
Distributed Data Management

Consistency and Consensus
Thorsten Papenbrock

F-2.04, Campus II

Hasso Plattner Institut

Distributed Data Management

The Situation

Slide 2

Consistency and
Consensus

Distributed Data
Management

Thorsten Papenbrock

Unreliable Networks

 Messages can be lost, reordered, duplicated, and arbitrarily delayed

Unreliable Clocks

 Time is approximate at best, unsynchronized, and can pause

Knowledge, Truth, Lies

Students communi-
cating their knowledge

Unreliable Clocks

An atomic clock with
minimum drift

Unreliable Networks

A shark raiding an
undersea cable

Distributed Data Management

The Situation

Slide 3

Consistency and
Consensus

Distributed Data
Management

Thorsten Papenbrock

Consensus

A decision carried by all group members
although individuals might disagree;

defined by property, majority or authority.

Challenge: Find a
consensus in spite of

unreliable communication.

Distributed Data Management

Consistency and Consensus: OLTP Topics?

Slide 4

Consistency and
Consensus

Thorsten Papenbrock

Why distributed applications might require consistency and consensus.

 Non-static data:

 Distributed query processing on operational data,

i.e., non-warehouse data requires a consistent view of the data.

 Frameworks for distributed analytics:

 Batch/Stream processing queries are usually broken

apart, so that (intermediate) results must be

communicated consistently between the nodes.

 Time-related analytics:

 Distributed query processing on volatile data streams

requires a certain consensus on timing and/or

ordering of events.

Distributed Data Management

Leslie Lamport

Slide 5

Consistency and
Consensus

Distributed Data
Management

Thorsten Papenbrock

Person

 Pioneer in consistency and consensus methods

for parallel and distributed systems

(works at Microsoft Research)

Known for

 Byzantine fault tolerance

 Sequential consistency

 Lamport signature

 Atomic Register Hierarchy

 Lamport's bakery algorithm

 Paxos algorithm

 LaTeX

Lamport not only defined the
“Byzantine problem”, he also
proposed several solutions

Basically serializable writes
for distributed systems

Popular method to construct
digital signatures for arbitrary

one-way crypto functions

Securing a critical section
without shared mutexes

(using thread IDs)

A fault-tolerant consensus algorithm
(based on total order broadcast) LaTeX !

Approach of making register
(record, key-value pair, …)

appear atomic

Distributed Data Management

Leslie Lamport

Slide 6

Consistency and
Consensus

Distributed Data
Management

Thorsten Papenbrock

Person

 Pioneer in consistency and consensus methods

for parallel and distributed systems

(works at Microsoft Research)

Awards

 Dijkstra Prize (2000, 2005, 2014)

 IEEE Emanuel R. Piore Award (2004)

 IEEE John von Neumann Medal (2008)

 ACM Turing Award (2013)

 ACM Fellow (2014)

Known for

 Byzantine fault tolerance

 Sequential consistency

 Lamport signature

 Atomic Register Hierarchy

 Lamport's bakery algorithm

 Paxos algorithm

 LaTeX

“Nobel Prize of computing”
(highest distinction in

computer science)

For outstanding papers on
the principles of

distributed computing

Overview

Consistency and Consensus

Slide 7

Consistency and
Consensus

Distributed Data
Management

Thorsten Papenbrock

Consensus Ordering Guarantees Linearizability

Linearizability

The Problem

Slide 8

Consistency and
Consensus

Distributed Data
Management

Thorsten Papenbrock

Alice and Bob disagree on a value
(for some time)

Consistency and
Consensus

Distributed Data
Management

Thorsten Papenbrock

Linearizability

Motivation

Locks and Leaders

 System must agree upon lock- and leader-assignments.

 Otherwise: locks don’t work / split brain

Uniqueness constraints

 System must know and agree upon unique values.

 Otherwise: duplicate values

Cross-channel timing dependencies

 System must agree upon

facts that are also communicated

via side channels.

 Otherwise: inconsistent

system behavior

Race condition
 if image resizer

finds an old image.

When the image is stored,
send a resize request.

Linearizability

Definition

Slide 10

Consistency and
Consensus

Distributed Data
Management

Thorsten Papenbrock

Linearizability

 A consistency guarantee of eventual consistent databases stating that

a read operation should always return the most recent value of an object

although replicas might have older values.

