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Answer Extraction

<% Given
A question

A set of answer candidates

o Task

Select the correct answer from the set of answer
candidates
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Example

< Question: In what country was Albert Einstein born?

% Answer candidates :
A: Albert Einstein was born on 14 March 1879.

B: Albert Einstein was born in Germany.

C. Albert Einstein was born in a Jewish family.

- Pattern 1;: Xbornin'Y

- Pattern 2: Location = Country
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Example

Question: In what country was Albert Einstein born

A: Albert Einstein was born on 14 March 1879.

B: Albert Einstein was born in Germany.

C. Albert Einstein was born in a Jewish family.

I T

Question
Answer A
Answer B
Answer C
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Example

Question: In what country was Albert Einstein born

A: Albert Einstein was born on 14 March 1879.

B: Albert Einstein was born in Germany.

C. Albert Einstein was born in a Jewish family.

I T

Question YES YES
I N TS

Answer A NO NO

Answer B YES YES

Answer C YES NO
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Feature function

» Feature 1s a binary-valued function:

G A A

X: space of contexts

Y: the set of classifier
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Feature function

< Feature 1s a binary-valued function:

A A

X: space of contexts

Y: the set of classifier

/

< Like a regular expression
1 : match the specific pattern

0 : don’t match
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Feature function example

% Question: Which name is female?
A: Thomas B: Kevin
C: Franz D: Bella

- Pattern: Name ends with vowel
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Feature function example

< Question: Which name 1s female?
A: Thomas B: Kevin
C: Franz D: Bella

- Pattern: Name ends with vowel

1 1ifyis "male", last letter of x 1s a vowel

0 otherwise

fmale (X,y) o

7 (x y) 1 1ifyis " female", last letter of x 1s a vowel
emale ) el i
4 0O otherwise
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Feature function example

< Question: Which name 1s female?
A: Thomas B: Kevin
C: Franz D: Bella

- Pattern: Name ends with vowel

-

fmale (X,y) o

1 1ifyis "male", last letter of x 1s a vowel

0 otherwise

1 1ifyis " female", last letter of x 1s a vowel
ffemale (’x’ y) i

O otherwise

Sonat/Bella, male) =1 f . (Bella, female) = 1
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Expectation value of feature function

/

< Observation from training data set

female Ix) el Inl
Aeogoe | Acmir
Azagatl Asron
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Abey AbLe
b Abor
ARble Abbott
Astry Aoty
Aigoel e
Aigatl [TV
Avigale ABdy\korim
Asmc Al Leh
Acocie ‘e
Ado el
Adan Abelord
Adalire Abner,
Adoro ABrahos
Addie Arom
ASdL s e
Ade Adalir
Adelo Adom
Adelalde ASars
Adele Addie
Adelice Adger
Adelina Aditye
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Expectation value of feature function

R/

< Observation from training data set

Training data size = 50. f;,,,,, feature found 10 names and
Jonare O NAMES

ifmale('x’y) 5

Gl = el
pfmale N 50

N
X,y
1 f;‘emale ( ) 1 O

E = 1= = =
pffemale N 50
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Extraction Features

< Surface Features
Expected Answer Type Matching Features

Surface Pattern Matching

<+ Dependency Relation Features

< Semantic Structure Matching Features
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Until now ...

<+ We have defined N feature functions: f,,f,,...f,

<+ From the training data set we got the constraints:

{Epf]. = dj,j =N i

= How to combine all features to make an unified decision?

24



Answer Extraction Modeling

< Naive-Bayes

P(x | features) =

P(x)* P(f 1 x)* P(f, 1 x)*..P(f, | x)

P( features)
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Answer Extraction Modeling

% Naive-Bayes

P(x)* P(f 1 x)* P(f, 1 x)*..P(f, | x)

P(x | features) = P( features)

s Problem

Make “naive” assumption that all features f; are independent
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Answer Extraction Modeling

< Maximum Entropy Model
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Answer Extraction Modeling

R/

< Maximum Entropy Model

Maximize entropy = No assumption about feature dependency
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Answer Extraction Modeling

R/

< Maximum Entropy Model

Maximize entropy = No assumption about feature dependency

exp(g& £(x, y))
Eexp(gz,. jg(x,y))

Y

p'(ylx)=

y: what we predict

X:. context

)Ll-: weight of a feature function f;
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Parameter Estimation (GIS)

Initialize A i 0
Do until convergerve

For each 7

calculate E Y f}

ESf
E. J;

J

update /'\,J(.n”) = )L](.n) + %(log
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Parameter Estimation (GIS)
Initialize A j — O

Do until convergerve

For each 7

calculate E/xfj = Ep(hj)(X)fj (.X)
J xE€e

k+1

34750
i

74

Ef,
E. J,

J

W

J)
where P (X) |

update A,](.nﬂ) = )L](n) i %(lOg
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Overview

1.Define a set of feature functions f;

2.0bserve training data to find expectation value d;of f;
3.Estimation parameters A, of each f; based on d;

4 .Compute probability of each output y
exp (E A S (x, y))
Eexp(z Af (x,y))

Y

p'(ylx)=

32



A simple demo

Question: Which name 1s female?

