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Latent Factor Models 
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■  Find features that describe the characteristics of rated objects 

■  Item characteristics and user preferences are described with 
numerical factor values 

■  Assumption: Ratings can be inferred from a model put together 
from a smaller number of parameters 
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Latent Factor Models 
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■  Items and users are associated with a factor vector 

■  Dot product captures the user’s estimated interest in the item: 

■  Challenge: How to compute a mapping of items and users to 
factor vectors? 

■  Approaches: 

□  Singular Value Decomposition (SVD) 

□  Matrix Factorization 
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Singular Value Decomposition 
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Singular Value Decomposition 

7 

Matrix Factorization Techniques For Recommender Systems 

T 

.	
 =



SVD - Problems 
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■  Conventional SVD is undefined for incomplete matrices! 

■  Imputation to fill in missing values 

□  Increases the amount of data 

□  “SVD of ginormous matrices is... well, no fun“ (Simon Funk) 

■  We need an approach that can simply ignore missing ratings 
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Matrix Factorization 
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remember: 
predicted rating 

: known rating of user u for item i	




Matrix Factorization - Overfitting 
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 A model is built to represent the training data – not to reproduce 
the training data. 



Matrix Factorization - Regularization 
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 Idea: penalize complexity 

: constant to control the extend of regularization 

   determined by cross-validation 



Learning Algorithms 

■  Stochastic gradient descent 

□  Modification of parameters (qi, pu) relative to prediction error 

□  Recommended algorithm 

■  Alternating least squares 

□  Allows massive parallelization 

□  Better for densely filled matrices 
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■  Calculation of the prediction error 

□  Error = actual rating – predicted rating 

□    

■  Modification 

□  By magnitude proportional to γ 

□  In the opposite direction of the gradient 

□    

Learning Algorithms 
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Biases 

■  Item or user specific rating variations are called biases 

■  Example:  

□  Alice rates no movie with more than 2 (out of 5) 

□  Movie X is hyped and rated with 5 only 

■  Matrix factorization allows modeling of biases 

■  Including bias parameters in the prediction: 
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Temporal Dynamics 

■  Ratings may be affected by temporal effects 

□  Popularity of an item may change 

□  User’s identity and preferences may change 

■  Modeling temporal affects can improve accuracy significantly 

■  Rating predictions as a function of time: 
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Paper Evaluation 

■  High-level overview of matrix factorization techniques 

■  Mathematical foundations are pointed out but not elaborated 

■  Many useful references to related work 

■  Authors do not reveal their secret implementation tidbits 
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Application For KDD Cup 

■  Different item types 

□  We must assume different prediction models! 

□  We have explicit dependencies between items 

■  How to apply Matrix Factorization to the KDD data set? 

□  Segment training data in separate sets for each type 

□  Consider ratings for dependent items to make a prediction 
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Application For KDD Cup - Hypotheses 

■  Users change their taste in music 

■  Users tend to rate new songs better 

□  Users get tired of songs 

■  Some artists and albums are hyped for a while 

■  Evergreens 

□  Loved by many, but maybe also hated by some 

■  ... 
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Discussion 

Summary 

■  Matrix factorization is a promising approach for collaborative 
filtering 

■  Factor vectors are learned by minimizing the RSME 

■  Regularization to prevent overfitting 

■  Addition of bias parameters and temporal dynamics further 
improve accuracy 

Outlook 

■  Develop strategies for applying matrix factorization on our data 
set with different item types 

■  Make use of the available dependencies between items 

■  Explorer biases and rating behaviors specific for our music domain 
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