Hasso

 Plattner InstitutIT Systems Engineering | Universität Potsdam

Similarity measures

11.6.2013

Felix Naumann

Duplicate Detection - Research

Overview Similarity Measures

Similarity measures

- $\operatorname{sim}(x, y)$
$\square x$ and y can be strings, numbers, tuples, objects, images, ...
- Normalized: $\operatorname{sim}(x, y) \in[0,1]$
$\square \operatorname{sim}(x, y)=1$ for exact match
$\square \operatorname{sim}(x, y)=0$ for „completely different" x and y.
$\square 0<\operatorname{sim}(x, y)<1$ for some approximate similarity
- Distance function / distance metric
\square Reflexive: $\operatorname{dist}(x, x)=0$
- Positive: $\quad \operatorname{dist}(x, y) \geq 0$
- Symmetric: $\operatorname{dist}(x, y)=\operatorname{dist}(y, x)$
\square Triangular inequation: $\operatorname{dist}(x, z) \leq \operatorname{dist}(x, y)+\operatorname{dist}(y, z)$
- $\operatorname{sim}(x, y)=1-\operatorname{dist}(x, y)$
- $\operatorname{sim}(x, y)=1 / \operatorname{dist}(x, y)$

Overview Similarity Measures

Exact and truncated match

- $\operatorname{sim}_{\text {exact }}(x, y)=\left\{\begin{array}{l}1 \text { if } x=y \\ 0 \text { if } x \neq y\end{array}\right.$
- $\operatorname{sim}_{\text {trunc_beg }}(x, y)=\left\{\begin{array}{l}1 \text { if } x[1: k]=y[1: k] \\ 0 \text { if } x[1: k] \neq y[1: k]\end{array}\right.$
- sim $_{\text {trunc_end }}(x, y)=\left\{\begin{array}{l}1 \text { if } x[k: n]=y[k: n] \\ 0 \text { if } x[k: n] \neq y[k: n]\end{array}\right.$
- $\operatorname{sim}_{\text {encode }}(x, y)=\left\{\begin{array}{l}1 \text { if encode }(x)=\operatorname{encode}(y) \\ 0 \text { if encode }(y) \neq \operatorname{encode}(y)\end{array}\right.$
- E.g., with a phonetic encoding

Hamming distance

■ Number of positions in which two strings (of equal length) differ
\square Minimum number of substitutions required to change one string into the other
\square Minimum number of errors that could have transformed one string into the other.

- Used mostly for binary numbers and to measure communication errors.
\square Hamming distance $=$ number of 1 s in \times XOR y.

■ dist $_{\text {hamming }}($ peter, pedro $)=3$

Edit distances

- Compare two strings based on individual characters
- Minimal number of edits required to transform one string into the other.
\square Edits: Insert, Delete, Replace (and Match)
\square Alternative: Smallest edit cost
- Give different cost to different types of edits
\square Give different cost to different letters
■ Naive approach: editdistance(J ones,J ohnson)
- DDDDDIIIIII = 12
\square But: Not minimal!
- Levenshtein distance: Basic form
- Each edit has cost 1

Levenshtein Distance

- Minimum number of character insertions, deletions, and replacements necessary to transform s_{1} into s_{2}
- Compute transcript based on dynamic programming algorithm
- Optimality principle: Best transcript of two substrings must be part of best overall solution

1. Initialize matrix M of size $\left(\left|s_{1}\right|+1\right) \times\left(\left|s_{2}\right|+1\right)$
2. Fill matrix: $M_{i, 0}=i$ and $M_{0, j}=j$
3. Recursion: $M_{i, j}=\left\{\begin{array}{cc}M_{i-1, j-1} & \text { if } x[i]=y[j] \\ 1+\min \left(M_{i-1, j}, M_{i, j-1}, M_{i-1, j-1}\right) & \text { else }\end{array}\right.$
4. Distance: LevenshteinDist $(x, y)=M_{|x|,|y|}$

Levenshtein Similarity: $\operatorname{sim}_{\text {Levenshtein }}(x, y)=1-\frac{\text { LevenshteinDist }(x, y)}{\max (|x|,|y|)}$

