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Unreliable Networks 

 Messages can be lost, reordered, duplicated, and arbitrarily delayed 

Unreliable Clocks 

 Time is approximate at best, unsynchronized, and can pause 

Knowledge, Truth, Lies 
 
 
 
 
 
 
 
 
 

Students communi-
cating their knowledge 

Unreliable Clocks 
 
 
 
 
 
 
 
 
 

An atomic clock with 
minimum drift 

Unreliable Networks 
 
 
 
 
 
 
 
 
 

A shark raiding an 
undersea cable 
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Consensus 

A decision carried by all group members 
although individuals might disagree; 

defined by property, majority or authority. 

Challenge: Find a 
consensus in spite of 

unreliable communication. 
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Why distributed applications might require consistency and consensus. 

 Non-static data: 

 Distributed query processing on operational data,  

i.e., non-warehouse data requires a consistent view of the data. 

 Frameworks for distributed analytics: 

 Batch/Stream processing queries are usually broken  

apart, so that (intermediate) results must be  

communicated consistently between the nodes. 

 Time-related analytics: 

 Distributed query processing on volatile data streams 

requires a certain consensus on timing and/or  

ordering of events. 
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Person 

 Pioneer in consistency and consensus methods  

for parallel and distributed systems 

(works at Microsoft Research) 

 
Known for 

 Byzantine fault tolerance 

 Sequential consistency 

 Lamport signature 

 Atomic Register Hierarchy 

 Lamport's bakery algorithm 

 Paxos algorithm 

 LaTeX 

 

 

Lamport not only defined the 
“Byzantine problem”, he also 
proposed several solutions 

Basically serializable writes 
for distributed systems 

Popular method to construct 
digital signatures for arbitrary 

one-way crypto functions 

Securing a critical section 
without shared mutexes  

(using thread IDs) 

A fault-tolerant consensus algorithm 
(based on total order broadcast) LaTeX ! 

Approach of making register 
(record, key-value pair, …) 

appear atomic 
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Person 

 Pioneer in consistency and consensus methods  

for parallel and distributed systems 

(works at Microsoft Research) 

 

 
Awards 

 Dijkstra Prize (2000, 2005, 2014) 

 IEEE Emanuel R. Piore Award (2004) 

 IEEE John von Neumann Medal (2008) 

 ACM Turing Award (2013) 

 ACM Fellow (2014) 

 

Known for 

 Byzantine fault tolerance 

 Sequential consistency 

 Lamport signature 

 Atomic Register Hierarchy 

 Lamport's bakery algorithm 

 Paxos algorithm 

 LaTeX 

 

 

“Nobel Prize of computing” 
(highest distinction in 

computer science) 

For outstanding papers on 
the principles of  

distributed computing 
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Consensus Ordering Guarantees Linearizability 
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Alice and Bob disagree on a value 
(for some time) 
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Linearizability 

Motivation 

Locks and Leaders 

 System must agree upon lock- and leader-assignments. 

 Otherwise: locks don’t work / split brain 

Uniqueness constraints 

 System must know and agree upon unique values. 

 Otherwise: duplicate values 

Cross-channel timing dependencies 

 System must agree upon  

facts that are also communicated  

via side channels. 

 Otherwise: inconsistent  

system behavior 

 

Race condition 
 if image resizer 

finds an old image. 

When the image is stored, 
send a resize request. 



Linearizability 

Definition  

Slide 10 

Consistency and 
Consensus 
 

Distributed Data 
Management 

Thorsten Papenbrock 

Linearizability 

 A consistency guarantee of eventual consistent databases stating that  

a read operation should always return the most recent value of an object 

although replicas might have older values. 

 The databases appears as if there is only one copy of the data. 

 Also known as atomic consistency, strong consistency, immediate 

consistency, or external consistency. 

Client A 

Client B 

Client C 

read(x)  0 

write(x,1)  ok 

read(x)  0 

read(x)  1 

read(x)  1 

read(x)  1 

Values must not jump back in time: 
If the value is on one replica, everyone should see it! 

A linearizable system is 
100% consistent w.r.t. 

the CAP theorem! 
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Linearizability 

 Guarantee for reads and writes to one register (record, key-value pair, …) 

 Ensure that the database always returns the newest value from a set of 

redundant values. 

