Service selection by choreography-driven matching

Emerging Web Service Technology

Christoph Thiele
Agenda

- From reuse & selection
- Aspirin
- Math preparation
- Goal-preserving match
 - What doesn’t work
 - What works
- Conclusion
From reuse & selection

- Service reuse
 - Retrieve service according to needs
 - No exact match and flexibility (relaxed match)
 - Reuse outside original context
- Semantic annotation & IOPE
- Hierarchy
 - Single operations
 - Sequence → global point of view
 - Choreography
- Web service selection
 - Conformance to a specification
 - Use of service allows achievement of a goal
Aspirin

- painkiller
- blood-thinner
- conformance
- global goal
- patient in pain
- patient in pain
- with a clotting problem
Math prep.

- Fluent: properties whose truth value can change over time due to the application of actions
- State: set of fluents

One could not assume that the value of a fluent is known.
- \mathcal{B}: Beliefs of an entity about the world
 - $\mathcal{B}f$ – f is known to be true
 - $\mathcal{B}-f$ – f is known to be false
 - $\neg\mathcal{B}f \wedge \neg\mathcal{B}-f$ – f is undefined
 - A fluent could be: true, false or unknown
Math prep. – service representation

Flight reservation

:Buyer

searchFlight(Date, Start, Dest)

not_available()

offer(flight)

ALT

:Seller

checkAvailability

evaluateOffer

ALT

ack()

n_ack()
Math prep. – service representation

- Service description: \(\langle \mathcal{O}, \mathcal{G}, \mathcal{P} \rangle \)
 - \(\mathcal{O} \) – set of operations
 - \(\mathcal{G} \) – set of actions that allow to receive messages
 - \(\mathcal{P} \) – description of interactive behavior

- \(\mathcal{O} \) – set of operations (atomic action)
 - Description in terms of:
 - Preconditions
 - Effects
 - Both sets of fluents
 - Trigger revision process on beliefs
Math prep. – service representation

- Service
 - Initiator – *operation*»
 - Servant – *operation*«

- *operation*^d*(interlocutor, content)* possible if \{P_1 \ldots P_t\}
- *operation*^d*(interlocutor, content)* causes \{E_1 \ldots E_n\}

- Example:

 \(\text{searchflight}»(\text{seller, Date, Start, Dest})\)
 possible if \{BDate, BStart, BDest\}
 \(\text{searchflight}»(\text{seller, Date, Start, Dest})\)
 causes \{Bwill_get_offer\}
Math prep. – service representation

- G – get_answer actions
 - $receive_act(interlocutor, content)$ receives I
 - Finite set of possibilities
 - Example:

 $get_answer(Seller)$ receives $[not_available \ll (Seller) \ or \ offer \ll (Seller)]$

Service selection by choreography-driven matching | Christoph Thiele | 10.12.2009
- \mathcal{P} – encodes the behavior of a service
 - Collection of kind:
 - p_0 is $p_1 \ldots p_n$
 - p_0 – procedure
 - p_1 – atomic operation, get_answer action, testing action, procedure call
 - Example:

 $$booking(Seller, Date, Start, Dest) \text{ is }$$
 $$\text{search_flight}\quad (Seller, Date, Start, Dest),$$
 $$\text{get_answer}(Seller), \text{Boffer}(\text{not_avail})?$$

 $$booking(Seller, Date, Start, Dest) \text{ is }$$
 $$\text{search_flight}\quad (Seller, Date, Start, Dest),$$
 $$\text{get_answer}(Seller), \text{Boffer}(\text{flight})?,$$
 $$\text{eval_offer}, \text{finalize}(Seller)$$

Service selection by choreography-driven matching | Christoph Thiele | 10.12.2009
Choreography

- set of interacting roles
- \mathcal{O} divided in
 - Bound operations
 - Unbound operations

Binding by substitution θ

$$\theta = \left[\mathcal{O}_S / \mathcal{O}_U \right]$$

$$S_d \theta = \langle \mathcal{O}_\theta, \mathcal{G}_\theta, \mathcal{P}_\theta \rangle$$
Math prep. – substitution

\[\theta = \left[\mathcal{O}_{\text{Aspirin}} / \mathcal{O}_u \right] \]

\[S_d \theta = \langle \mathcal{O} \theta, \mathcal{G} \theta, \mathcal{P} \theta \rangle \]

releve_pain\(^\text{(Pharmaceutical)}\) **possible if** \{Bin_pain\}

releve_pain\(^\text{(Pharmaceutical)}\) **causes** \{B\text{\textemdash}in_pain\}

\[\in \mathcal{O}, \mathcal{O}_u \]

releve_pain\(^\text{(Pharmaceutical)}\) **possible if** \{Bin_pain\}

releve_pain\(^\text{(Pharmaceutical)}\) **causes** \{B\text{\textemdash}in_pain, Bthin_blood\}

\[\in \mathcal{O}_{\text{Aspirin}}, \mathcal{O} \theta \]
"Is it possible to execute p in such a way, that the condition Fs is true in the final state?"

- \(Fs \) after \(p \)
- If true \(\Rightarrow \) sequence of actions \(\sigma \)
- \((\emptyset, G, P), S_0) \vdash G \) w. a. \(\sigma \)

Example:

\[S_0 = \{Bdate, Bstart, Bdest, Bsmoking_flight\} \]

\[G = \{Bbooked(flight), Bsmoking_flight\} \]

\textbf{after} booking(...)

