Introduction to Algorithms for Pattern Mining

Ziawasch Abedjan, Prof. Felix Naumann
Pattern Mining

- Data Mining: “...extract knowledge from a data set in human-understandable structure..."
- Pattern: frequently occurring event or item combinations
Pattern Mining Applications

- **Shopping basket analysis**
 - Which products are likely to be bought together?

 Wird oft zusammen gekauft

- **Web mining**
 - Web content mining, web structure mining, web usage mining

- **Software bug mining**
 - Identify copy and paste code for bug isolation
 - Extract application specific programming rules

- **Mining data streams**

- **Mining multimedia data**
Frequent Pattern Mining

- **Frequent pattern**
 - **support 25%**
 - \{milk\}, \{bread\}, \{beer\}, \{diaper\}
 - \{milk, bread\}...

- **Maximal frequent pattern**
 - No proper super-itemset is frequent
 - \{milk, bread\}, \{beer, diaper, bread\}

- **Closed frequent pattern**
 - No proper super-itemset has the same support
 - \{milk, bread\}, \{beer\}, \{beer, diaper, bread\}

<table>
<thead>
<tr>
<th>TID</th>
<th>transaction</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>bread, milk, tea</td>
</tr>
<tr>
<td>2</td>
<td>beer, diaper, bread</td>
</tr>
<tr>
<td>3</td>
<td>beer, diaper, bread, milk</td>
</tr>
<tr>
<td>4</td>
<td>flour, milk, bread</td>
</tr>
<tr>
<td>5</td>
<td>beer</td>
</tr>
</tbody>
</table>
Association Rules

- **Association Rules**
 - For each frequent itemset \(a \) generate rules: \(l \rightarrow a - l \)
 where \(l \subset a, l \neq \emptyset \)
 - Output rules with minimum **confidence** \(\text{conf}(l \rightarrow a - l) = \frac{\text{sup}(a)}{\text{sup}(l)} \)

- **Example**
 - holding **confidence** 60%
 - **Positive Rules**
 - \(\{\text{beer}\} \rightarrow \{\text{diaper}\}, 100\% \)
 - \(\{\text{bread}\} \rightarrow \{\text{milk}\}, 75\% \)
 - **Negative Rules**
 - \(\{\text{tea}\} \rightarrow \text{NOT} \{\text{coffee}\} \)

- **Correlation Coefficient, Lift, ...**

<table>
<thead>
<tr>
<th>TID</th>
<th>transaction</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>bread, milk, tea</td>
</tr>
<tr>
<td>2</td>
<td>beer, diaper, bread</td>
</tr>
<tr>
<td>3</td>
<td>beer, diaper, bread, milk</td>
</tr>
<tr>
<td>4</td>
<td>flour, milk, bread</td>
</tr>
<tr>
<td>5</td>
<td>beer</td>
</tr>
</tbody>
</table>
FP Mining Algorithms

- Naive approach: scan transaction table for each combination for retrieving its support $\rightarrow 2^n$ scans

- Pruning by the intuition “all subsets of a frequent pattern must also be frequent”
 - 1. Extract all existing relevant itemset frequencies holding minimum support
 - 2. Discover relationships

- Mining Algorithms:
 - Apriori [vldb94]
 - FP-Growth [sigmod00]
 - Eclat [tkde00]
Apriori [agrawal93]

- Bottom-Up approach with multiple passes
- Precondition: all itemsets are sorted lexicographically

Process:
- Identify frequent items (1-itemsets)
- Generate k+1-candidates by combining frequent k-itemsets that have the first k-1 items in common
- Prune candidates with non-frequent subsets
- Verify remaining k-candidates
Apriori Example

- minimum support = 25%

1. Pass:
 - {bread}, {milk}, {beer}, {diaper}

2. Pass: Combine all 1-frequent-itemsets
 - Candidates: {bread, milk}, {beer, bread}, {bread, diaper}, {beer, milk},...
 - After scan: {bread, milk}, {beer, bread}, {bread, diaper}, {beer, diaper}

3. Pass: Combine all 2-frequent-itemsets that have the first item in common
 - Candidates: {bread, milk, diaper}, {beer, bread, diaper}
 - Prune {bread, diaper, milk} because {diaper, milk} is not frequent

<table>
<thead>
<tr>
<th>TID</th>
<th>transaction</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>bread, milk, tea</td>
</tr>
<tr>
<td>2</td>
<td>beer, diaper, bread</td>
</tr>
<tr>
<td>3</td>
<td>beer, diaper, bread, milk</td>
</tr>
<tr>
<td>4</td>
<td>flour, milk, bread</td>
</tr>
<tr>
<td>5</td>
<td>beer</td>
</tr>
</tbody>
</table>
Challenges

- Efficient generation of negative association rules
 - Needs tracking non-frequent items as well
- Considering Multi-set semantics
- Non-redundant parallelization
Grading process

- 3 LP
- groups of two (limited to 3 groups)

Grading

- Implementation of one algorithm, one use case and, one extension
- 2 presentations
 - Paper presentation and first algorithm evaluations
 - Use case and extension evaluation
- 6 pages evaluation report
Topics

- Algorithms:
 - AprioriTID, FPGrowth, Eclat

- Suggested extensions
 - Quantitative association rules [sigmod96], negative associations [tois04], high utility itemsets[kdd10], ...
 - Efficiency or scalability boost (parallelizing)

- Suggested data sources/ use cases
 - DBpedia (any other linked data resource) [smer11]
 - www.data-mining-cup.de
 - Source code of large projects
 - www.data.gov
Application

■ Send mail to ziawasch.abedjan@hpi.uni-potsdam.de
■ Subject [APM Seminar]
■ Deadline: April 13th
■ Notification: April 14th

■ Limited to 6 participants = 3 teams
 □ Random selection if more applicants
■ Send ranked wishes on algorithms
 □ You may also already propose extension and use case
 □ You may include desired teammate (Both should write an e-mail)
Time Schedule

- April 10th: first seminar, topic presentation
- April 13th: application deadline
- April 14th: notification
- April 17th: mandatory consulting
- April 24th: mandatory consulting
- May 1st: workers unite
- May 8th: mandatory consulting
- May 15th: intermediate presentation
- May 22nd: mandatory consulting
- ...
- July 10th: final presentation
- July 14th: short paper deadline
References

- [vldb95] J. Han & Y. Fu, Mining multiple-level association rules in large data bases
- [sigmod96] R. Srikant & R. Agrawal, Mining quantitative association rules in large relational tables
- [sigmod00] J. Han & J. Pei & Y. Yin, Mining frequent patterns without candidate generation
- [tkde00] M. J. Zaki, Scalable algorithms for association mining
- [smer11] Z. Abedjan, F. Naumann, Context and target configurations for mining RDF data
- [kdd10] V. Tseng & C. Wu & B. Shie & P. S. Yu, UP-Growth: an efficient algorithm for high utility itemset mining
- [tois04] X. Wu & C. Zhang & S. Zhang, Efficient mining of both positive and negative association rules