 Does not prevent phantom reads or write skew problems. 

 

 

Serializability 

 Guarantee for reads and writes of transactions  

 Ensure that concurrent transactions have the same effect as some serial 

execution of these transactions. 

 Does not ensure the newest values to be read (e.g. see Snapshot Isolation). 

 

= read different values 
in one transaction. 

= values overwrite 
other values. 
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Single-leader replication 

 Run not only all writes but also all reads through the leader; redirect reads to only 

those replicas that confirmed relevant updates. 

 Leader crashes, unavailability, re-elections, … might break linearizability. 

Multi-leader replication 

 Not linearizable! 

Leaderless replication 

 

 Quorum read and writes (w + r > n) 

 Ensure new value gets found. 

 

This is done 
anyway. 

Quorums alone do not 
ensure linearizability. 
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Single-leader replication 

 Run not only all writes but also all reads through the leader; redirect reads to only 

those replicas that confirmed relevant updates 

 Leader crashes, unavailability, re-elections, … might break linearizability 

Multi-leader replication 

 Not linearizable! 

Leaderless replication 

 Use three techniques: 

 Quorum read and writes (w + r > n) 

 Ensure new value gets found. 

 Read-repair (write newest value of a read to all replicas with old value) 

 Help updating replicas before returning a value. 

 Read before write (read quorum before writing new value) 

 Ensure your write does not conflict with other writes. 

 

In this way, other reads either 
return before you or they find the 

same result. 

This is done 
anyway. 

Linearizability is an  
expensive consistency guarantee 

that is dropped by most distributed 
systems in favor of performance. 

Therefore, distributed systems usually do not use 
linearizability for all registers but only for critical, 

consensus relevant decision (e.g. role assignments). 
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User 1 

Replica 

Replica 

Replica 

‘new.jpg’ 
(version 7) 

‘new.jpg’ 
(version 7) 

‘old.jpg’ 
(version 6) 

 Read before write (read quorum before writing new value) 
 Ensure your write does not conflict with other writes. 

read write 

‘new.jpg’ 
(version 7) 

write 

‘newest.jpg’ 
(version 8) 

We now know that 
version needs to be 8. 
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Example 

 

User 1 

Replica 

Replica 

Replica 

‘newest.jpg’ 
(version 8) 

‘new.jpg’ 
(version 7) 

‘new.jpg’ 
(version 7) 

 Read-repair (write newest value of a read to all replicas with old value) 
 Help updating replicas before returning a value. 

read write 

‘newest.jpg’ 
(version 8) 

User 2 

‘newest.jpg’ 
(version 8) 

Not return here, because there are 
older values in the quorum! 

Return here, 
because all 

values in quorum 
are consistent! 
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Example 

 

User 1 

Replica 

Replica 

Replica 

‘newest.jpg’ 
(version 8) 

‘new.jpg’ 
(version 7) 

‘new.jpg’ 
(version 7) 

 Read-repair (write newest value of a read to all replicas with old value) 
 Help updating replicas before returning a value. 

read write 

‘newest.jpg’ 
(version 8) 

User 2 

‘newest.jpg’ 
(version 8) 

Latency issues might 
cause inconsistencies, but 

this is true for any 
linearizable system! 
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Consensus Ordering Guarantees Linearizability 
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Total Order Broadcast 

 A protocol for message exchange that guarantees: 

1. Reliable delivery: 

 No messages are lost. 

2. Totally ordered messages: 

 Messages are received by all nodes in the same order. 

 Order is not changed retroactively (in contrast to timestamp ordering). 

 Any total order broadcast message is delivered (broadcast) to all nodes. 

 Implemented in, for instance, “ZooKeeper” and “etcd” 

 Enables: 

 Consistent, distributed log (ordered messages = log) 

 Lock service implementations for fencing tokens (e.g. leases) 

 Serializable transactions 

 

Because messages are lost 
and re-ordered, the protocol 

must hide these issues! 
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Total Order Broadcast 

 Implementation: 

 Assume we have one linearizable register with an integer value 

supporting atomic increment-and-get (or compare-and-set) operations. 

