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Similarity measures

■ sim(x,y)
□ x and y can be strings, numbers, tuples, objects, images, …

■ Normalized: sim(x,y) ∈ [0,1]
□ sim(x,y) = 1 for exact match
□ sim(x,y) = 0 for „completely different“ x and y.
□ 0 < sim(x,y) < 1 for some approximate similarity

■ Distance function / distance metric
□ Reflexive:   dist(x,x) = 0
□ Positive:     dist(x,y) ≥ 0
□ Symmetric: dist(x,y) = dist(y,x)
□ Triangular inequation: dist(x,z) ≤ dist(x,y) + dist(y,z)

■ sim(x,y) = 1 – dist(x,y) 
■ sim(x,y) = 1/dist(x,y) 
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Exact and truncated match

■ , = 1	 	 =0	 	 	 ≠
■ _ , = 1	 	 [1: ] = [1: ]0	 	 [1: ] ≠ [1: ]
■ _ , = 1	 	 [ : ] = [ : ]0	 	 [ : ] ≠ [ : ]
■ , = 1	 	 ( ) = ( )0	 	 ( ) ≠ ( )

□ E.g., with a phonetic encoding
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Hamming distance

■ Number of positions in which two strings (of equal length) differ
□ Minimum number of substitutions required to change one 

string into the other
□ Minimum number of errors that could have transformed one 

string into the other.
■ Used mostly for binary numbers and to measure communication 

errors.
□ Hamming distance = number of 1s in x XOR y.

■ disthamming(peter,pedro) = 3
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Edit distances

■ Compare two strings based on individual characters
■ Minimal number of edits required to transform one string into the 

other.
□ Edits: Insert, Delete, Replace (and Match)
□ Alternative: Smallest edit cost
□ Give different cost to different types of edits
□ Give different cost to different letters

■ Naive approach: editdistance(Jones,Johnson)
□ DDDDDIIIIIII = 12
□ But: Not minimal!

■ Levenshtein distance: Basic form
□ Each edit has cost 1
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Levenshtein Distance

■ Minimum number of character insertions, deletions, and 
replacements necessary to transform s1 into s2

■ Compute transcript based on dynamic programming algorithm
□ Optimality principle: Best transcript of two substrings must be 

part of best overall solution 
1. Initialize matrix M of size (|s1|+1) x (|s2|+1)

2. Fill matrix: , = and , =
3. Recursion: , = , 	 = [ ]1 + min , , , , ,
4. Distance: , = ,| |

Levenshtein Similarity: ( , ) = 1 − ( , )	(| |,| |)
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Levenshtein Distance

J O N E S
0 1 2 3 4 5

J 1

O 2

H 3

N 4

S 5

O 6

N 7
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J O N E S
0 1 2 3 4 5

J 1 0 1 2 3 4

O 2

H 3

N 4

S 5

O 6

N 7

J O N E S
0 1 2 3 4 5

J 1 0 1 2 3 4

O 2 1 0 1 2 3

H 3 2 1 1 2 3

N 4 3 2 1 2 3

S 5 4 3 2 2 2

O 6 5 4 3 3 3

N 7 6 5 4 4 4

Felix Naumann | Data Profiling and Data Cleansing | Summer 2013

, = , 	 = [ ]1 + min , , , , ,



Levenshtein Distance – Example 
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s1 s2
Levenshtein
Distance simLevenshtein

Jones Johnson 4 0.43

Paul Pual 2 0.5

Paul Jones Jones, Paul 11 0

( )|||,|max
1

21 ss
nDistLevenshteisim nLevenshtei −=



Levenshtein discussion

■ Complexity
□ Time: (| | ∙ | |) (fill in matrix)
□ Space: (min	( , ))

◊ Trick: Store only two rows of the matrix
■ Some properties

□ 0 ≤ , ≤ max ,
□ |	 − 	| ≤ ( , )

◊ Often: Compare only strings with similar lengths
■ Other cost models

□ Insert, delete cost 1.0 but replace 0.5
◊ change in string length is punished, e.g. for zip codes

□ Character based: OCR (m ≃ n, 1 ≃ l) or keyboard (a ≃ s) or 
brain (6 ≃ 9) or biology (a ≃ t)
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Damerau–Levenshtein distance

■ Similar to Levenshtein distance, but additionally considers 
transposed characters

