
Efficiently Detecting Inclusion Dependencies

Jana Bauckmann† Ulf Leser† Felix Naumann‡ Véronique Tietz†

†Department for Computer Science ‡Hasso-Plattner-Institut
Humboldt-Universität zu Berlin University of Potsdam

Unter den Linden 6, 10099 Berlin, Germany Prof.-Dr.-Helmert-Str. 2-3
{bauckmann,leser,vtietz} 14482 Potsdam, Germany
@informatik.hu-berlin.de naumann@hpi.uni-potsdam.de

Abstract

Data sources for data integration often come with spuri-
ous schema definitions such as undefined foreign key con-
straints. Such metadata are important for querying the
database and for database integration.

We present our algorithm SPIDER (Single Pass Inclu-
sion DEpendency Recognition) for detecting inclusion de-
pendencies, as these are the automatically testable part of
a foreign key constraint. For IND detection all pairs of at-
tributes must be tested. SPIDER solves this task very effi-
ciently by testing all attribute pairs in parallel. It analyzes a
2 GB database in ∼ 20 min and a 21 GB database in ∼ 4 h.

1. Schema Discovery for Data Integration

In large integration projects one is often confronted with
undocumented data sources. One important schema infor-
mation are foreign key constraints, which are necessary for
meaningful querying and for database integration.

One example is the popular life science database Pro-
tein Data Bank (PDB) that can be imported into a rela-
tional schema using the OpenMMS1 schema and parser.
The OpenMMS schema defines 175 tables with 2, 705 at-
tributes but not a single foreign key constraint.

If foreign key constraints are not defined explicitly they
are given implicitly by the data. Thus, we want to iden-
tify inclusion dependencies (INDs) in a schema as they are
a precondition for foreign keys. An inclusion dependency
A ⊆ B means that all values of the dependent attribute A
are contained in the value set of the referenced attribute B.
We call a pair of attributes A and B an IND candidate. An
IND is satisfied if the IND requirements are met and un-
satisfied otherwise. Obviously, a satisfied IND is only the

1openmms.sdsc.edu

automatically testable part of a foreign key. Whether a spe-
cial IND corresponds to a semantically correct foreign key
must be decided in a second step.

The challenge in detecting INDs is the potentially large
number of IND candidates as each pair of attributes must
be tested. With n attributes this results in (n − 1)2 IND
candidates. To the best of our knowledge all previous ap-
proaches for unary IND detection restrict IND candidates
by the attribute’s data type as proposed in [5], i. e., only
IND candidates are created with both attributes sharing the
same data type. This restriction reduces the problem com-
plexity heavily, but in life science databases we cannot use
this restriction, because one cannot rely on datatypes.

In this paper we present our algorithm SPIDER to de-
tect unary INDs. SPIDER works in two phases: (i) all at-
tribute value sets are sorted inside a RDBMS, and (ii) all
IND candidates are tested in parallel while reading each at-
tribute’s value at most once. Its strength is the data structure
that synchronizes all IND candidate tests efficiently without
running into deadlocks or missing an IND.

There are two approaches in related work on detecting
unary INDs exactly: Bell and Brockhausen use SQL join
statements to test single IND candidates [3]. They lever-
age filters on data type, maxima and minima to prune IND
candidates and utilize already finished IND tests for further
pruning exploiting transitivity of IND. Marchi et al. pro-
pose to preprocess all data by assigning to each value in
the database all attribute’s names that include this value [6].
The results are stored in tables – one table per data type.
Afterwards all IND candidates are tested in parallel exploit-
ing the sets of attribute names. We shall show in Sec. 3
that SPIDER outperforms both approaches up to orders of
magnitude.

In [2] we tested the performance of several possible SQL
statements for IND tests, i. e., join, minus, and not in. The
fastest approach was to join the IND candidate’s attributes

and to compare the join cardinality with the dependent at-
tribute’s cardinality. However, we showed that all SQL ap-
proaches are much slower for large databases than algo-
rithms based on sorted attribute value lists.

2. Detecting Unary INDs

To compute all unary INDs exactly we must test all pairs
of attributes. The test can be performed using the follow-
ing procedure: (i) Sort and “distinct” the value sets of all
attributes using an arbitrary but fixed sort order. (ii) Iter-
ate over the sorted value sets of each pair starting from the
smallest item using cursors. Let dep be the current depen-
dent value and ref be the current referenced value of an IND
candidate. If dep = ref or dep > ref move both cursors or
move the referenced cursor, respectively. Otherwise, if dep
< ref stop the execution immediately, because we found a
dependent value not contained in the referenced attribute.
An IND candidate is shown to be a satisfied IND if all de-
pendent values are found in the referenced value set.