 [Sender] For every message send as total order broadcast: 

1. Increment-and-get the linearizable integer. 

2. Attach the integer as sequence number to the message. 

3. Send the message to all nodes (resending lost messages). 

 [Receiver] For every message received as total order broadcast: 

1. Check if sequence number is one greater than last received 

sequence number. 

2. Process message if true; otherwise, wait for missing message. 

 This is only possible because there are no sequence gaps! 

 

Recall: we know how to implement 
linearizable storage 

(for single-leader or leaderless replication) 
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Thinking:  
timelines that branch/merge;  

events compare only along lines 

 GIT 

Linearizable (and Total Order Broadcast) 

 Imposes a total order: 

 All events can be compared. 

 For one object, only the newest event is relevant. 

 Implies causality: 

 A linear order is always also a causal order of the events. 

 Is expensive (due to global order enforcement) 

Causal ordering 

 Imposes a partial order: 

 Some events are comparable (causal), others are not (concurrent) 

 For many events some partial order is just fine: 

 Order of writes, side-channel messages, transactions …  

 Is cheaper (order enforcement only for related events) 
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Sequence Numbers and Timestamps 

 Task:  

 Label all events with a consecutive number. 

 Events should be causally comparable w.r.t. that number. 

a) Sequence number: 

 Counter that increments with every event 

b) Timestamp: 

 Reading from a monotonic/logical clock  

 Problem: 

 (Non-linearizable) sequence numbers and (potentially skewed)  

timestamps are not comparable across different nodes. 

 See non-linearizable systems, such as multi-leader systems. 

 Solution: Lamport timestamps! 

Our linearizable-trick 
does not work here. 

A leader or quorum-
read-repair system 
can provide these. 
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Lamport timestamps 

 Each node has a unique identifier and a counter for processed operations. 

 Lamport timestamp: 

 A pair (counter, identifier) 

 Globally unique for each event 

 Imposes a total order consistent with causality: 

 Order by counter. 

 If counters are equal, use identifier as tie-breaker. 

 Achieving causal order consistency: 

 Nodes store their current counter c. 

 Clients store the max counter m seen so far (sent with each event). 

 Nodes increment their counter as c = max(c,m) + 1. 

 Counter moves past some events that happened elsewhere. 

 

Leslie Lamport:  
“Time, clocks, and the ordering of 
events in a distributed system”,   

Communications of the ACM, volume 
21, number 7, pages 558-565, 1978 

One of the most cited papers in 
distributed computing! 

Per element, i.e., type of event 
(node, table, partition, record, value, …) 
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Leader 1 

Leader 2 

Client B 

Client A 

write 
max = 0 

write 
max = 1 

write 
max = 2 

write 
max = 3 

write 
max = 4 

write 
max = 0 

write 
max = 1 

write 
max = 5 

c = 1 

0 

c = 2 c = 3 c = 4 c = 6 

c = 6 

c = 5 

(1,1) 

(5,2) 

(6,1) 

(1,2) (2,2) (3,2) (4,2) (6,2) 

0 1 4 2 3 

1 5 

c = 1 

Although two leaders accept requests in parallel, 
the timestamps impose a global, causal order. 

Note: The system does not know when exactly A’s 
write happened relative to B’s writes, but it can 

drive an order if necessary, hence “causal ordering” 
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Lamport timestamps 

 Example: 

Leader 1 

Leader 2 

Client B 

Client A 

(4,1) 

(2,2) 

Ignore: x = 8, because (4,1) > (2,2)  

Update: x = 8 , because (2,2) < (4,1)  

write(x, 42) 
max = 1 

write(x, 8) 
max = 3 

c = 4 

3 

(4,1) 

(2,2) 

1 

c = 4 

If two writes actually collide during propagation, 
compare the timestamps and put them in order. 

Last-write-wins replication 
c = 2 c = 4 
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Lamport timestamps 

 Example: 

Leader 1 

Leader 2 

Client B 

Client A 

(1,1) 

(1,2) 

Overwrite: x = 42, because (1,2) > (1,1)  

Ignore: x = 42 , because (1,1) < (1,2)  

Last-write-wins replication 

write(x, 42) 
max = 0 

write(x, 8) 
max = 0 

c = 1 

0 

(1,1) 

(1,2) 

0 

c = 1 

c = 1 

c = 1 

If two writes actually collide during propagation, 
compare the timestamps and put them in order. 
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Lamport timestamps 

 About the order: 

 Does not capture a notion of time between events. 