 The databases appears as if there is only one copy of the data.

 Also known as atomic consistency, strong consistency, immediate

consistency, or external consistency.

Client A

Client B

Client C

read(x) 0

write(x,1) ok

read(x) 0

read(x) 1

read(x) 1

read(x) 1

Values must not jump back in time:
If the value is on one replica, everyone should see it!

A linearizable system is
100% consistent w.r.t.

the CAP theorem!

Linearizability

Linearizable vs. Serializable

Slide 11

Consistency and
Consensus

Distributed Data
Management

Thorsten Papenbrock

Linearizability

 Guarantee for reads and writes to one register (record, key-value pair, …)

 Ensure that the database always returns the newest value from a set of

redundant values.

 Does not prevent phantom reads or write skew problems.

Serializability

 Guarantee for reads and writes of transactions

 Ensure that concurrent transactions have the same effect as some serial

execution of these transactions.

 Does not ensure the newest values to be read (e.g. see Snapshot Isolation).

= read different values
in one transaction.

= values overwrite
other values.

Linearizability

Implementation

Slide 12

Consistency and
Consensus

Distributed Data
Management

Thorsten Papenbrock

Single-leader replication

 Run not only all writes but also all reads through the leader; redirect reads to only

those replicas that confirmed relevant updates.

 Leader crashes, unavailability, re-elections, … might break linearizability.

Multi-leader replication

 Not linearizable!

Leaderless replication

 Quorum read and writes (w + r > n)

 Ensure new value gets found.

This is done
anyway.

Quorums alone do not
ensure linearizability.

Linearizability

Implementation

Slide 13

Consistency and
Consensus

Distributed Data
Management

Thorsten Papenbrock

Single-leader replication

 Run not only all writes but also all reads through the leader; redirect reads to only

those replicas that confirmed relevant updates

 Leader crashes, unavailability, re-elections, … might break linearizability

Multi-leader replication

 Not linearizable!

Leaderless replication

 Use three techniques:

 Quorum read and writes (w + r > n)

 Ensure new value gets found.

 Read-repair (write newest value of a read to all replicas with old value)

 Help updating replicas before returning a value.

 Read before write (read quorum before writing new value)

 Ensure your write does not conflict with other writes.

In this way, other reads either
return before you or they find the

same result.

This is done
anyway.

Linearizability is an
expensive consistency guarantee

that is dropped by most distributed
systems in favor of performance.

Therefore, distributed systems usually do not use
linearizability for all registers but only for critical,

consensus relevant decision (e.g. role assignments).

Linearizability

Linearizable Leaderless Replication

Slide 14

Thorsten Papenbrock

Example

User 1

Replica

Replica

Replica

‘new.jpg’
(version 7)

‘new.jpg’
(version 7)

‘old.jpg’
(version 6)

 Read before write (read quorum before writing new value)
 Ensure your write does not conflict with other writes.

read write

‘new.jpg’
(version 7)

write

‘newest.jpg’
(version 8)

We now know that
version needs to be 8.

Linearizability

Linearizable Leaderless Replication

Slide 15

Thorsten Papenbrock

Example

User 1

Replica

Replica

Replica

‘newest.jpg’
(version 8)

‘new.jpg’
(version 7)

‘new.jpg’
(version 7)

 Read-repair (write newest value of a read to all replicas with old value)
 Help updating replicas before returning a value.

read write

‘newest.jpg’
(version 8)

User 2

‘newest.jpg’
(version 8)

Not return here, because there are
older values in the quorum!

Return here,
because all

values in quorum
are consistent!

Linearizability

Linearizable Leaderless Replication

Slide 16

Thorsten Papenbrock

Example

User 1

Replica

Replica

Replica

‘newest.jpg’
(version 8)

‘new.jpg’
(version 7)

‘new.jpg’
(version 7)

 Read-repair (write newest value of a read to all replicas with old value)
 Help updating replicas before returning a value.

read write

‘newest.jpg’
(version 8)

User 2

‘newest.jpg’
(version 8)

Latency issues might
cause inconsistencies, but

this is true for any
linearizable system!