Levenshtein Distance

		\mathbf{J}	\mathbf{O}	\mathbf{N}	\mathbf{E}	\mathbf{S}
	0	1	2	3	4	5
\mathbf{J}	1					
\mathbf{O}	2					
\mathbf{H}	3					
\mathbf{N}	4					
\mathbf{S}	5					
\mathbf{O}	6					
\mathbf{N}	7					

$$
M_{i, j}=\left\{\begin{array}{cc}
M_{i-1, j-1} & \text { if } x[i]=y[j] \\
1+\min \left(M_{i-1, j}, M_{i, j-1}, M_{i-1, j-1}\right) & \text { else }
\end{array}\right.
$$

Levenshtein Distance - Example

$\mathbf{s}_{\mathbf{1}}$	$\mathbf{s}_{\mathbf{2}}$	Levenshtein Distance	sim $_{\text {Levenshtein }}$
Jones	J ohnson	4	0.43
Paul	Pual	2	0.5
Paul Jones	Jones, Paul	11	0

Levenshtein discussion

- Complexity
\square Time: $O(|x| \cdot|y|)$ (fill in matrix)
\square Space: $O(\min (|x|,|y|))$
\diamond Trick: Store only two rows of the matrix
- Some properties
- $0 \leq$ LevenshteinDist $(x, y) \leq \max (|x|,|y|)$
$\square||x|-|y|| \leq$ LevenshteinDist (x, y)
\diamond Often: Compare only strings with similar lengths
- Other cost models
\square Insert, delete cost 1.0 but replace 0.5
\diamond change in string length is punished, e.g. for zip codes
- Character based: $O C R(m \simeq n, 1 \simeq I)$ or keyboard ($a \simeq s$) or brain $(6 \simeq 9)$ or biology $(a \simeq t)$

Damerau-Levenshtein distance

- Similar to Levenshtein distance, but additionally considers transposed characters
- $M_{i, 0}=i$ and $M_{0, j}=j$
- $M_{i, j}=$

$$
\left\{\begin{array}{cc}
M_{i-1, j-1} \\
M_{i-1, j}, M_{i, j-1}, & i f x[i]=y[j] \\
M_{i-1, j-1}, \\
1+\min \binom{\text { in }}{M_{i-2, j-2} \text { if } x[i]=y[j-1] \text { and } x[i-1]=y[j]} & \text { else }
\end{array}\right.
$$

$\mathbf{s}_{\mathbf{1}}$	$\mathbf{s}_{\mathbf{2}}$	Levenshtein Distance	Damerau-Levenshtein Distance	sim Damerau- Levenshtein
Jones	Johnson	4	4	0.43
Paul	Pual	2	1	0.75
Paul Jones	Jones, Paul	11	11	0

Jaro similarity

- Specifically designed for names at US Census Bureau
- Search for common characters
- m : number of matching characters
- Search range matching characters: $\frac{\max (|x|,|y|)}{2}-1$
- t : number of transpositions
- $\operatorname{sim}_{\text {jaro }}=\frac{1}{3}\left(\frac{m}{|x|}+\frac{m}{|y|}+\frac{m-t}{m}\right)$

Jaro similarity - Example

■ $\operatorname{sim}_{\text {jaro }}=\frac{1}{3}\left(\frac{m}{|x|}+\frac{m}{|y|}+\frac{m-t}{m}\right)$

$$
\begin{array}{lll}
\mathrm{S}_{1} & \mathbf{P} & \mathbf{A} \\
& \downarrow & \mathbf{U} \\
\mathrm{~S}_{2} & \mathbf{P} & \mathbf{U} \mathbf{A} \\
m=4 & t=\frac{2}{2}=1 \\
\operatorname{sim}_{\text {jaro }}= & \frac{1}{3} \cdot\left(\frac{4}{4}+\frac{4}{4}+\frac{4-1}{4}\right) \approx 0.92
\end{array}
$$

$$
m=4 \quad t=\frac{0}{2}=0
$$

$m=4 \quad t=\frac{0}{2}=0$
$\operatorname{sim}_{\text {jaro }}=\frac{1}{3} \cdot\left(\frac{4}{5}+\frac{4}{7}+\frac{4-0}{4}\right) \approx 0.79$