 Might differ from the real-world time order. 

 Works to identify a winner after the fact. 

(i.e., the most recent event after all events have been collected) 

 Examples for problems: 

 Create a new user: Assure name is unique  
before acknowledgement of user creation. 

 Acquire a role (e.g. leader): Assure role is still free 
before acknowledgement of role assignment. 

 Buy a product: Assure product is still in stock 
before acknowledgement of purchase. 

 Any form of locking! 

 

Usually not  
an issue 

Not ok for 
locks/uniques/… 

Use linearizability / total order broadcast 
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Consensus Ordering Guarantees Linearizability 
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Consensus 

 A decision carried by all group members although individuals might disagree 

 Usually defined by the majority 

 Challenge: 

 Reach consensus in spite of unreliable communication. 

 Linearizability, total order broadcast, and consensus are equivalent problems: 

 If a distributed system supports one of them, the others can be achieved 

through the same protocol. 

 Consensus properties: 

 Agreement: No two nodes decide differently. 

 Integrity: No node decides twice. 

 Validity: Nodes do not decide for a value that has not been proposed. 

 Termination: Every non-crashed node makes a decision. 

We just did this for  
“linearizability  total order broadcast” 

i.e. no compromises! 
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Consensus via total order broadcast 

 Total order broadcast implies a consensus about the order of messages. 

 Message order ⟺ several rounds of consensus: 

 Some nodes propose a message to be send next. 

 Total order broadcast protocol decides for one message (= consensus). 

 Example: Locking 

 Multiple nodes want to acquire a lock and send their requests. 

 Total order broadcast orders the requests and delivers them to all nodes. 

 All nodes then learn from the sequence, which node in fact obtained the lock. 

 Consensus properties hold for total order broadcasts: 

 Agreement: All nodes deliver the same order. 

 Integrity: Messages are not duplicated. 

 Validity: Messages are not corrupted or arbitrarily added. 

 Termination: Messages are not lost. 

No (majority) voting in this case 

i.e. the first node  
in the sequence 
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Consensus via total order broadcast 

 Is the most common implementation approach for consensus protocols: 

 Viewstamped Replication [1,2] 

 Paxos [3,4,5] 

 Raft [6,7] 

 Zap [8,9] 

 [1] B. M. Oki and B. H. Liskov: “Viewstamped Replication: A New Primary Copy Method to Support Highly-Available Distributed Systems,” ACM Symposium on Principles of 

Distributed Computing (PODC), 1988. 

[2] B. H. Liskov and J. Cowling: “Viewstamped Replication Revisited,” Massachusetts Institute of Technology, Tech Report MIT-CSAIL-TR-2012-021, 2012. 

[3] L. Lamport: “The Part-Time Parliament,” ACM Transactions on Computer Systems, volume 16, number 2, pages 133–169, 1998. 

[4] L. Lamport: “Paxos Made Simple,” ACM SIGACT News, volume 32, number 4, pages 51–58, 2001. 

[5] T. D. Chandra, R. Griesemer, and J. Redstone: “Paxos Made Live – An Engineering Perspective,” ACM Symposium on Principles of Distributed Computing (PODC), 2007. 

[6] D. Ongaro and J. K. Ousterhout: “In Search of an Understandable Consensus Algorithm (Extended Version),” USENIX Annual Technical Conference (ATC), 2014. 

[7] H. Howard, M. Schwarzkopf, A. Madhavapeddy, and J. Crowcroft: “Raft Refloated: Do We Have Consensus?,” ACM SIGOPS Operating Systems Review, volume 49, 

number 1, pages 12–21, 2015. 

[8] F. P. Junqueira, B. C. Reed, and M. Serafini: “Zab: High-Performance Broadcast for Primary-Backup Systems,” IEEE International Conference on Dependable Systems 

and Networks (DSN), 2011. 