Overview

Consistency and Consensus

Slide 17

Consistency and
Consensus

Distributed Data
Management

Thorsten Papenbrock

Consensus Ordering Guarantees Linearizability

Ordering Guarantees

Total Order Broadcast

Slide 18

Consistency and
Consensus

Distributed Data
Management

Thorsten Papenbrock

Total Order Broadcast

 A protocol for message exchange that guarantees:

1. Reliable delivery:

 No messages are lost.

2. Totally ordered messages:

 Messages are received by all nodes in the same order.

 Order is not changed retroactively (in contrast to timestamp ordering).

 Any total order broadcast message is delivered (broadcast) to all nodes.

 Implemented in, for instance, “ZooKeeper” and “etcd”

 Enables:

 Consistent, distributed log (ordered messages = log)

 Lock service implementations for fencing tokens (e.g. leases)

 Serializable transactions

Because messages are lost
and re-ordered, the protocol

must hide these issues!

Ordering Guarantees

Total Order Broadcast

Slide 19

Consistency and
Consensus

Distributed Data
Management

Thorsten Papenbrock

Total Order Broadcast

 Implementation:

 Assume we have one linearizable register with an integer value

supporting atomic increment-and-get (or compare-and-set) operations.

 [Sender] For every message send as total order broadcast:

1. Increment-and-get the linearizable integer.

2. Attach the integer as sequence number to the message.

3. Send the message to all nodes (resending lost messages).

 [Receiver] For every message received as total order broadcast:

1. Check if sequence number is one greater than last received

sequence number.

2. Process message if true; otherwise, wait for missing message.

 This is only possible because there are no sequence gaps!

Recall: we know how to implement
linearizable storage

(for single-leader or leaderless replication)

Ordering Guarantees

Causal Ordering

Slide 20

Consistency and
Consensus

Distributed Data
Management

Thorsten Papenbrock

Thinking:
timelines that branch/merge;

events compare only along lines

 GIT

Linearizable (and Total Order Broadcast)

 Imposes a total order:

 All events can be compared.

 For one object, only the newest event is relevant.

 Implies causality:

 A linear order is always also a causal order of the events.

 Is expensive (due to global order enforcement)

Causal ordering

 Imposes a partial order:

 Some events are comparable (causal), others are not (concurrent)

 For many events some partial order is just fine:

 Order of writes, side-channel messages, transactions …

 Is cheaper (order enforcement only for related events)

Ordering Guarantees

Sequence Number Ordering

Slide 21

Consistency and
Consensus

Thorsten Papenbrock

Sequence Numbers and Timestamps

 Task:

 Label all events with a consecutive number.

 Events should be causally comparable w.r.t. that number.

a) Sequence number:

 Counter that increments with every event

b) Timestamp:

 Reading from a monotonic/logical clock

 Problem:

 (Non-linearizable) sequence numbers and (potentially skewed)

timestamps are not comparable across different nodes.

 See non-linearizable systems, such as multi-leader systems.

 Solution: Lamport timestamps!

Our linearizable-trick
does not work here.

A leader or quorum-
read-repair system
can provide these.

Ordering Guarantees

Sequence Number Ordering

Slide 22

Consistency and
Consensus

Distributed Data
Management

Thorsten Papenbrock

Lamport timestamps

 Each node has a unique identifier and a counter for processed operations.

 Lamport timestamp:

 A pair (counter, identifier)

 Globally unique for each event

 Imposes a total order consistent with causality:

 Order by counter.

 If counters are equal, use identifier as tie-breaker.

 Achieving causal order consistency:

 Nodes store their current counter c.

 Clients store the max counter m seen so far (sent with each event).

 Nodes increment their counter as c = max(c,m) + 1.

 Counter moves past some events that happened elsewhere.

Leslie Lamport:
“Time, clocks, and the ordering of
events in a distributed system”,

Communications of the ACM, volume
21, number 7, pages 558-565, 1978

One of the most cited papers in
distributed computing!

Per element, i.e., type of event
(node, table, partition, record, value, …)

Lamport timestamps

 Example:

Ordering Guarantees

Sequence Number Ordering

Slide 23

Consistency and
Consensus

Distributed Data
Management

Thorsten Papenbrock

Leader 1

Leader 2

Client B

Client A

write
max = 0

write
max = 1

write
max = 2

write
max = 3

write
max = 4

write
max = 0

write
max = 1

write
max = 5

c = 1

0

c = 2 c = 3 c = 4 c = 6

c = 6

c = 5

(1,1)

(5,2)

(6,1)

(1,2) (2,2) (3,2) (4,2) (6,2)

0 1 4 2 3

1 5

c = 1

Although two leaders accept requests in parallel,
the timestamps impose a global, causal order.