■ , = and , =
■ , =

, = [ ]
1 + , , , ,, ,, 	 	 = − 1 	 	 − 1 = [ ]

14

s1 s2
Levenshtein
Distance

Damerau-Levenshtein
Distance

simDamerau-
Levenshtein

Jones Johnson 4 4 0.43

Paul Pual 2 1 0.75

Paul Jones Jones, Paul 11 11 0
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Jaro similarity

■ Specifically designed for names at US Census Bureau
■ Search for common characters
■ m : number of matching characters

□ Search range matching characters: 	( ,| |) − 1
■ t : number of transpositions

■ = | | + | | +

15
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Jaro similarity – Example 

■ = | | + | | +
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Winkler similarity

■ Intuition 1: Similarity of first few letters is most important.
■ Let p be the length of the common prefix of x and y.

■ , = 	 , + (1 − , )
□ = 1 if common prefix is ≥10

■ Intuition 2: Longer strings with even more common letters

■ _ , = 	 , + (1 − , ) ( )( )
□ Where c is overall number of common letters
□ Apply only if

◊ Long strings: min( , | |) ≥ 5
◊ Two additional common letters: − ≥ 2
◊ At least half remaining letters of shorter string are in 

common: − ≥ ,
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Comparison
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Tokenization

■ Forming words from sequence of characters
■ General idea: Separate string into tokens using some separator

□ Space, hyphen, punctuation, special characters
□ Usually also convert to lower-case

■ Problems
□ Both hyphenated and non-hyphenated forms of many words are common 

◊ Sometimes hyphen is not needed 
● e-bay, wal-mart, active-x, cd-rom, t-shirts 

◊ Sometimes hyphens should be considered either as part of the word or a 
word separator
● winston-salem, mazda rx-7, e-cards, pre-diabetes, t-mobile, spanish-

speaking
□ Apostrophes can be a part of a word, a part of a possessive, or just a mistake

◊ rosie o'donnell, can't, don't, 80's, 1890's, men's straw hats, master's 
degree, england's ten largest cities, shriner's

□ Numbers can be important, including decimals 
◊ nokia 3250, top 10 courses, united 93, quicktime 6.5 pro, 92.3 the beat, 

288358
□ Periods can occur in numbers, abbreviations, URLs, ends of sentences, and other 

situations
◊ I.B.M., Ph.D., cs.umass.edu, F.E.A.R.

Felix Naumann | Data Profiling and Data Cleansing | Summer 2013
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Die Kapostropheum-Gruselgalerie –
Kategorie „Völlig willenlos“
http://www.apostroph.de/
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n-grams (aka q-grams)

■ Split string into short substrings of length n.
□ Sliding window over string
□ n=2: Bigrams
□ n=3: Trigrams
□ Variation: Pad with n – 1 special characters

◊ Emphasizes beginning and end of string
□ Variation: Include positional information to weight similarities

■ Number of n-grams = |x| – n + 1
■ Count how many n-grams are common in both strings

Felix Naumann | Data Profiling and Data Cleansing | Summer 2013
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Token-based Similarity Measures

■ Token similarity

□ Overlap coefficient: , = 	∩		( ( ) , ( ) )
□ Jaccard coefficient: , = 	∩ 	+ − 	∩ 	 = 	∩ 		∪ 	
□ Dice's coefficient: , = ∙ 	∩	

■ Tokens („Paul Jones“)
□ Words / Terms („Paul“ „Jones“)
□ Padded n-grams (_P, Pa, au, ul, l_, _J, Jo, on, ne, es, s_)

24

s1 s2 Jaccard Dice
Jones Johnson 0.17 0.29

Paul Pual 0.33 0.40

Paul Jones Jones, Paul 0.77 0.87
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Soundex

■ Soundex codes a last name based on 
the way a last name sounds

1. Retain first letter of the name 
and drop all other occurrences of 
A, E, H, I, O, U, W, Y

2. Replace consonants with digits
3. Two adjacent letters with the 

same number are coded as a 
single number

4. Continue until you have one 
letter and three numbers. If you 
run out of letters, pad with 0s.

■ If a surname has a prefix, such as 
Van, Con, De, Di, La, or Le, code both 
with and without the prefix

Felix Naumann | Data Profiling and Data Cleansing | Summer 2013
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Digit Letters