[9] A. Medeiros: “ZooKeeper’s Atomic Broadcast Protocol: Theory and Practice,” Aalto University School of Science, 20, 2012. 
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The leader election problem 

 Consensus protocols (and linearizability and total order broadcast) usually rely on a leader. 

 [Problem 1] If the leader dies, a new leader must be elected. 

 But how to get a consensus if the main protocol relies on a leader being present? 

 [Solution] Actual voting: 

 Initiated when leader is determined dead (e.g. via φ accrual failure detector). 

 All nodes exchange their leader qualification (e.g. IDs, latencies, or resources) 

with w other nodes. 

 Every node tries to identify who is the most qualified leader. 

 The most qualified leader will then be known to w other nodes. 

 Any node that “feels” like a leader asks r other nodes who their leader is. 

 If none of the r nodes reports a more qualified leader, it is the leader. 

Here: a quorum-based voting protocol; see leaderless replication 

Recall that r + w > n for n nodes to make vote stable 

= “king”, “proposer”, … 
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The leader election problem 

 Consensus protocols (and linearizability and total order broadcast) usually rely on a leader. 

 [Problem 2] If the old leader comes back, it might still think it is the leader. 

 How to prevent split brain issues? 

 [Solution] Epoch numbers: 

 Whenever a leader voting is initiated,  

all nodes must increment an epoch number. 

 An epoch number associates the validity of a leader election with a sequence. 

 Before a leader is allowed to decide anything, it must collect votes from a 

quorum of r nodes (usually a majority). 

 Nodes agree to the quorum, if they do not know a leader with higher epoch. 

 The leader must step down if any node disagrees. 

epoch number (Zap) 
ballot number (Paxos) 
term number (Raft) 
view number (Viewstamed Replication) 

Reliable consensus and leader election protocols are usually  
implemented in service discovery tools (e.g. ZooKeeper, etcd, Consul, …) 
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Bitcoin 

 A decentralized digital cryptocurrency based on an open distributed ledger 

 Decentralized: 

 No dedicated authority that validates all transactions. 

 Network validates transactions via consensus (!) 

 Crypto: 

 Validated transactions are encrypted. 

 Used to ensure consistency and prevent fraud (not to hide values). 

 Open distributed ledger: 

 A data structure storing all transactions; replicated on different nodes 

 Nodes can append new transaction but cannot alter passed ones. 

 Based on a clever encryption technique. 

 Blockchain 
High Byzantine fault tolerance 
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Blockchain 

 A single linked list of blocks using hash pointer 

 Block: 

 A container for data (transactions or log-entries, messages, measurements, contracts, …) 

 Also stores: timestamp of validation; hash pointer to previous block; nonce 

 Hash pointer: 

 A pair of block-pointer (identify the block) and block-hash (verify block content) 

data 

2017-06-06 

15:04:02 UTC 

data 

2016-11-04 

10:56:37 UTC 

data 

2016-10-02 

23:43:12 UTC 

data 

2015-08-01 

09:00:15 UTC 

data 

2014-11-09 

11:20:34 UTC 

1qpjnepqz wncb91n3b fehao784o i9h1ko0ev 

p9u1j2hla 
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Blockchain 

 The “trick”: 

 The block-hashes encrypt the entire block with its hash pointer to the previous block. 

 

data 

2017-06-06 

15:04:02 UTC 

data 

2016-11-04 

10:56:37 UTC 

data 

2016-10-02 

23:43:12 UTC 

data 

2015-08-01 

09:00:15 UTC 

data 

2014-11-09 

11:20:34 UTC 

1qpjnepqz wncb91n3b fehao784o i9h1ko0ev 

p9u1j2hla 

The head hash uniquely 
identifies and verifies 

the entire list. 

Altering the data or hash 
pointer in a block invalidates 
any hash pointer to it; hence, 
all blocks up to the head hash. 

The genesis block:  
A well known root for the blockchain 
usually containing some initial data. 