Note: The system does not know when exactly A’s
write happened relative to B’s writes, but it can

drive an order if necessary, hence “causal ordering”

Ordering Guarantees

Sequence Number Ordering

Slide 24

Consistency and
Consensus

Distributed Data
Management

Thorsten Papenbrock

Lamport timestamps

 Example:

Leader 1

Leader 2

Client B

Client A

(4,1)

(2,2)

Ignore: x = 8, because (4,1) > (2,2)

Update: x = 8 , because (2,2) < (4,1)

write(x, 42)
max = 1

write(x, 8)
max = 3

c = 4

3

(4,1)

(2,2)

1

c = 4

If two writes actually collide during propagation,
compare the timestamps and put them in order.

Last-write-wins replication
c = 2 c = 4

Ordering Guarantees

Sequence Number Ordering

Slide 25

Consistency and
Consensus

Distributed Data
Management

Thorsten Papenbrock

Lamport timestamps

 Example:

Leader 1

Leader 2

Client B

Client A

(1,1)

(1,2)

Overwrite: x = 42, because (1,2) > (1,1)

Ignore: x = 42 , because (1,1) < (1,2)

Last-write-wins replication

write(x, 42)
max = 0

write(x, 8)
max = 0

c = 1

0

(1,1)

(1,2)

0

c = 1

c = 1

c = 1

If two writes actually collide during propagation,
compare the timestamps and put them in order.

Ordering Guarantees

Sequence Number Ordering

Slide 26

Consistency and
Consensus

Distributed Data
Management

Thorsten Papenbrock

Lamport timestamps

 About the order:

 Does not capture a notion of time between events.

 Might differ from the real-world time order.

 Works to identify a winner after the fact.

(i.e., the most recent event after all events have been collected)

 Examples for problems:

 Create a new user: Assure name is unique
before acknowledgement of user creation.

 Acquire a role (e.g. leader): Assure role is still free
before acknowledgement of role assignment.

 Buy a product: Assure product is still in stock
before acknowledgement of purchase.

 Any form of locking!

Usually not
an issue

Not ok for
locks/uniques/…

Use linearizability / total order broadcast

Overview

Consistency and Consensus

Slide 27

Consistency and
Consensus

Distributed Data
Management

Thorsten Papenbrock

Consensus Ordering Guarantees Linearizability

Consensus

Consensus

Slide 28

Consistency and
Consensus

Distributed Data
Management

Thorsten Papenbrock

Consensus

 A decision carried by all group members although individuals might disagree

 Usually defined by the majority

 Challenge:

 Reach consensus in spite of unreliable communication.

 Linearizability, total order broadcast, and consensus are equivalent problems:

 If a distributed system supports one of them, the others can be achieved

through the same protocol.

 Consensus properties:

 Agreement: No two nodes decide differently.

 Integrity: No node decides twice.

 Validity: Nodes do not decide for a value that has not been proposed.

 Termination: Every non-crashed node makes a decision.

We just did this for
“linearizability total order broadcast”

i.e. no compromises!

Consensus

Fault-Tolerant Consensus

Slide 29

Consistency and
Consensus

Distributed Data
Management

Thorsten Papenbrock

Consensus via total order broadcast

 Total order broadcast implies a consensus about the order of messages.

 Message order ⟺ several rounds of consensus:

 Some nodes propose a message to be send next.

 Total order broadcast protocol decides for one message (= consensus).

 Example: Locking

 Multiple nodes want to acquire a lock and send their requests.

 Total order broadcast orders the requests and delivers them to all nodes.

 All nodes then learn from the sequence, which node in fact obtained the lock.

 Consensus properties hold for total order broadcasts:

 Agreement: All nodes deliver the same order.

 Integrity: Messages are not duplicated.

 Validity: Messages are not corrupted or arbitrarily added.

 Termination: Messages are not lost.

