
1

Tagging and
Captioning
Art-Historical
Photographs

13.12.2022

Tagging and Captioning Art-Historical Photographs

Alejandro Sierra, Hendrik Rätz, Jona Otholt
13.12.2022

1

2

Tagging and
Captioning
Art-Historical
Photographs

13.12.2022

Motivation

3

Tagging and
Captioning
Art-Historical
Photographs

13.12.2022

"One of Guido’s key insights is that code is read much more

often than it is written. The guidelines provided here are

intended to improve the readability of code [...]."
— from the PEP 8 Style Guide

https://peps.python.org/pep-0008/

4

Tagging and
Captioning
Art-Historical
Photographs

13.12.2022

PEP 8 – Style Guide for Python Code

5

Tagging and
Captioning
Art-Historical
Photographs

13.12.2022

How To

6

Tagging and
Captioning
Art-Historical
Photographs

13.12.2022

Use IDEs and Built-in Linters

7

Tagging and
Captioning
Art-Historical
Photographs

13.12.2022

Use Code Formatters

8

Tagging and
Captioning
Art-Historical
Photographs

13.12.2022

Use Code Formatters

9

Tagging and
Captioning
Art-Historical
Photographs

13.12.2022

Use Code Formatters

10

Tagging and
Captioning
Art-Historical
Photographs

13.12.2022

"A style guide is about consistency.

Consistency with this style guide is important.

Consistency within a project is more important."
— from the PEP 8 Style Guide

11

Tagging and
Captioning
Art-Historical
Photographs

13.12.2022

1. When applying the guideline would make the code less readable, even for

someone who is used to reading code that follows this PEP.

2. To be consistent with surrounding code that also breaks it (maybe for historic

reasons)

3. Because the code in question predates the introduction of the guideline and there

is no other reason to be modifying that code.

Good Reasons for Not Following a Guide

12

Tagging and
Captioning
Art-Historical
Photographs

13.12.2022

Suggestions

13

Tagging and
Captioning
Art-Historical
Photographs

13.12.2022

Naming Conventions

● _single_leading_underscore: weak “internal use” indicator.

● __double_leading_underscore: when naming a class attribute, invokes

name mangling (inside class FooBar, __boo becomes _FooBar__boo

● __double_leading_and_trailing_underscore__

“magic” objects or attributes that live in user-controlled namespaces. E.g.

__init__, __import__ or __file__. Never invent such names; only use

them as documented.

● trailing_underscore_: If your public attribute name collides with a reserved

keyword, append a single trailing underscore to your attribute name

14

Tagging and
Captioning
Art-Historical
Photographs

13.12.2022

def load_data(path: Path) -> List[str]:

 with open(path) as f:

 return [line.strip() for line in f.readlines()]

Type Annotations

15

Tagging and
Captioning
Art-Historical
Photographs

13.12.2022

Important Examples

16

Tagging and
Captioning
Art-Historical
Photographs

13.12.2022

String Formatting: f-Strings

Also wrong: .format()

print('Hello, {}'.format(name))

Correct: f-String

name = ‘Guido’

print(f‘Hello {name}’)

Wrong: %-Operator

print('Hello, %s' % name)

17

Tagging and
Captioning
Art-Historical
Photographs

13.12.2022

file_path = root_dir / ‘file.txt’

vs.

file_path = os.path.join(root_dir, ‘file.txt’)

Dealing with Paths: pathlib

18

Tagging and
Captioning
Art-Historical
Photographs

13.12.2022

● Avoid code duplications

● Keep extensibility in mind

● Avoid magic strings/magic numbers

● Short code vs. readable code

● Try to be consistent with single and double quoted strings

Miscellaneous

19

Tagging and
Captioning
Art-Historical
Photographs

13.12.2022

Use comments

20

Tagging and
Captioning
Art-Historical
Photographs

13.12.2022

Try to keep mentioned style guides and concepts in mind.

They will be applied in the final review and during grading ;)

