
DuDe: The Duplicate Detection Toolkit

Uwe Draisbach
Hasso Plattner Institute

Potsdam, Germany

uwe.draisbach@hpi.uni-potsdam.de

Felix Naumann
Hasso Plattner Institute

Potsdam, Germany

naumann@hpi.uni-potsdam.de

ABSTRACT
Duplicate detection, also known as entity matching or record
linkage, was first defined by Newcombe et al. [19] and has
been a research topic for several decades. The challenge is to
effectively and efficiently identify pairs of records that repre-
sent the same real world entity. Researchers have developed
and described a variety of methods to measure the similarity
of records and/or to reduce the number of required compar-
isons. Comparing these methods to each other is essential
to assess their quality and efficiency. However, it is still
difficult to compare results, as there usually are differences
in the evaluated datasets, the similarity measures, the im-
plementation of the algorithms, or simply the hardware on
which the code is executed.

To face this challenge, we are developing the comprehen-
sive duplicate detection toolkit “DuDe”. DuDe already pro-
vides multiple methods and datasets for duplicate detection
and consists of several components with clear interfaces that
can be easily served with individual code. In this paper, we
present the DuDe architecture and its workflow for duplicate
detection. We show that DuDe allows to easily compare dif-
ferent algorithms and similarity measures, which is an im-
portant step towards a duplicate detection benchmark.

1. DUPLICATE DETECTION FRAME-
WORKS

The basic problem of duplicate detection has been stud-
ied under various names, such as entity matching, record
linkage, merge/purge or record reconciliation. Given a set
of entities, the goal is to identify the represented set of dis-
tinct real-world entities. Proposed algorithms in the area
of duplicate detection aim to improve the efficiency or the
effectiveness of the duplicate detection process. The goal of
efficiency is usually to reduce the number of pairwise com-
parisons. In a naive approach this is quadratic in the number
of records. By making intelligent guesses which records have
a high probability of representing the same real-world entity,
the search space is reduced with the drawback that some du-

Permission to copy without fee all or part of this material is granted provided
that the copies are not made or distributed for direct commercial advantage,
the VLDB copyright notice and the title of the publication and its date appear,
and notice is given that copying is by permission of the Very Large Data
Base Endowment. To copy otherwise, or to republish, to post on servers
or to redistribute to lists, requires a fee and/or special permission from the
publisher, ACM.
VLDB ‘10, September 13-17, 2010, Singapore
Copyright 2010 VLDB Endowment, ACM 000-0-00000-000-0/00/00.

plicates might be missed. Effectiveness, on the other hand,
aims at classifying pairs of records accurately as duplicate
or non-duplicate [17].

Elmagarmid et al. have compiled a survey of existing algo-
rithms and techniques for duplicate detection [11]. Köpcke
and Rahm give a comprehensive overview about existing
duplicate detection frameworks [15]. They compare eleven
frameworks and distinguish between frameworks without
training (BN [16], MOMA [24], SERF [1]), training-based
frameworks (Active Atlas [22], [23], MARLIN [2, 3], Mul-
tiple Classifier System [27], Operator Trees [4]) and hybrid
frameworks (TAILOR [10], FEBRL [6], STEM [14], Con-
text Based Framework [5]). Not included in the overview
is STRINGER [12], which deals with approximate string
matching in large data sources. Köpcke and Rahm use sev-
eral comparison criteria, such as supported entity types (e.g.
relational entities, XML), availability of partitioning meth-
ods to reduce the search space, used matchers to determine
whether two entities are similar enough to represent the
same real-world entity, the ability to combine several match-
ers, and, where necessary, the selection of training data.