No (majority) voting in this case

i.e. the first node
in the sequence

Consensus

Fault-Tolerant Consensus

Consensus via total order broadcast

 Is the most common implementation approach for consensus protocols:

 Viewstamped Replication [1,2]

 Paxos [3,4,5]

 Raft [6,7]

 Zap [8,9]

 [1] B. M. Oki and B. H. Liskov: “Viewstamped Replication: A New Primary Copy Method to Support Highly-Available Distributed Systems,” ACM Symposium on Principles of

Distributed Computing (PODC), 1988.

[2] B. H. Liskov and J. Cowling: “Viewstamped Replication Revisited,” Massachusetts Institute of Technology, Tech Report MIT-CSAIL-TR-2012-021, 2012.

[3] L. Lamport: “The Part-Time Parliament,” ACM Transactions on Computer Systems, volume 16, number 2, pages 133–169, 1998.

[4] L. Lamport: “Paxos Made Simple,” ACM SIGACT News, volume 32, number 4, pages 51–58, 2001.

[5] T. D. Chandra, R. Griesemer, and J. Redstone: “Paxos Made Live – An Engineering Perspective,” ACM Symposium on Principles of Distributed Computing (PODC), 2007.

[6] D. Ongaro and J. K. Ousterhout: “In Search of an Understandable Consensus Algorithm (Extended Version),” USENIX Annual Technical Conference (ATC), 2014.

[7] H. Howard, M. Schwarzkopf, A. Madhavapeddy, and J. Crowcroft: “Raft Refloated: Do We Have Consensus?,” ACM SIGOPS Operating Systems Review, volume 49,

number 1, pages 12–21, 2015.

[8] F. P. Junqueira, B. C. Reed, and M. Serafini: “Zab: High-Performance Broadcast for Primary-Backup Systems,” IEEE International Conference on Dependable Systems

and Networks (DSN), 2011.

[9] A. Medeiros: “ZooKeeper’s Atomic Broadcast Protocol: Theory and Practice,” Aalto University School of Science, 20, 2012.

Consensus

Fault-Tolerant Consensus

Slide 31

Consistency and
Consensus

Distributed Data
Management

Thorsten Papenbrock

The leader election problem

 Consensus protocols (and linearizability and total order broadcast) usually rely on a leader.

 [Problem 1] If the leader dies, a new leader must be elected.

 But how to get a consensus if the main protocol relies on a leader being present?

 [Solution] Actual voting:

 Initiated when leader is determined dead (e.g. via φ accrual failure detector).

 All nodes exchange their leader qualification (e.g. IDs, latencies, or resources)

with w other nodes.

 Every node tries to identify who is the most qualified leader.

 The most qualified leader will then be known to w other nodes.

 Any node that “feels” like a leader asks r other nodes who their leader is.

 If none of the r nodes reports a more qualified leader, it is the leader.

Here: a quorum-based voting protocol; see leaderless replication

Recall that r + w > n for n nodes to make vote stable

= “king”, “proposer”, …

Consensus

Fault-Tolerant Consensus

Slide 32

Consistency and
Consensus

Distributed Data
Management

Thorsten Papenbrock

The leader election problem

 Consensus protocols (and linearizability and total order broadcast) usually rely on a leader.

 [Problem 2] If the old leader comes back, it might still think it is the leader.

 How to prevent split brain issues?

 [Solution] Epoch numbers:

 Whenever a leader voting is initiated,

all nodes must increment an epoch number.

 An epoch number associates the validity of a leader election with a sequence.

 Before a leader is allowed to decide anything, it must collect votes from a

quorum of r nodes (usually a majority).

 Nodes agree to the quorum, if they do not know a leader with higher epoch.

 The leader must step down if any node disagrees.

epoch number (Zap)
ballot number (Paxos)
term number (Raft)
view number (Viewstamed Replication)

Reliable consensus and leader election protocols are usually
implemented in service discovery tools (e.g. ZooKeeper, etcd, Consul, …)

Consensus

Consensus for Leaderless Cryptocurrencies

Slide 34

Consistency and
Consensus

Distributed Data
Management

Thorsten Papenbrock

Bitcoin

 A decentralized digital cryptocurrency based on an open distributed ledger

 Decentralized:

 No dedicated authority that validates all transactions.

 Network validates transactions via consensus (!)

 Crypto:

 Validated transactions are encrypted.

 Used to ensure consistency and prevent fraud (not to hide values).