Winkler similarity

- Intuition 1: Similarity of first few letters is most important.
- Let p be the length of the common prefix of x and y .
- $\operatorname{sim}_{\text {winkler }}(x, y)=\operatorname{sim}_{\text {jaro }}(x, y)+\left(1-\operatorname{sim}_{\text {jaro }}(x, y)\right) \frac{p}{10}$
$\square=1$ if common prefix is ≥ 10
- Intuition 2: Longer strings with even more common letters
- $\operatorname{sim}_{\text {winkler_long }}(x, y)=\operatorname{sim}_{\text {winkler }}(x, y)+\left(1-\operatorname{sim}_{\text {winkler }}(x, y)\right) \frac{c-(p+1)}{|x|+|y|-2(p-1)}$
\square Where c is overall number of common letters
\square Apply only if
\diamond Long strings: $\min (|x|,|y|) \geq 5$
\diamond Two additional common letters: $c-p \geq 2$
\diamond At least half remaining letters of shorter string are in common: $c-p \geq \frac{\min (|x|,|y|)-p}{2}$

String 1	String 2	c	f	p	$c_{\text {sim }}$	$\operatorname{sim}_{\text {jam }}$	$\operatorname{sim}_{\text {binkler }}$	$\operatorname{sim}_{\text {winkler_loug }}$
shackleford	shackelford	11	1	4	0	0.9697	0.9818	0.9886
nichleson	nichulson	8	0	4	0.3	0.9259	0.9556	0.9667
jones	johnson	4	0	2	0.3	0.7905	0.8324	0.8491
massey	massie	5	0	4	0.3	0.8889	0.9333	-
jeraldine	geraldine	8	0	0	0.3	0.9259	0.9259	0.9519
michelle	michael	6	0	4	0.3	0.8690	0.9214	0.9302

- Forming words from sequence of characters
- General idea: Separate string into tokens using some separator
\square Space, hyphen, punctuation, special characters
- Usually also convert to lower-case
- Problems
\square Both hyphenated and non-hyphenated forms of many words are common
\diamond Sometimes hyphen is not needed
- e-bay, wal-mart, active-x, cd-rom, t-shirts
\diamond Sometimes hyphens should be considered either as part of the word or a word separator
- winston-salem, mazda rx-7, e-cards, pre-diabetes, t-mobile, spanishspeaking
- Apostrophes can be a part of a word, a part of a possessive, or just a mistake
\diamond rosie o'donnell, can't, don't, 80's, 1890's, men's straw hats, master's degree, england's ten largest cities, shriner's
- Numbers can be important, including decimals
\diamond nokia 3250, top 10 courses, united 93 , quicktime 6.5 pro, 92.3 the beat, 288358
- Periods can occur in numbers, abbreviations, URLs, ends of sentences, and other situations
$\diamond ~ I . B . M ., ~ P h . D ., ~ c s . u m a s s . e d u, ~ F . E . A . R$.

Die Kapostropheum-Gruselgalerie Kategorie „Völlig willenlos"
http://www.apostroph.de/

n-grams (aka q-grams)

- Split string into short substrings of length n.
\square Sliding window over string
- $\mathrm{n}=2$: Bigrams
- $\mathrm{n}=3$: Trigrams
- Variation: Pad with $\mathrm{n}-1$ special characters
\diamond Emphasizes beginning and end of string
\square Variation: Include positional information to weight similarities
- Number of n-grams $=|x|-n+1$
- Count how many n -grams are common in both strings