In their summary, Köpcke and Rahm criticize that the
frameworks use diverse methodologies, measures, and test
problems for evaluation and that it is therefore difficult to
assess the efficiency and effectiveness of each single system.
They argue that standardized entity matching benchmarks
are needed and that researchers should provide prototype
implementations and test data with their algorithms. This
agrees with Neiling et al. [18], where desired properties of
a test framework for object identification solutions are dis-
cussed. Moreover, Weis et al. [25] argue for a duplicate de-
tection benchmark. Both papers see the necessity for stan-
dardized data from real-world or artificial datasets, which
must also contain information about the real-world pairs.
Additionally, clearly defined quality criteria with a descrip-
tion of their computation, and a detailed specification of
the test procedure are required. An overview of quality and
complexity measures for data linkage and deduplication can
be found in Christen and Goiser [7]

With DuDe, we provide a toolkit for duplicate detection
that can easily be extended by new algorithms and compo-
nents. Conducted experiments are comprehensible and can
be compared with former ones. Additionally, several algo-
rithms, similarity measures, and datasets with gold stan-
dards are provided, which is a requirement for a dupli-
cate detection benchmark. DuDe and several datasets are
available for download at http://www.hpi.uni-potsdam.

de/naumann/projekte/dude.html.



DuDe

Experiment

Data 
Extractors

Prepro-
cessor

Partitioning
Algorithm

Postpro-
cessor

OutputComparator

Data Sources
Duplicates

Evaluation 
statistics

Figure 1: DuDe architecture

Our contributions are:

• A modular duplicate detection toolkit that can easily
be extended

• A set of datasets including their gold standard and
detailed descriptions to be used as benchmark

In the following Sec. 2 we give an overview of the DuDe
architecture and its main components. In Sec. 3, we explain
the data flow of an example experiment and demonstrate
how easy it is to configure DuDe. Sec. 4 gives an overview of
the datasets that are provided with DuDe and might be used
for duplicate detection benchmarking. Two of these datasets
are then used in Sec. 5, in which compare the performance
of DuDe and the record linkage framework Febrl. Finally,
we conclude and discuss our future work in Sec. 6.

2. DUDE ARCHITECTURE
In this section, we describe the architecture of the DuDe

toolkit and its components. The goal of DuDe is to provide
a toolkit for duplicate detection that

• is easy to use,

• is easy to extend,

• supports a large variety of data sources, including
nested data,

• allows almost all algorithms to be implemented using
the toolkit, and

• provides several basic similarity measures.

Figure 1 gives an overview of the different components
used within the DuDe toolkit to conduct experiments. The
framework is implemented in Java, which makes it easy to
extend. The internal data format for processing records
is based on JSON1 which is a language-independent data-
interchange format. In the following subsections, we de-
scribe the different components in more detail.

2.1 Data Extractors
The data extractor component is used to extract data

from any data source that is supported by the toolkit and to
convert the data into the internal JSON format. Currently,

1JavaScript Object Notation, http://www.json.org

we are able to extract records from relational databases (Or-
acle, DB2, MySQL and PostgreSQL), CSV files, XML doc-
uments, and BibTeX bibliographies. For each data extrac-
tor, a record identifier, consisting of one or many attributes,
can be defined and additionally a global ID is assigned to
each data extractor, which is also saved within the extracted
records. This allows a comparison of records from different
sources without the necessity of an extractor-wide unique
identifier.

2.2 Preprocessor
The preprocessor is used to gather statistics while extract-

ing the data, e.g., counting the number of records or (dis-
tinct) values. After the extraction phase, each preprocessor
instance is accessible within the algorithm and might be used
within comparators that need preprocessing information.

2.3 Partitioning Algorithms
Partitioning algorithms are responsible for selecting pairs

of records from the extractors that should be classified as
duplicate or non-duplicate. In general, DuDe supports all
algorithms that follow a pair-wise comparison pattern and it
already provides a growing selection of such algorithms. An
implemented naive approach to be used as a baseline simply
generates all possible pairs of objects that are stored within
the data source(s). Each pair is returned only once. So if
(a, b) is already returned, (b, a) is not. Most algorithms
require some kind of preprocessing, such as sorting for the
Sorted Neighborhood Method [13] or partitioning for the
Blocking Method [9]. Therefore, each algorithm can execute
a preprocessing step before returning record pairs. In case
of sorting, DuDe allows the definition of a sorting key. A
sorting key collects a list of different subkeys which specify
attributes or part of attribute values. The sorting can be
executed by an in-memory (for small datasets) or by a file-
based sorter.

