) = 0.8843
- \Box sim_{jaro}(christen, pedro) = 0.4417
- $sim_{MongeElkan}$ ('peter christen',' christian pedro') = $\frac{1}{2}(0.7333 + 0.8843) = 0.8088$

■
$$sim_{MongeElkan}(x, y) \neq sim_{MongeElkan}(y, x)$$

 $S_1 = "aaa xaa yaa"$
 $S_2 = "aaa"$
 $S_2 = "aaa"$
 $Sim_{MongeElkan}(y, x)$
 $S_1 = "aaa xaa yaa"$
 $S_1 = "aaa xaa yaa"$
 $S_2 = "aaa xxx yyy"$

•
$$sim_{jaccard}(x, y) = \frac{|tok(x) \cap tok(y)|}{|tok(x)| + |tok(y)| - |tok(x) \cap tok(y)|} = \frac{|tok(x) \cap tok(y)|}{|tok(x) \cup tok(y)|}$$

- If strings contain multiple words, choose words as tokens.
- Use internal similarity function to calculate similarity between all pairs of tokens.

□ Shared tokens:

34

$$S = \{ (x_i, y_j) | x_i \in tok(x) \land y_j \in tok(y) : sim'(x_i, y_j) \ge \theta \}$$

□ Unique tokens: $U_{tok(x)} = \{x_i | x_i \in tok(x) \land y_j \in tok(y) \land (x_i, y_j) \notin S\}$

•
$$sim_{jaccad_ext}(x, y) = \frac{|S|}{|S| + |U_{tok(x)}| + |U_{tok(y)}|}$$

Vector Space Model

- Each document ranked by distance between points representing query and document
- Popular measure: Cosine similarity
 - Cosine of angle between document and query vectors
 - Normalized dot-product

$$Cosine(D_i, Q) = \frac{\sum_{j=1}^{t} d_{ij} \cdot q_j}{\sqrt{\sum_{j=1}^{t} d_{ij}^2 \cdot \sum_{j=1}^{t} q_j^2}}$$

http://www.euclideanspace.com/math s/geometry/trig/derived/index.htm

• Consider three documents D_1 , D_2 , D_3 and query Q

- $D_1 = (0.5, 0.8, 0.3), D_2 = (0.9, 0.4, 0.2), D_3 = (0, 0.9, 0.1)$ Q = (1.5, 1.0, 0)
- Vector space model reflects some term weights and number of matching terms (in contrast to Boolean retrieval)

$$\begin{aligned} Cosine(D_1,Q) &= \frac{(0.5 \times 1.5) + (0.8 \times 1.0)}{\sqrt{(0.5^2 + 0.8^2 + 0.3^2)(1.5^2 + 1.0^2)}} \\ &= \frac{1.55}{\sqrt{(0.98 \times 3.25)}} = 0.87 \\ Cosine(D_2,Q) &= \frac{(0.9 \times 1.5) + (0.4 \times 1.0)}{\sqrt{(0.9^2 + 0.4^2 + 0.2^2)(1.5^2 + 1.0^2)}} \\ &= \frac{1.75}{\sqrt{(1.01 \times 3.25)}} = 0.97 \qquad \textit{Cosine}(D_3,Q) = 0.55 \end{aligned}$$
But: How to assign term weights?

Term Weights – *tf.idf*

37

- Term frequency weight *tf* measures importance of term k in document *i*: *tf_{ik}* = *f_{ik} ∑^t_{j=1}f_{ij} log(f_{ik})* to reduce this impact of frequent words
- Inverse document frequency *idf* measures importance in collection: $idf_k = log \frac{N}{n_k}$

Reflects "amount of information" carried by term

tfidf by multiplying *tf* and *idf* with some heuristic modifications

- Apply idea to records or values: Much shorter than documents
- $CLOSE(\theta, tok(x), tok(y))$ is set of tokens from x that have at least one sufficiently similar token in y.
- $sim_{softtfidf}(x, y) =$
 - $\sum_{t \in CLOSE(\theta, tok(x), tok(y))} V(t, tok(x)) \cdot V(t, tok(y)) \cdot N(t, tok(y))$
 - \Box V(t,tok(x)) is TFIDF weight of token t in all tokens of x

 $\square N(t, tok(y)) = \max(\{sim'(t, y_j) | y_j \in tok(y)\})$

Similarity of best matching token

- Soft: Tokens are considered a partial match if they get a good score using an internal similarity measure (CLOSE).
- Problem: Weights are calculated over entire database
 - Scan all data
 - Store weight for each unique token

Numerical comparison

40

• $sim_{num_abs}(n,m) = \begin{cases} 1 - \left(\frac{|n-m|}{d_{max}}\right) & if |n-m| < d_{max} \\ 0 & else \end{cases}$ Linear extrapolation between 0 and d_{max} Example: $\Box d_{max} = $1,000$ $\Box \quad sim_{num_abs}(2,000, \ 2,500) = 1 - \frac{500}{1,000} = 0.5$ □ $sim_{num_abs}(200,000, 200,500) = 1 - \frac{500}{1000} = 0.5$ $sim_{num_perc}(n,m) = \begin{cases} 1 - \left(\frac{pc}{pc_{max}}\right) & if \ pc < pc_{max} \\ 0 & else \end{cases}$ $\square pc = \frac{|n-m|}{\max(|n| |m|)} \cdot 100 \text{ is percentage difference}$ \square pc_{max} = 33%

□ $sim_{num_perc}(2,000, 2,500) = 1 - \frac{20}{33} = 0.394$ because $pc = \frac{|2,000-2,500|}{2,500} \cdot 100 = 20$ □ $sim_{num_perc}(200,000, 200,500) = 1 - \frac{0.25}{22} = 0.993$ because $pc = \frac{500}{200,500} \cdot 100 = 0.25\%$ Felix Naumann | Data Profiling and Data Cleansing | Summer 2013

Time and space comparisons

- Calculate difference in days and use sim_{num abs}
- Special cases

41

- Swapped day and month and both ≤ 12: Return some fixed similarity, e.g. 0.5
- Single error in month could exceed d_{max}: Return some fixed similarity, e.g., 0.75

Dates of birth can be converted to age (num days or num years)

□ Then apply numerical measures

□
$$sim_{age_perc}(n,m) = \begin{cases} 1 - \left(\frac{apc}{apc_{max}}\right) & if apc < apc_{max} \\ 0 & else \end{cases}$$

□ $apc = \frac{|n-m|}{\max(|n|,|m|)} \cdot 100$ is percentage difference

Geographical data: Compute distance based on some projection

Similarity function packages

43

- SecondString
 - Java classes
 - □ All basic string comparisons
 - MongeElkan, SoftTFIDF
 - Similarity learner
 - <u>http://sourceforge.net/projects/secondstring/</u>
- SimMetrics
 - Java package
 - □ All basic string comparisons
 - Long sequences: Needleman-Wunsch, Smith-Waterman, Smith-Waterman-Gotoh
 - <u>http://sourceforge.net/projects/simmetrics/</u>
- Geographiclib for geographic similarity
 - <u>http://geographiclib.sourceforge.net</u>