String	Bigrams	Padded bigrams	Positional bigrams	Trigrams
gail	ga, ai, il	$\odot \mathrm{g}, \mathrm{ga}, \mathrm{ai}, \mathrm{il}, \mathrm{l} \otimes$	$(\mathrm{ga}, 1),(\mathrm{ai}, 2),(\mathrm{il}, 3)$	gai, ail
gayle	ga, ay, yl, le	$\odot \mathrm{g}, \mathrm{ga}, \mathrm{ay}, \mathrm{yl}, \mathrm{le}, \mathrm{e} \otimes$	$(\mathrm{ga}, 1),(\mathrm{ay}, 2),(\mathrm{yl}, 3),(\mathrm{le}, 4)$	gay, ayl, yle
peter	pe, et, te, er	$\odot \mathrm{p}$, pe, et, te, er, r \otimes	$(\mathrm{pe}, 1),(\mathrm{et}, 2),(\mathrm{te}, 3),(\mathrm{er}, 4)$	pet, ete, ter
pedro	pe, ed, dr, ro	$\odot \mathrm{p}, \mathrm{pe}, \mathrm{ed}, \mathrm{dr}, \mathrm{ro}, \mathrm{o} \otimes$	$(\mathrm{pe}, 1),(\mathrm{ed}, 2),(\mathrm{dr}, 3),(\mathrm{ro}, 4)$	ped, edr, dro

Token-based Similarity Measures

- Token similarity
- Overlap coefficient: $\operatorname{sim}_{\text {overlap }}(x, y)=\frac{|\operatorname{tok}(x) \cap \operatorname{tok}(y)|}{\min (|\operatorname{tok}(x)|,|\operatorname{tok}(y)|)}$
- Jaccard coefficient:

$$
\operatorname{sim}_{j \operatorname{jaccard}}(x, y)=\frac{|\operatorname{tok}(x) \cap \operatorname{tok}(y)|}{|\operatorname{tok}(x)|+|\operatorname{tok}(y)|-|\operatorname{tok}(x) \cap \operatorname{tok}(y)|}=\frac{|\operatorname{tok}(x) \cap \operatorname{tok}(y)|}{|\operatorname{tok}(x) \cup \operatorname{tok}(y)|}
$$

- Dice's coefficient: $\operatorname{sim}_{\text {dice }}(x, y)=\frac{2 \cdot|\operatorname{tok}(x) \cap \operatorname{tok}(y)|}{|\operatorname{tok}(x)|+|\operatorname{tok}(y)|}$
- Tokens („Paul Jones")
- Words / Terms („Paul" „J ones")
- Padded n-grams (_P, Pa, au, ul, I_, _J, Jo, on, ne, es, s_)

$\mathbf{s}_{\mathbf{1}}$	$\mathbf{s}_{\mathbf{2}}$	Jaccard	Dice
Jones	Johnson	0.17	0.29
Paul	Pual	0.33	0.40
Paul Jones		Jones, Paul	0.77

Digit	Letters
1	B, F, P, V
2	C, G, J, K, Q, S, X, Z
3	D, T
4	L
5	M, N
6	R

3. Two adjacent letters with the same number are coded as a single number
4. Continue until you have one letter and three numbers. If you run out of letters, pad with 0s.

- If a surname has a prefix, such as Van, Con, De, Di, La, or Le, code both with and without the prefix
- Example
- PAUL: P400

■ PUAL: P400

- JONES: J520
- JOHNSON: J525
- Soundex codes a last name based on the way a last name sounds

1. Retain first letter of the name and drop all other occurrences of A, E, H, I, O, U, W, Y
2. Replace consonants with digits

Soundex on WolframAlpha

参WolframAlphai menatas
 WolframAlphà enamas

Soundex Levenshtein

Input interpretation:
Soundex Levenshtein

Soundex code:
L152

Soundex-close English words:
More
Livingstone | lebensraum | Livingston | lovemaking
Computed by Wolfram 2Nobematica
Download page

Letter	Context	Code
A, E, I, J, O, U, Y		0
H		-
B		1
P	not before H	
D, T	not before C, S, Z	2
F, V, W		3
P	before H	
G, K, Q		
C	in the initial sound before A, H, K, L, O, Q, R, U, X	4
	before A, H, K, O, Q, U, X but not after S, Z	
X	not after C, K, Q	48
L		5
M, N		6
R		7
S, Z		
	after S, Z	
C	in the initial sound, but not before A, H, K, L, O, Q, R, U, X	8
	not before A, H, K, O, Q, U, X	
D, T	before $\mathrm{C}, \mathrm{S}, \mathrm{Z}$	
X	after C, K, Q	