 Open distributed ledger:

 A data structure storing all transactions; replicated on different nodes

 Nodes can append new transaction but cannot alter passed ones.

 Based on a clever encryption technique.

 Blockchain
High Byzantine fault tolerance

Consensus

Consensus for Leaderless Cryptocurrencies

Slide 35

Consistency and
Consensus

Distributed Data
Management

Thorsten Papenbrock

Blockchain

 A single linked list of blocks using hash pointer

 Block:

 A container for data (transactions or log-entries, messages, measurements, contracts, …)

 Also stores: timestamp of validation; hash pointer to previous block; nonce

 Hash pointer:

 A pair of block-pointer (identify the block) and block-hash (verify block content)

data

2017-06-06

15:04:02 UTC

data

2016-11-04

10:56:37 UTC

data

2016-10-02

23:43:12 UTC

data

2015-08-01

09:00:15 UTC

data

2014-11-09

11:20:34 UTC

1qpjnepqz wncb91n3b fehao784o i9h1ko0ev

p9u1j2hla

Consensus

Consensus for Leaderless Cryptocurrencies

Slide 36

Consistency and
Consensus

Distributed Data
Management

Thorsten Papenbrock

Blockchain

 The “trick”:

 The block-hashes encrypt the entire block with its hash pointer to the previous block.

data

2017-06-06

15:04:02 UTC

data

2016-11-04

10:56:37 UTC

data

2016-10-02

23:43:12 UTC

data

2015-08-01

09:00:15 UTC

data

2014-11-09

11:20:34 UTC

1qpjnepqz wncb91n3b fehao784o i9h1ko0ev

p9u1j2hla

The head hash uniquely
identifies and verifies

the entire list.

Altering the data or hash
pointer in a block invalidates
any hash pointer to it; hence,
all blocks up to the head hash.

The genesis block:
A well known root for the blockchain
usually containing some initial data.

Consensus

Consensus for Leaderless Cryptocurrencies

Slide 37

Consistency and
Consensus

Distributed Data
Management

Thorsten Papenbrock

Blockchain

data

2017-06-06

15:04:02 UTC

data

2016-11-04

10:56:37 UTC

data

2016-10-02

23:43:12 UTC

data

2015-08-01

09:00:15 UTC

data

2014-11-09

11:20:34 UTC

1qpjnepqz wncb91n3b fehao784o i9h1ko0ev

p9u1j2hla

 Calculated via secure Merkle–Damgård hash function

 For instance, SHA-256 in bitcoin

Bitcoin

Consensus

Consensus for Leaderless Cryptocurrencies

Slide 38

Consistency and
Consensus

Distributed Data
Management

Thorsten Papenbrock

A

C D

B

A cluster of nodes that participate in
the bitcoin system

Some nodes take the role of
mining nodes:

 Store a copy of the open ledger

 Collect and validate transactions

 Try to find a valid nonce

C D: 10 Coins
A D: 10 Coins

2016-10-02

23:43:12 UTC

B A: 15 Coins
B C: 20 Coins

2015-08-01

09:00:15 UTC

A: 10 Coins
B: 30 Coins

2014-11-09

11:20:34 UTC

fehao784o

i9h1ko0ev

wncb91n3b

Distributed Data
Management

Algorithm:

 One node issues a new transaction by
broadcasting it to some mining nodes

 Mining nodes:

 validate the transaction using
their open ledger copy.

 write the transaction into their
current, non-closed block.

Consensus

Consensus for Leaderless Cryptocurrencies

Slide 39

Consistency and
Consensus

Thorsten Papenbrock

C D: 10 Coins
A D: 10 Coins

2016-10-02

23:43:12 UTC

B A: 15 Coins
B C: 20 Coins

2015-08-01

09:00:15 UTC

A: 10 Coins
B: 30 Coins

2014-11-09

11:20:34 UTC

fehao784o

i9h1ko0ev

C D: 10 Coins

2017-06-06

15:04:02 UTC

wncb91n3b

A

C D

B

10 Coins

C D:
10 Coins

Distributed Data
Management

Algorithm:

 One node issues a new transaction by
broadcasting it to some mining nodes

 Mining nodes:

 validate the transaction using
their open ledger copy.

 write the transaction into their
current, non-closed block.