Service selection by choreography-driven matching | Christoph Thiele | 10.12.2009
Agenda

- From reuse & selection
- Aspirin
- Math preparation
- Goal-preserving match
 - What doesn’t work
 - What works
- Conclusion
Definition 1 (Conservative substitution). Let us consider a service $S_i = \langle \mathcal{O}, \mathcal{G}, \mathcal{P} \rangle$ which plays a role R_i in a given choreography, and a query G such that, given an initial state S_0,

$$\langle \langle \mathcal{O}, \mathcal{G}, \mathcal{P} \rangle, S_0 \rangle \vdash G \text{ w.a. } \sigma$$

Consider a substitution $\theta = [\mathcal{O}_{S_j} / \mathcal{O}_{\omega(R_j)}^{\sigma}]$, where $\mathcal{O}_{\omega(R_j)}^{\sigma} = \{ o \in \mathcal{O} \mid o \text{ occurs in } \sigma \}$ is the set of all unbound operations that refer to another role R_j, $j \neq i$, of the same choreography, that are used in the execution trace σ. θ is conservative when the following holds:

$$\langle \langle \mathcal{O}\theta, \mathcal{G}\theta, \mathcal{P}\theta \rangle, S_0 \rangle \vdash G \text{ w.a. } \sigma\theta$$
Matching – what doesn’t work

- **EM – Exact Pre/Post Match**
 - $\text{Precs}(r) = \text{Precs}(s) \land \text{Effs}(r) = \text{Effs}(s)$

- **PIM – Plugin Match**
 - Strongest of the flexible
 - $\text{Precs}(r) \supseteq \text{Precs}(s) \land \text{Effs}(s) \supseteq \text{Effs}(r)$
 - Allow at least all old conditions
 - Provide a guarantee at least as strong
What doesn't work

Example using PIM:

\[S_0 = \{Bbp, Bin_pain, B_thin_blood\} \]
\[G = \{ B_in_pain, B_thin_blood\} \text{ after medication(...) } \]
\[(\langle O, G, P \rangle, S_0) \vdash G \text{ w. a. } \sigma \]

\textit{release_pain} (Pharm) possible if \{Bin_pain\}
\textit{release_pain} (Pharm) causes \{B_in_pain\}

\textit{release_pain} (Pharm) possible if \{Bin_pain\}
\textit{release_pain} (Pharm) causes \{B_in_pain, B_thin_blood\}
Goal-preserving match – what works

- **Dependency**
 - $\sigma = a_1; a_2; \ldots; a_n$
 - 2 fictitious actions
 - $a_0 \rightarrow \text{Effs}(a_0) = S_0$
 - $a_{n+1} \rightarrow \text{Precs}(a_{n+1}) = F_s$
 - $\bar{\sigma} = a_0; a_1; a_2; \ldots; a_n; a_{n+1}$
 - Indexes $i,j = 0, \ldots, n + 1$ with $j < i$
 - a_i depends on a_j for the fluent Bl in σ: $a_j \xrightarrow{(Bl, \bar{\sigma})} a_i$
 - if $\exists k (j < k < i, Bl \in \text{Effs}(a_k))$

- **Dependency set:** $\text{Dep}(Bl, \sigma) = \{(j, i) | a_j \xrightarrow{(Bl, \bar{\sigma})} a_i\}$

Service selection by choreography-driven matching | Christoph Thiele | 10.12.2009
Goal-preserving match – what works

- Uninfluential fluent

 - \([s/o_u] \in \theta_{PIM}\)
 - \(B \backslash l \in Effs(s) - Effs(o_u)\) is uninfluential Fluent iff all pairs \((j, i) \in Deps(Bl, \sigma)\) with \(k\) identifying the position of \(o_u\) in \(\sigma\) and \(k < j\) or \(i \leq k\)
A substitution θ_{PIM} is called **uninfluential** iff for any substitution $[s/o_u]$ in θ_{PIM}, all beliefs in $Effs(s) - Effs(o_u)$ are uninfluential fluents w.r.t. σ.
Theorem 2. Let us consider a service $S_i = \langle O, G, P \rangle$ which plays a role R_i in a given choreography, and a query G such that, given an initial state S_0,

$$(\langle O, G, P \rangle, S_0) \vdash G \text{ w.a. } \sigma$$

Consider an uninfluential substitution $\theta_{PIM} = [O_{S_j}/O_{u(R_j)}^\sigma]$, where $O_{u(R_j)}^\sigma = \{o_u \in O \mid o \text{ occurs in } \sigma\}$ is the set of all unbound operations that refer to another role $R_j, j \neq i$, of the same choreography, that are used in the execution trace σ. Then, the following holds:

$$(\langle O\theta_{PIM}, G\theta_{PIM}, P\theta_{PIM} \rangle, S_0) \vdash G \text{ w.a. } \sigma\theta_{PIM}$$
Conclusion

- Achieved
 - Formal representation of a service
 - Uninfluential Plugin Match
 - Definition of a goal-preserving match

- Semantical annotation
- Definition of unbound operations
- Feasibility