2.4 Comparators
Comparators are used to compare two records and calcu-

late a similarity. The similarity is a value between 0 and
1, with 1 defined as equality. We distinguish between three
types of comparators:

• Structure-based comparators can be used to com-
pare objects based on their structure. This is espe-
cially interesting if records from different sources with
different schemas are compared (e.g. calculating the
similarity based on the number of equal attributes in
the record schemas).



• Content-based comparators can be used to com-
pare objects based on concrete attribute values. Right
now, we have implemented 19 content-based compara-
tors, most of them using the publicly available li-
brary SimMetrics.2 Examples are Levenshtein dis-
tance, Jaro Winkler distance, Smith-Waterman dis-
tance, SoundEx, and identity comparators.

• Multi-comparators can be used to combine different
structure- or content-based comparators. This means
that they receive the similarity values of several com-
parators as input and calculate a combined similarity.
At present, multi-comparators for the calculation of
the minimum or maximum value, the weighted aver-
age, and the harmonic mean are implemented. Multi-
comparators can also be nested.

Comparators are used only for calculating the similarity of
a candidate pair, but not for finally classifying whether the
candidate pair represents the same real-world entity. For
the classification, additional thresholds have to be defined
within the duplicate detection experiment. Depending on
whether the similarity is greater or less than the threshold,
the candidate pairs are then forwarded to a postprocessor
or an output.

2.5 Postprocessor
The postprocessor receives the classified record pairs and

performs additional processing: Two important postproces-
sors are the transitive closure generator and the statistic
component. The former calculates the transitive closure for
all classified duplicates. The latter allows the calculation
of key performance indicators, such as runtime, number of
generated record pairs, reduction ratio, and the number of
classified duplicates. If a gold standard exists for a dataset,
additionally precision, recall, f-measure, etc. are calculated.

2.6 Output
There are several output formats for the record pairs, in-

cluding a simple text output that writes each result pair
into one line using a specified separator for the attribute
values, and a JSON output, which uses JSON syntax. The
CSV output allows the output of additional information for
record pairs, such as the calculated similarity or whether
the pair has been classified as duplicate or not. The statis-
tic component has its own CSV output, which also allows
the specification of additional attributes. These attributes
can be used to describe the configuration of an experiment.
All outputs can be written to the screen or into a file. The
offered output components can easily be extended to meet
experiment specific requirements.

3. EXPERIMENT CONFIGURATION AND
DATA FLOW

In this section, we explain a typical experiment configura-
tion. In our example, we deduplicate audio CD information
(e.g., artist, title, tracks) in a CSV-file and use the Sorted
Neighborhood Method [13] to search for duplicates. Figure 2
shows the data flow for our configuration.

For each experiment, we create a new Java class. First,
we configure the data extractor (see Listing 1). As the data

2http://www.dcs.shef.ac.uk/~sam/simmetrics.html

Ex
p
e
ri
m
e
n
t

CSV-File Extractor

Sorted Neighborhood algorithm

Comparator

Sorting Key / Sorter

single records

record pairs

Classified
duplicate pairs

Classified non-
duplicate pairs

Transitive Closure
Generator

Statistic component

JSON output Statistic output

KPIs

CD records

Experiment 
KPIs

Classified
duplicates

CD real-
duplicates

Figure 2: DuDe example experiment workflow

is stored in a file, we need only an identifier for the extrac-
tor and the file name. Then we set the separator character
for the attributes and enable the header function. The at-
tribute names are then read from the first row in the file.
Afterwards, we define attribute “pk” as the unique identi-
fier.

// configuration CSV extractor
extractor = new CSVExtractor(”cd records”,

new File(”./res/cd records.csv”));
extractor .setSeparatorCharacter(’;’ );
extractor .enableHeader();
extractor .addIdAttributes(”pk”);

Listing 1: Configuration of the data extractor

As our data extractor extracts single records, we need an
algorithm that creates record pairs for comparison. In this
example, we use the Sorted Neighborhood Method, which
needs sorted records. Therefore, we create a sorting key,
which is the combination of one or several subkeys (attri-



butes “artist” and “category”, see Listing 2). Then the
algorithm is instantiated with a window size of 20 and in-
memory processing is selected, which improves performance,
but can be used only for smaller datasets.