1 B, F, P, V

2 C, G, J, K, Q, S, X, Z

3 D, T

4 L

5 M, N

6 R

■ Example
■ PAUL: P400
■ PUAL: P400
■ JONES: J520
■ JOHNSON: J525

Jenkins, Jansen, 
Jameson 



Soundex on WolframAlpha
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Kölner Phonetik

■ Like Soundex, but specialized 
for German last names

■ Letters get different codes 
based on the context

■ Code length is not restricted
■ Multiple occurrences of the 

same code and „0“ are 
removed

■ Example
■ PAUL: 15
■ PUAL: 15
■ JONES: 68
■ JOHNSON:686

28

Letter Context Code

A, E, I, J, O, U, Y 0

H -

B
1

P not before H

D, T not before C, S, Z 2

F, V, W
3

P before H

G, K, Q

4
C

in the initial sound before
A, H, K, L, O, Q, R, U, X

before A, H, K, O, Q, U, X
but not after S, Z

X not after C, K, Q 48

L 5

M, N 6

R 7

S, Z

8
C

after S, Z

in the initial sound, but not 
before A, H, K, L, O, Q, R, U, X

not before A, H, K, O, Q, U, X

D, T before C, S, Z

X after C, K, Q
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Metaphone

■ Improves on the Soundex algorithm
□ Knows variations and inconsistencies in English spelling and 

pronunciation

■ Further improvements
□ Double Metaphone

◊ Includes other languages: Slavic, Germanic, Celtic, Greek, 
French, Italian, Spanish, Chinese

◊ Accuracy 89%
□ Metaphone 3

◊ Accuracy over 99% (says author)

Felix Naumann | Data Profiling and Data Cleansing | Summer 2013
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Original Metaphone Algorithm

■ 16 consonant symbols 0BFHJKLMNPRSTWXY
□ '0' represents "th", 'X' represents "sh" or "ch“

1. Drop duplicate adjacent letters, except for C.
2. If the word begins with 'KN', 'GN', 'PN', 'AE', 'WR', drop the first letter.
3. Drop 'B' if after 'M' at the end of the word.
4. 'C' transforms to 'X' if followed by 'IA' or 'H' (unless in latter case, it is part of '-SCH-', in which case it 

transforms to 'K'). 'C' transforms to 'S' if followed by 'I', 'E', or 'Y'. Otherwise, 'C' transforms to 'K'.
5. 'D' transforms to 'J' if followed by 'GE', 'GY', or 'GI'. Otherwise, 'D' transforms to 'T'.
6. Drop 'G' if followed by 'H' and 'H' is not at the end or before a vowel. Drop 'G' if followed by 'N' or 'NED' and 

is at the end.
7. 'G' transforms to 'J' if before 'I', 'E', or 'Y', and it is not in 'GG'. Otherwise, 'G' transforms to 'K'.
8. Drop 'H' if after vowel and not before a vowel.
9. 'CK' transforms to 'K'.
10. 'PH' transforms to 'F'.
11. 'Q' transforms to 'K'.
12. 'S' transforms to 'X' if followed by 'H', 'IO', or 'IA'.
13. 'T' transforms to 'X' if followed by 'IA' or 'IO'. 'TH' transforms to '0'. Drop 'T' if followed by 'CH'.
14. 'V' transforms to 'F'.
15. 'WH' transforms to 'W' if at the beginning. Drop 'W' if not followed by a vowel.
16. 'X' transforms to 'S' if at the beginning. Otherwise, 'X' transforms to 'KS'.
17. Drop 'Y' if not followed by a vowel.
18. 'Z' transforms to 'S'.
19. Drop all vowels unless it is the beginning

Felix Naumann | Data Profiling and Data Cleansing | Summer 2013
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Monge-Elkan

■ Hybrid: Token-based and internal similarity function for tokens
□ Find best match for each token

■ ( , ) = | | ∑ max,| | ′( [ ], [ ])| |
□ |x| is number of tokens in x
□ sim’ is internal similarity function (e.g., Levenshtein)

■ If strings contain just one token each

□ ( , ) = ′( , )
■ Complexity: Quadratic in number of tokens

32
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Monge-Elkan – Example 

■ ( , ) = | | ∑ max,| | ′( [ ], [ ])| |
■ Peter Christen vs. Christian Pedro

□ simjaro(peter, christian) = 0.3741
□ simjaro(peter, pedro) = 0.7333
□ simjaro(christen, christian) = 0.8843
□ simjaro(christen, pedro) = 0.4417