Consensus 

Consensus for Leaderless Cryptocurrencies 

Slide 37 

Consistency and 
Consensus 
 

Distributed Data 
Management 

Thorsten Papenbrock 

Blockchain 

 

data 

2017-06-06 

15:04:02 UTC 

data 

2016-11-04 

10:56:37 UTC 

data 

2016-10-02 

23:43:12 UTC 

data 

2015-08-01 

09:00:15 UTC 

data 

2014-11-09 

11:20:34 UTC 

1qpjnepqz wncb91n3b fehao784o i9h1ko0ev 

p9u1j2hla 

 

 

 

 

 

 Calculated via secure Merkle–Damgård hash function 

 For instance, SHA-256 in bitcoin 



Bitcoin 
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A 

C D 

B 

A cluster of nodes that participate in 
the bitcoin system 

Some nodes take the role of  
mining nodes: 

 Store a copy of the open ledger 

 Collect and validate transactions 

 Try to find a valid nonce 
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Distributed Data 
Management 

Algorithm: 

 One node issues a new transaction by 
broadcasting it to some mining nodes 

 Mining nodes:  

 validate the transaction using 
their open ledger copy. 

 write the transaction into their 
current, non-closed block. 
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Distributed Data 
Management 

Algorithm: 

 One node issues a new transaction by 
broadcasting it to some mining nodes 

 Mining nodes:  

 validate the transaction using 
their open ledger copy. 

 write the transaction into their 
current, non-closed block. 

 (if possible) close their block 
with a new hash pointer and 
broadcast the result. 
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Bitcoin 

 Mining: 

 To close a block, a miner calculates the hash for: 

data + current time + hash pointer to previous + nonce 

 If the hash fulfills a certain characteristic, e.g., a certain number of 

leading zeros, the mining was successful and the hash gets accepted. 

 

 Calculating acceptable hashes is expensive, as it requires many attempts. 

 Miner get rewarded for finding hashes (with currency). 

 Rewriting, i.e., manipulating parts of the open ledger is expensive! 

 The deeper in the chain a block is placed, the more secure it is. 

 

A random value that the 
miner changes with 

every hashing attempt. 

Costs time and electricity! 
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Bitcoin 

 Consensus: 

 Blocks sealed with a valid, acceptable hash pointer are commonly agreed facts: 

 If a miner receives such a block it … 

1. tests the acceptance criterion and validates the hash history; 

2. removes the agreed transactions from its working block; 

3. appends the new block to its local open ledger copy. 

 For contradicting blockchains, the longer chain wins. 

 Contents of shorter chains must be re-evaluated and 

re-packed into new blocks. 

Consensus principle 

A node earns the right to dictate consensus decisions by finding 
extremely rare hashes (= proof of work). 

Further reading:  
Book: Bitcoin and Cryptocurrency Technologies 

http://www.the-blockchain.com/docs/Princeton%20Bitcoin%20and%20Cryptocurrency%20Technologies%20Course.pdf 

Disadvantage: Proof 
of works takes time 

and resources! 

http://www.the-blockchain.com/docs/Princeton Bitcoin and Cryptocurrency Technologies Course.pdf
http://www.the-blockchain.com/docs/Princeton Bitcoin and Cryptocurrency Technologies Course.pdf
http://www.the-blockchain.com/docs/Princeton Bitcoin and Cryptocurrency Technologies Course.pdf
http://www.the-blockchain.com/docs/Princeton Bitcoin and Cryptocurrency Technologies Course.pdf


Lamport timestamps can help to determine the order of events in 
distributed computer systems. Consider a system with three nodes and 
Lamport timestamps maintained according to these rules: 
https://en.wikipedia.org/w/index.php?title=Lamport_timestamps&oldid=845598900#Algorithm 

1) In the figure on the right, events are represented by circles and 
messages by arrows. For each of the events, specify the corresponding 
Lamport timestamp. 

2) Assume that event a may have been influenced by event b only if a 
happens after b on the same node or a may have learned about b from 
a sequence of messages. Which events have a larger Lamport 
timestamp than e2,2 although they cannot have been influenced by e2,2? 
Which events have a smaller Lamport timestamp than e2,2 but cannot 
have influenced e2,2?  

3) Vector clocks (https://en.wikipedia.org/wiki/Vector_clock) can help to 
determine a partial order of events that may have causally affected each 
other. Give the vector clocks for each of the events and determine which 
events might have affected e2,2. 

Consistency and Consensus 
Check yourself 
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