// defines sub−keys used to generate the sorting key
artistSubkey = new TextBasedSubkey(”artist”);
titleSubkey = new TextBasedSubkey(”title”);
// key generator uses sub−key selectors (order matters)
sortKey = new SortingKey();
sortKey.addSubkey(artistSubkey);
sortKey.addSubkey(titleSubkey);

// new SNM algorithm with window size 20 and
// in−memory processing enabled
algorithm = new SortedNeighborhoodMethod(sortKey, 20);
algorithm.enableInMemoryProcessing();
algorithm.addDataExtractor(extractor);

Listing 2: Configuration of the SNM algorithm

The algorithm returns record pairs to be classified by our
weighted average comparator that uses the Levenshtein dis-
tance for the disc title and SoundEx for the artist name
(see Listing 3). Weighting is possible, but not used in our
example.

levComp = new LevenshteinDistanceComparator(”title”);
sndComp = new SoundExComparator(”artist”);
comparator =

new WeightedAverageComparator(levComp, sndComp);

Listing 3: Configuration of the comparator

For classified duplicate pairs, we configure a postproces-
sor, which calculates the transitive closure and an output
that writes the finally classified duplicate pairs in a file (see
Listing 4).

// transitive closure generator
transClosure = new NaiveTransitiveClosureGenerator();

// output for classified duplicates
jsonOutput = new JsonOutput(

new FileOutputStream(”./res/duplicates.json”));

Listing 4: Configuration of the transitive closure
generator and output for classified duplicates

To assess the quality of the duplicate detection process,
we instantiate a statistic component. This component first
reads the gold standard from a file. Both the classified dupli-
cate pairs from the transitive closure and the non-duplicate
pairs from the comparator are then added to the statistic
component and compared with the gold standard. The non-
duplicate pairs are needed, because the statistic component
additionally counts true-negatives and false-negatives only
for the actual classified pairs to get an additional measure
of the comparator quality. At the end of the experiment, the
statistic component calculates several key figures including
runtime, precision, and recall. By using the statistic output,
these key figures can then be written to a CSV-file. Such a
file can contain results from several experiments. Listing 5
shows the configuration of the experiment data flow, and
Figure 3 shows an extract from the resulting statistics file.

double threshold = 0.99;
statisticComponent.setBeginningTime();

for (DuDeObjectPair pair : algorithm) {
if (comparator.compareObjects(pair) > threshold) {

transClosure.add(pair);
} else {

statisticComponent.addNonDuplicate(pair);
}
}

// read all classified records including those
// from the transitive closure
for (DuDeObjectPair pair : transClosure) {

statisticComponent.addDuplicate(pair);
jsonOutput.write(pair);
}

statisticComponent.setFinishingTime();
statisticOutput . writeStatistics ();

Listing 5: Experiment execution

Please note that our algorithm does not select all duplicate
pairs at once, but rather selects a candidate pair that is
pipelined to the comparator and then classified before the
next candidate pair is selected. Therefore, it is possible that
algorithms get notified whether the former pairs have been
classified as duplicate or non-duplicate, before the algorithm
selects the next pair. This is necessary for algorithms that
select pairs in dependency to previous classifications.

4. DATASETS
To develop a duplicate detection benchmark, it is neces-

sary to make generally accepted datasets available. There
is no single dataset that is commonly used for benchmark-
ing in the duplicate detection community; rather, there is a
variety of more or less useful datasets that have been used
to evaluate algorithms.

Real-world data is preferable over synthetic data, as it is
difficult to simulate all types of errors that might occur dur-
ing data entry or data processing. On the other hand, legal
regulations or privacy concerns often prevent data exchange
between organizations and the scientific community.