The two following algorithms apply this approach. Both
use the database to sort and “distinct” the values of all at-
tributes, and then write the sorted lists to disk. However, the
order in which those sets are read is entirely different.

Brute Force This algorithm creates and tests all IND can-
didates sequentially, i. e., one by one. Compared to a SQL
join, the main advantages are (i) the single sort of each at-
tribute and (ii) the implemented early stop for unsatisfied
INDs as, of course, most IND candidates are unsatisfied and
the test can often stop after comparing only a few or even
only a single value pair. The brute force algorithm has the
disadvantage that each attribute’s values are read as often as
the attribute is part of an IND candidate.

Single Pass Inclusion DEpendency Recognition (SPIDER)
This algorithm eliminates the need to read data multiple
times. All IND candidates are created and tested in par-
allel. SPIDER first opens all attribute files on disk and starts
reading values using one cursor per file. The challenge is
to decide when the cursor for each file can be moved. All
dependent attributes affect the point in time at which the
cursor of a referenced attribute can be moved. But also all
referenced attributes influence when the cursor of a depen-
dent attribute can be moved. Despite this mutual depen-
dency, it is possible to synchronize the cursor movements
without running into deadlocks or missing some IND can-
didate tests, because we use sorted data sets.

Each attribute is represented in SPIDER as an attribute
object providing the attribute’s sorted values and a cursor
to the current value. An attribute can be covered in mul-
tiple IND candidates as referenced attribute and / or as de-
pendent attribute. Thus, each attribute object potentially has

two roles. For short, we call attribute objects with a depen-
dent role DEP and with a referenced role REF.

IND candidates are represented (and tested) in the depen-
dent attribute role. Each DEP maintains two lists of REFs:
(i) satisfiedRefs contains REFs that are known to contain
this DEP’s current value, (ii) unsatisfiedRefs contains all
REFs that are not (yet) known to contain this value but that
contain all previous values of this DEP.

All attribute objects are stored in a min-heap sorted by
their current values. We remove sets of attribute objects
with minimal but equal values (Min) and process them as
follows until the heap is empty: (i) Inform all DEP in Min
of all REFs in Min. This way, the DEPs can track and test
the IND candidates by moving REFs from unsatisfiedRefs
to satisfiedRefs. (ii) Test for each DEP in Min if it has
a next value. If so, update the the lists satisfiedRefs and
unsatisfiedRefs in the following way: All IND candidates
given by this DEP and all REFs in unsatisfiedRefs can be
excluded (i. e. empty unsatisfiedRefs), because they do not
contain the DEP’s current value (we cannot have missed it).
All REFs in satisfiedRefs contain (till now) all values of
the dependent attribute object. To prepare the next iteration,
move all REFs from satisfiedRefs to unsatisfiedRefs. For
all DEP in Min with no next value output the INDs given
by their REFs as satisfied IND. (iii) For all attribute objects
in Min (DEPs and REFs) having a next value: Move the
cursor to this next value and insert the attribute object into
the heap.

Using the min-heap, we synchronize the processing of
all values of all attributes. Therefore, we cannot miss a IND
or run into a deadlock.

3. Experimental Results

We tested the algorithms on real life databases from the
life sciences and on a synthetic database: UniProt2 is a
database of annotated protein sequences [1] available in
several formats. We used the BioSQL3 schema and parser,
creating a database of 16 tables with 85 attributes and a
total size of 667 MB. PDB is a large database of protein
structures [4]. We used the OpenMMS software for pars-
ing PDB files into a relational database. The PDB pop-
ulates 115 tables over 1, 711 attributes in the OpenMMS
schema. There are no specified foreign keys. The total
database size is 21 GB. To achieve a better idea of the scala-
bility of our approach, we also used a 2.7 GB fraction of the
PDB obtained by removing some extremely large tables. Fi-
nally, we also verify our results by using a generated TPC-H
database (scale factor 1.0).

We run all experiments on a Linux system with 2 In-
tel Xeon processors (2.60 GHz) and 12 GB RAM. We use a

2www.pir.uniprot.org
3obda.open-bio.org

commercial object-relational database management system.

Experiments on restricted IND candidates In our first
class of experiments we only create IND candidates with an
unique referenced attribute, such that we can infer foreign
keys. Second, we exclude intra-table references. Third, we
prefiltered the IND candidates by the number of their dis-
tinct values: If the number of distinct values in the depen-
dent attribute is larger than the number of distinct values in
the referenced attribute, then there is at least one dependent
value that is not contained in the referenced attribute. Thus,
the IND is unsatisfied.

Results can be seen in Table 1. Brute Force and SPIDER
outperform the fastest SQL approach (join). For low num-
bers of IND candidates and small data sets, i. e., UniProt
and TPC-H, there is just a small difference between Brute
Force and SPIDER. For large schemas with high numbers
of IND candidates the improvement of SPIDER over Brute
Force is considerable.