Felix Naumann | Data Profiling and Data Cleansing | Summer 2013

Metaphone

- Improves on the Soundex algorithm
\square Knows variations and inconsistencies in English spelling and pronunciation
- Further improvements
- Double Metaphone
\diamond Includes other languages: Slavic, Germanic, Celtic, Greek, French, Italian, Spanish, Chinese
\diamond Accuracy 89\%
- Metaphone 3
\diamond Accuracy over 99\% (says author)

Original Metaphone Algorithm

- 16 consonant symbols OBFHJ KLMNPRSTWXY
- '0' represents "th", 'X' represents "sh" or "ch"

1. Drop duplicate adjacent letters, except for C .
2. If the word begins with 'KN', 'GN', 'PN', 'AE', 'WR', drop the first letter.
3. Drop ' B ' if after ' M ' at the end of the word.
4. ' C ' transforms to ' X ' if followed by 'IA' or ' H^{\prime} (unless in latter case, it is part of '- SCH - ', in which case it transforms to ' K '). 'C' transforms to 'S' if followed by 'I', ' E ', or ' Y '. Otherwise, ' C^{\prime} transforms to ' K '.
5. 'D' transforms to 'J' if followed by 'GE', 'GY', or 'GI'. Otherwise, 'D' transforms to 'T'.
6. Drop ' G ' if followed by ' H ' and ' H ' is not at the end or before a vowel. Drop ' G ' if followed by ' N ' or 'NED' and is at the end.
7. 'G' transforms to 'J' if before 'I', ' E ', or ' Y ', and it is not in ' $G G^{\prime}$. Otherwise, ' G ' transforms to ' K '.
8. Drop ' H ' if after vowel and not before a vowel.
9. 'CK' transforms to ' K '.
10. 'PH' transforms to ' F '.
11. 'Q' transforms to ' K '.
12. 'S' transforms to ' X ' if followed by ' H ', 'IO', or 'IA'.
13. ' T ' transforms to ' X ' if followed by ' IA ' or ' IO '. 'TH' transforms to ' 0 '. Drop ' T ' if followed by ' CH '.
14. 'V' transforms to ' F '.
15. 'WH' transforms to 'W' if at the beginning. Drop 'W' if not followed by a vowel.
16. ' X ' transforms to ' S ' if at the beginning. Otherwise, ' X ' transforms to 'KS'.
17. Drop ' Y ' if not followed by a vowel.
18. 'Z' transforms to 'S'.
19. Drop all vowels unless it is the beginning

Monge-Elkan

■ Hybrid: Token-based and internal similarity function for tokens
\square Find best match for each token

- $\operatorname{sim}_{\text {MongeElkan }}(x, y)=\frac{1}{|x|} \sum_{i=1}^{|x|} \max _{j=1,|y|} \operatorname{sim}^{\prime}(x[i], y[j])$
$\square|x|$ is number of tokens in x
\square sim' is internal similarity function (e.g., Levenshtein)
- If strings contain just one token each
$\square \operatorname{sim}_{\text {MongeElkan }}(x, y)=\operatorname{sim}^{\prime}(x, y)$

■ Complexity: Quadratic in number of tokens

Monge-Elkan - Example

- $\operatorname{sim}_{\text {MongeElkan }}(x, y)=\frac{1}{|x|} \sum_{i=1}^{|x|} \max _{j=1,|y|} \operatorname{sim}^{\prime}(x[i], y[j])$
- Peter Christen vs. Christian Pedro
$\square \operatorname{sim}_{\text {jaro }}$ (peter, christian) $=0.3741$
$\square \operatorname{sim}_{\text {jaro }}$ (peter, pedro) $=0.7333$
$\square \operatorname{sim}_{\text {jaro }}($ christen, christian) $=0.8843$
$\square \operatorname{sim}_{\text {jaro }}($ christen, pedro $)=0.4417$
- $\operatorname{sim}_{\text {MongeElkan }}($ 'peter christen',' christian pedro' $)=\frac{1}{2}(0.7333+0.8843)=$ 0.8088