A: Thomas B: Kevin
C: Franz D: Bella
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A simple demo

Question: Which name 1s female?

A: Thomas B: Kevin
C: Franz D: Bella

- p(female| x)
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A simple demo

1.Define a set of feature functions f;

os_features(Cname):
features = {}
features['startswith(vowel)'] = name[@].lower() in 'aeiouy’
features['endswith(vowel)'] = name[-1].lower() in 'aeiouy’

for letter in 'abcdefghijklmnopgrstuvwxyz':
features['count(¥s)' % letter] = name.lower().count(letter)
features[ 'has(¥s)' % letter] = letter in name.lower()
features[ 'startswith(¥s)' % letter] = (letter==name[@].lower())
features[ 'endswith(¥s)' % letter] = (letter==name[-1].lower())
return features

59



A simple demo

2.0bserve training data to find expectation value d;of f

t’o;nol |
Sogat |
‘ (name): EZ |
features = {} iy
Iex;uol
k:-x;:‘.l
features[' rd%..lm(wo.\m_\ ] = :Z*“
ko
Aaul"w
for letter in 'abcdefghijklmnopgrspess
- = Addie
features['count(¥%s)' ¥ letter] {o&
features['has(¥s)' % letter] = [win
features['startswith(¥s’ oo
features[ 'endswith( Ada\ g
return features Aaile
=
Ad:

FEEgEE
s 2 s .c:b r
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RbLe
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A simple demo

Unseen Names P(Malelx) P(Femalelx)

0.871909 0.128091
0.551180 0.448820
0.527687 0.472313
0.165552

endswith(d)==True and 1s 'female'
endswith(o)==True and label is "'male’
endswith(m)==True and label is 'male’
endswith(s)==True and label is 'female'
count(s)==2 and label is 'male’

has(w)==True and label is 'female’
startswith(z)==True and label is 'female’
endswithCh)==True and label is 'male’
endswith(g)==True and label is 'male’ 37
startswith(w)==True and label is 'female’




A simple demo

3.Estimation parameters of each f; based on d;
Unseen Names P(Malelx) P(Femalelx)

0.871909 0.128091
0.551180 0.448820
0.527687 0.472313
0.165552

endswith(d)==True and 1s 'female'
endswith(o)==True and label is 'male’
endswith(m)==True and label is 'male’
endswith(s)==True and label is 'female'
count(s)==2 and label is 'male’

has(w)==True and label is 'female’
startswith(z)==True and label is 'female’
endswith(Ch)==True and label is 'male’
endswith(g)==True and label is 'male’ 38
startswith(w)==True and label is 'female’




A simple demo

4 .Compute probability of each output y
Unseen Names P(Malelx) P(Femalelx)

0.871909 @ 0.128091
0.551180 @ 0.448820
0.527687 | 0.472313
0.165552

endswith(d)==True and 1s 'female'
endswith(o)==True and label is 'male’
endswith(m)==True and label is 'male’
endswith(s)==True and label is 'female'
count(s)==2 and label is 'male’

has(w)==True and label is 'female’
startswith(z)==True and label is 'female’
endswith(Ch)==True and label is 'male’
endswith(g)==True and label is 'male’ 39
startswith(w)==True and label is 'female’




Overview

1.Define a set of feature functions f;

2.0bserve training data to find expectation value d;of f;
3.Estimation parameters A, of each f; based on d;

4 .Compute probability of each output y
exp (E A S (x, y))
Eexp(z Af (x,y))

Y

p'(ylx)=
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Answer extraction models
proposed by Dan Shen, 2008

< Answer Candidate Ranking

% Answer Candidate Classification

41



Answer Candidate Ranking

exp(élm fm(q,ac))
D exp(gkm fm(q,ac'))

g : question ac'€{acy,...acy }
ac : answer candidate
f;: feature function

p (Clc | q,{acl,...acN}) =

ac*= arg max p(acl{ac,,ac,,...ac,})

ac&qacy,ac,,...ac,
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Answer Candidate Classification

exp(z W q,ac)
h) exp(z Y q)

c'E{true, false}

p*(clq,ac) -

g : question
ac . answer candidate
f;: feature function

ac*= arg max p(truelgqg,ac)

ac&qacy,ac,,...ac,
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Comparison

# Events # Classes # Parameters
Classification QQ x N 2 2M
Ranking Q) N M

exp(ﬁkm’c fm(q,ac))

m=1

3 exp(i&m’c. fm(q,ac))

c'E{true, false’} m=1

p*(clg,ac)=

exp(ﬁkm’c fm(q,ac))

m=1

M
E exp(zkmfm(q,ac'))
ac'E{acy,.acy} m=1

p“(aclg.{ac,,...ac\}) =
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