■ ′ 	 , 	 = 0.7333 + 0.8843 =0.8088
■ ( , ) ≠ ( , )

33

s1 = „aaa xaa yaa“

s2 = „aaa xxx yyy“

s1 = „aaa xaa yaa“

s2 = „aaa“            
Felix Naumann | Data Profiling and Data Cleansing | Summer 2013



Extended Jaccard Similarity

■ , = 	∩	 	∩	 = 	∩		∪	
■ If strings contain multiple words, choose words as tokens.
■ Use internal similarity function to calculate similarity between all 

pairs of tokens.
□ Shared tokens: = , |	 ∈ ∧ ∈ : ′( , ) ≥
□ Unique tokens: ( ) = | ∈ ∧ ∈ ∧ ( , ) ∉

■ _ ( , ) = | || ( )| | ( )|
Felix Naumann | Data Profiling and Data Cleansing | Summer 2013

34



Vector Space Model

■ Each document ranked by distance between points representing 
query and document

■ Popular measure: Cosine similarity
□ Cosine of angle between document and query vectors
□ Normalized dot-product

35
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Similarity Calculation – Example

■ Consider three documents D1, D2, D3 and query Q
□ D1 = (0.5, 0.8, 0.3), D2 = (0.9, 0.4, 0.2), D3 = (0, 0.9, 0.1)
□ Q = (1.5, 1.0, 0)

■ Vector space model reflects some term weights and number of 
matching terms (in contrast to Boolean retrieval)

■ But: How to assign term weights?

36
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Term Weights – tf.idf

■ Term frequency weight tf measures importance of term k in 

document i: = ∑
□ log(fik) to reduce this impact of frequent words

■ Inverse document frequency idf measures importance in 

collection: =
□ Reflects “amount of information” carried by term

■ tfidf by multiplying tf and idf with some heuristic modifications

Felix Naumann | Data Profiling and Data Cleansing | Summer 2013
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SoftTFIDF

■ Apply idea to records or values: Much shorter than documents
■ ( , , ( )) is set of tokens from x that have at least 

one sufficiently similar token in y.

■ , =∑ , ∙ ( , ( )) ∙ ( , ( ))∈ ( , , ( ))
□ , is TFIDF weight of token t in all tokens of x

□ , = max	({ , | ∈ ( )})
◊ Similarity of best matching token

■ Soft: Tokens are considered a partial match if they get a good 
score using an internal similarity measure (CLOSE).

■ Problem: Weights are calculated over entire database
□ Scan all data
□ Store weight for each unique token

Felix Naumann | Data Profiling and Data Cleansing | Summer 2013
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Numerical comparison

■ _ , = 1 − 	 − <0
□ Linear extrapolation between 0 and dmax

■ Example: 
□ dmax = $1,000

□ _ 2,000, 2,500 = 1 − , = 0.5
□ _ 200,000, 200,500 = 1 − , = 0.5

■ _ , = 1 − 	 <0
□ = | |	( ,| |) ∙ 100 is percentage difference

□ pcmax = 33%

□ _ 2,000, 	2,500 = 1 − = 0.394 because = | , , |, ∙ 100 = 20
□ _ 200,000, 200,500 = 1 − , = 0.993 because = , ∙ 100 = 0,25%

Felix Naumann | Data Profiling and Data Cleansing | Summer 2013
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Time and space comparisons

■ Calculate difference in days and use simnum_abs

■ Special cases
□ Swapped day and month and both ≤ 12: Return some fixed 

similarity, e.g. 0.5
□ Single error in month could exceed dmax: Return some fixed 

similarity, e.g., 0.75
■ Dates of birth can be converted to age (num days or num years)

□ Then apply numerical measures

□ _ , = 1 − 	 <0
□ = | |	( ,| |) ∙ 100 is percentage difference

■ Geographical data: Compute distance based on some projection

41
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Implementations
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Similarity function packages

■ SecondString
□ Java classes
□ All basic string comparisons
□ MongeElkan, SoftTFIDF
□ Similarity learner
□ http://sourceforge.net/projects/secondstring/

■ SimMetrics
□ Java package
□ All basic string comparisons
□ Long sequences: Needleman-Wunsch, Smith-Waterman, 

Smith-Waterman-Gotoh
□ http://sourceforge.net/projects/simmetrics/

■ Geographiclib for geographic similarity
□ http://geographiclib.sourceforge.net
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