 (if possible) close their block
with a new hash pointer and
broadcast the result.

Consensus

Consensus for Leaderless Cryptocurrencies

Slide 40

Consistency and
Consensus

Thorsten Papenbrock

C D: 10 Coins
A D: 10 Coins

2016-10-02

23:43:12 UTC

B A: 15 Coins
B C: 20 Coins

2015-08-01

09:00:15 UTC

A: 10 Coins
B: 30 Coins

2014-11-09

11:20:34 UTC

fehao784o

i9h1ko0ev

C D: 10 Coins

2017-06-06

15:04:02 UTC

wncb91n3b

A

C D

B

10 Coins

C D:
10 Coins

giw029hg

Consensus

Consensus for Leaderless Cryptocurrencies

Slide 41

Consistency and
Consensus

Distributed Data
Management

Thorsten Papenbrock

Bitcoin

 Mining:

 To close a block, a miner calculates the hash for:

data + current time + hash pointer to previous + nonce

 If the hash fulfills a certain characteristic, e.g., a certain number of

leading zeros, the mining was successful and the hash gets accepted.

 Calculating acceptable hashes is expensive, as it requires many attempts.

 Miner get rewarded for finding hashes (with currency).

 Rewriting, i.e., manipulating parts of the open ledger is expensive!

 The deeper in the chain a block is placed, the more secure it is.

A random value that the
miner changes with

every hashing attempt.

Costs time and electricity!

Consensus

Consensus for Leaderless Cryptocurrencies

Slide 42

Consistency and
Consensus

Distributed Data
Management

Thorsten Papenbrock

Bitcoin

 Consensus:

 Blocks sealed with a valid, acceptable hash pointer are commonly agreed facts:

 If a miner receives such a block it …

1. tests the acceptance criterion and validates the hash history;

2. removes the agreed transactions from its working block;

3. appends the new block to its local open ledger copy.

 For contradicting blockchains, the longer chain wins.

 Contents of shorter chains must be re-evaluated and

re-packed into new blocks.

Consensus principle

A node earns the right to dictate consensus decisions by finding
extremely rare hashes (= proof of work).

Further reading:
Book: Bitcoin and Cryptocurrency Technologies

http://www.the-blockchain.com/docs/Princeton%20Bitcoin%20and%20Cryptocurrency%20Technologies%20Course.pdf

Disadvantage: Proof
of works takes time

and resources!

http://www.the-blockchain.com/docs/Princeton Bitcoin and Cryptocurrency Technologies Course.pdf
http://www.the-blockchain.com/docs/Princeton Bitcoin and Cryptocurrency Technologies Course.pdf
http://www.the-blockchain.com/docs/Princeton Bitcoin and Cryptocurrency Technologies Course.pdf
http://www.the-blockchain.com/docs/Princeton Bitcoin and Cryptocurrency Technologies Course.pdf

Lamport timestamps can help to determine the order of events in
distributed computer systems. Consider a system with three nodes and
Lamport timestamps maintained according to these rules:
https://en.wikipedia.org/w/index.php?title=Lamport_timestamps&oldid=845598900#Algorithm

1) In the figure on the right, events are represented by circles and
messages by arrows. For each of the events, specify the corresponding
Lamport timestamp.

2) Assume that event a may have been influenced by event b only if a
happens after b on the same node or a may have learned about b from
a sequence of messages. Which events have a larger Lamport
timestamp than e2,2 although they cannot have been influenced by e2,2?
Which events have a smaller Lamport timestamp than e2,2 but cannot
have influenced e2,2?

3) Vector clocks (https://en.wikipedia.org/wiki/Vector_clock) can help to
determine a partial order of events that may have causally affected each
other. Give the vector clocks for each of the events and determine which
events might have affected e2,2.

Consistency and Consensus
Check yourself

e1,1

e1,2

e2,1

e2,2

e3,1

e3,2

Node 1 Node 2 Node 3

e2,3

Slide 43

Consistency and
Consensus

Distributed Data
Management

Tobias Bleifuß

https://en.wikipedia.org/w/index.php?title=Lamport_timestamps&oldid=845598900#Algorithm
https://en.wikipedia.org/wiki/Vector_clock

Distributed Data Management

Introduction
Thorsten Papenbrock

G-3.1.09, Campus III

Hasso Plattner Institut