■ $\operatorname{sim}_{\text {MongeElkan }}(x, y) \neq \operatorname{sim}_{\text {MongeElkan }}(y, x)$

[^0]
Extended J accard Similarity

- $\operatorname{sim}_{j \operatorname{accard}}(x, y)=\frac{|\operatorname{tok}(x) \cap \operatorname{tok}(y)|}{|\operatorname{tok}(x)|+|\operatorname{tok}(y)|-|\operatorname{tok}(x) \cap \operatorname{tok}(y)|}=\frac{|\operatorname{tok}(x) \cap \operatorname{tok}(y)|}{|\operatorname{tok}(x) \cup \operatorname{tok}(y)|}$
- If strings contain multiple words, choose words as tokens.
- Use internal similarity function to calculate similarity between all pairs of tokens.
■ Shared tokens:

$$
S=\left\{\left(x_{i}, y_{j}\right) \mid x_{i} \in \operatorname{tok}(x) \wedge y_{j} \in \operatorname{tok}(y): \operatorname{sim}^{\prime}\left(x_{i}, y_{j}\right) \geq \theta\right\}
$$

\square Unique tokens: $U_{\operatorname{tok}(x)}=\left\{x_{i} \mid x_{i} \in \operatorname{tok}(x) \wedge y_{j} \in \operatorname{tok}(y) \wedge\left(x_{i}, y_{j}\right) \notin S\right\}$

- $\operatorname{sim}_{j_{\text {accad_ext }}}(x, y)=\frac{|S|}{|S|+\left|U_{\text {tok }(x)}\right|+\left|U_{\text {tok }(x)}\right|}$

Vector Space Model

- Each document ranked by distance between points representing query and document
- Popular measure: Cosine similarity
\square Cosine of angle between document and query vectors
- Normalized dot-product

$$
\operatorname{Cosine}\left(D_{i}, Q\right)=\frac{\sum_{j=1}^{t} d_{i j} \cdot q_{j}}{\sqrt{\sum_{j=1}^{t} d_{i j}{ }^{2} \cdot \sum_{j=1}^{t} q_{j}{ }^{2}}}
$$

http://www.euclideanspace.com/math s/geometry/trig/derived/index.htm

Similarity Calculation - Example

- Consider three documents D_{1}, D_{2}, D_{3} and query Q
$\square D_{1}=(0.5,0.8,0.3), D_{2}=(0.9,0.4,0.2), D_{3}=(0,0.9,0.1)$
$\square \mathrm{Q}=(1.5,1.0,0)$
- Vector space model reflects some term weights and number of matching terms (in contrast to Boolean retrieval)

$$
\begin{aligned}
\operatorname{Cosine}\left(D_{1}, Q\right) & =\frac{(0.5 \times 1.5)+(0.8 \times 1.0)}{\sqrt{\left(0.5^{2}+0.8^{2}+0.3^{2}\right)\left(1.5^{2}+1.0^{2}\right)}} \\
& =\frac{1.55}{\sqrt{(0.98 \times 3.25)}}=0.87 \\
\operatorname{Cosine}\left(D_{2}, Q\right) & =\frac{(0.9 \times 1.5)+(0.4 \times 1.0)}{\sqrt{\left(0.9^{2}+0.4^{2}+0.2^{2}\right)\left(1.5^{2}+1.0^{2}\right)}} \\
& =\frac{1.75}{\sqrt{(1.01 \times 3.25)}}=0.97 \quad \operatorname{Cosine}\left(D_{3}, Q\right)=0.55
\end{aligned}
$$

■ But: How to assign term weights?