UniProt TPC-H PDB
DB size 667 MB 1.3 GB 2.7 GB 21 GB
IND cand. 910 477 139, 356 158, 432
INDs 36 33 30, 753 34, 988

join 15m 03 s 29 m 22 s > 7 days –
Brute Force 2m 01 s 6 m 56 s 3 h 13 m 20 h 21m
SPIDER 1m 38 s 6 m 40 s 19 m 06 s 3 h 52m

Table 1. Run-time performance on testing re-
stricted IND candidates.

We compared SPIDER to the approaches of Bell and
Brockhausen [3] and Marchi et al. [6] (described in Sec. 1)
using our own implementation. Those approaches only test
candidates of same data types. In our life sciences setting,
we often find schemas with only string attributes and
thus must test all pairs of attributes. For a fair comparison
we assigned the same data type to all attributes. The algo-
rithm provided by Bell and Brockhausen [3] runs 4 m 39 s
on UniProt data, which is three times slower than SPIDER.
On the 2.7 GB fraction of PDB it did not finish within 24
hours. Marchi et al. proposed to preprocess all data values
and test all IND candidates afterwards in parallel. How-
ever, the preprocessing on UniProt already takes 9 h 45 m
(the actual IND test only takes 2 m 10 s).

Experiments on unrestricted IND candidates In the
second class of experiments we test all IND candidates,
i. e., without restricting IND candidates to have unique ref-
erenced attributes. The results are given in Table 2. In
comparison to Table 1 the runtime increases only slightly,
although many more INDs are tested and satisfied. This
implies that more attribute values have to be handled, be-
cause attributes cannot be excluded from the SPIDER heap
as early. For PDB there is the additional effect that the much

larger number of INDs has to be saved. Thus, SPIDER is ap-
plicable for very large databases with huge numbers of IND
candidates.

UniProt TPC-H PDB
DB size 667 MB 1.3 GB 2.7 GB 21 GB
IND cand. 2, 235 1, 616 729, 674 831, 984
INDs 116 86 84, 232 99, 669

SPIDER 1m 45 s 6m 55 s 23m 27 s 4 h 05m

Table 2. Run-time performance on testing un-
restricted IND candidates.

4. Conclusion

We described the SPIDER algorithm for detecting inclu-
sion dependencies in an RDBMS with no previously known
schema information. The algorithm is divided into two
phases. The first phase leverages optimized sort operations
of the DBMS but avoids the constraints of SQL. The sec-
ond phase tests all IND candidates in parallel such that all
data values are read only once and tests are stopped early.
We showed its superiority to other approaches by experi-
ments on different data sets. SPIDER is the only method
that makes feasible the detection of INDs in databases with
large numbers of attributes and data values.

Acknowledgments. This research was supported by the German
Ministry of Research (BMBF grant no. 0312705B) and by the
German Research Society (DFG grant no. NA 432).

References

[1] A. Bairoch, R. Apweiler, C. H. Wu, W. C. Barker, B. Boeck-
mann, S. Ferro, E. Gasteiger, H. Huang, R. Lopez, M. Ma-
grane, M. Martin, D. Natale, C. O’Donovan, N. Redaschi, and
L. Yeh. The universal protein resource (UniProt). Nucleic
Acids Res, 33(Database issue):D154–9, 2005.

[2] J. Bauckmann, U. Leser, and F. Naumann. Efficiently com-
puting inclusion dependencies for schema discovery. In Sec-
ond International Workshop on Database Interoperability. In
Workshop-Proceedings of the ICDE 06, 2006.

[3] S. Bell and P. Brockhausen. Discovery of data dependencies
in relational databases. In Y. Kodratoff, G. Nakhaeizadeh, and
C. Taylor, editors, Statistics, Machine Learning and Knowl-
edge Discovery in Databases, ML–Net Familiarization Work-
shop, pages 53–58, 1995.

[4] H. Berman, J. Westbrook, Z. Feng, G. Gilliland, T. Bhat,
H. Weissig, I. Shindyalov, and P. Bourne. The Protein Data
Bank. Nucleic Acids Research, 28:235–242, 2000.

[5] M. Kantola, H. Mannila, K.-J. Rih, and H. Siirtola. Dis-
covering functional and inclusion dependencies in relational
databases. International Journal of Intelligent Systems,
7:591–607, 1992.

[6] F. D. Marchi, S. Lopes, and J.-M. Petit. Efficient algo-
rithms for mining inclusion dependencies. In 8th International
Conference on Extending Database Technology (EDBT ’02),
pages 464–476. Springer-Verlag, 2002.