Term Weights - tf.idf

■ Term frequency weight tf measures importance of term k in document i: $t f_{i k}=\frac{f_{i k}}{\sum_{j=1}^{t} f_{i j}}$
$\square \log \left(f_{i k}\right)$ to reduce this impact of frequent words

■ Inverse document frequency idf measures importance in collection: $i d f_{k}=\log \frac{N}{n_{k}}$

- Reflects "amount of information" carried by term

■ tfidf by multiplying tf and idf with some heuristic modifications

SoftTFIDF

- Apply idea to records or values: Much shorter than documents
- $\operatorname{CLOSE}(\theta, \operatorname{tok}(x), \operatorname{tok}(y))$ is set of tokens from x that have at least one sufficiently similar token in y .
- $\operatorname{sim}_{\text {softtfidf }}(x, y)=$
$\sum_{t \in \operatorname{CLOSE}(\theta, \operatorname{tok}(x), \operatorname{tok}(y))} V(t, \operatorname{tok}(x)) \cdot V(t, \operatorname{tok}(y)) \cdot N(t, \operatorname{tok}(y))$
$\square V(t, \operatorname{tok}(x))$ is TFIDF weight of token t in all tokens of x
$\square N(t, \operatorname{tok}(y))=\max \left(\left\{\operatorname{sim}^{\prime}\left(t, y_{j}\right) \mid y_{j} \in \operatorname{tok}(y)\right\}\right)$
\diamond Similarity of best matching token
- Soft: Tokens are considered a partial match if they get a good score using an internal similarity measure (CLOSE).
- Problem: Weights are calculated over entire database
- Scan all data
- Store weight for each unique token

Numerical comparison

- $\operatorname{sim}_{\text {num_abs }}(n, m)=\left\{\begin{array}{cc}1-\left(\frac{|n-m|}{d_{\max }}\right) & \text { if }|n-m|<d_{\text {max }} \\ 0 & \text { else }\end{array}\right.$
- Linear extrapolation between 0 and $d_{\max }$
- Example:
- $\mathrm{d}_{\max }=\$ 1,000$
$\square \quad \operatorname{sim}_{\text {num_abs }}(2,000,2,500)=1-\frac{500}{1,000}=0.5$
$\square \operatorname{sim}_{\text {num_abs }}(200,000,200,500)=1-\frac{500}{1,000}=0.5$
- $\operatorname{sim}_{\text {num_perc }}(n, m)=\left\{\begin{array}{cc}1-\left(\frac{p c}{p c_{\max }}\right) & \text { if } p c<p c_{\max } \\ 0 & \text { else }\end{array}\right.$
$\square p c=\frac{|n-m|}{\max (|n|,|m|)} \cdot 100$ is percentage difference
$\square \mathrm{pc}_{\max }=33 \%$
$\square \operatorname{sim}_{\text {num_perc }}(2,000,2,500)=1-\frac{20}{33}=0.394$ because $p c=\frac{|2,000-2,500|}{2,500} \cdot 100=20$
$\square \operatorname{sim}_{\text {num_perc }}(200,000,200,500)=1-\frac{0,25}{33}=0.993$ because $p c=\frac{500}{200,500} \cdot 100=0,25 \%$

Time and space comparisons

- Calculate difference in days and use sim $_{\text {num_abs }}$
- Special cases
\square Swapped day and month and both ≤ 12 : Return some fixed similarity, e.g. 0.5
\square Single error in month could exceed $\mathrm{d}_{\text {max }}$: Return some fixed similarity, e.g., 0.75
- Dates of birth can be converted to age (num days or num years)
\square Then apply numerical measures
$\square \operatorname{sim}_{\text {age_perc }}(n, m)=\left\{\begin{array}{cc}1-\left(\frac{a p c}{a p c_{\max }}\right) & \text { if apc }<a p c_{\text {max }} \\ 0 & \text { else }\end{array}\right.$
$\square a p c=\frac{|n-m|}{\max (|n|,|m|)} \cdot 100$ is percentage difference
■ Geographical data: Compute distance based on some projection

Similarity function packages

- SecondString
- Java classes
\square All basic string comparisons
- MongeElkan, SoftTFIDF
- Similarity learner
- http://sourceforge. net/projects/secondstring/
- SimMetrics
\square Java package
- All basic string comparisons
\square Long sequences: Needleman-Wunsch, Smith-Waterman, Smith-Waterman-Gotoh
- http://sourceforge.net/projects/simmetrics/
- Geographiclib for geographic similarity
- http://geographiclib.sourceforge.net

[^0]: Felix Naumann | Data Profiling and Data Cleansing | Summer 2013