We have prepared three real-world datasets that have
been used in several papers. Required transformation steps
for loading these datasets in DuDe are documented on our
website3 along with example code for the extractors. As
frequently described, some massaging of the data was nec-
essary. To make this process transparent, we diligently de-
scribe the individual corrections and customizations on the
download page.

To evaluate the results of an experiment, we additionally
offer a gold standard for each of the datasets. The gold stan-
dard was created manually in an arduous process involving
distributed manual checking and cross-checking of all can-
didate pairs. Table 1 gives an overview of the number of
records and duplicates in the datasets.

3http://www.hpi.uni-potsdam.de/naumann/projekte/
dude.html



Precision Recall F-Measure
True

Positives

False

Positives

True

Negatives

False

Negatives

True Negatives based

on actual Comparisons

False Negatives based

on actual Comparisons
Algorithm

Window

Size

0.8609 0.6421 0.7356 192 31 37,035,591 107 163,064 56 SNH 20

Figure 3: Extract from statistics file formatted in MS Excel

The Restaurant data4 were extracted from the RID-
DLE repository, which is a valuable source for datasets. The
dataset comprises names and addresses of restaurants. For
DuDe we have converted the file format from ARFF into
CSV. The gold standard was extracted from the included
attribute “class”. As for the CORA dataset, we have added
a unique identifier for each record to be able to easily rep-
resent duplicate pairs.

The CD dataset5 is a randomly selected extract from
freeDB6. It contains information about CDs including artist,
title, and songs and has been used in several papers [16, 9].

Finally, the CORA Citation Matching dataset7 lists
groups of differently represented references to the same pa-
per and is used in several approaches to evaluate duplicate
detection [2, 8, 21]. A disadvantage of this dataset is the
missing unique identifier for each record: A deeper look at
the records revealed that the reference ID (the BibTeX key)
is unfortunately not always faultless. In particular, we dis-
covered two problems: two references have the same refer-
ence ID, but do not represent the same paper (see Listing 6).
And vice versa, there are references that in fact represent
the same paper but have different reference IDs (see List-
ing 7). To make the CORA dataset readable for the DuDe
toolkit, we have transformed the three original files into one
XML document. Therefore, it was necessary to make mi-
nor changes within the new file, e.g., adding closing tags
for the references or repairing broken tags. Additionally, we
have added a unique identifier for each record, which is a
prerequisite to define a gold standard.

<NEWREFERENCE id=”968”> 438 aha1991
<author>D.W. Aha, D. Kibler and M.K. Albert</author>
<year>(1991)</year>
<title>. Instance-Based Learning Algorithms.</title>
<journal>Machine Learning,</journal>
<volume>6</volume>
<pages>37-66.</pages>

</NEWREFERENCE>
<NEWREFERENCE id=”969”> 439 aha1991
<author>D. Aha and D. Kibler.</author>
<title>Noise-tolerant instance-based learning

algorithms.</title>
<journal>Machine Learning,</journal>
<volume>8:</volume>
<pages>794-799,</pages>
<year>1991.</year>

</NEWREFERENCE>

Listing 6: CORA example of two different papers
with same reference ID “aha1991”

4Originally from http://www.cs.utexas.edu/users/ml/
riddle/
5Originally from http://www.hpi.uni-potsdam.de/
naumann/projekte/repeatability/datasets
6http://www.freedb.org
7Originally from http://www.cs.umass.edu/~mccallum/
code-data.html

Dataset Format Records Duplicate pairs
Restaurant CSV 864 112
CD data CSV 9,763 299
CORA XML 1,879 64,386

Table 1: Overview datasets

<NEWREFERENCE id=”1034”> 504 pazzani1992
<author>Michael Pazzani and Dennis Kibler.</author>
<title>The role of prior knowledge in inductive

learning.</title>
<journal>Machine Learning,</journal>
<volume>9</volume>
<pages>57-94,</pages>
<year>1992.</year>

</NEWREFERENCE>
<NEWREFERENCE id=”1035”> 505 kibler1992
<author>Michael Pazzani and Dennis Kibler.</author>
<title>The role of prior knowledge in inductive

learning.</title>
<journal>Machine Learning,</journal>
<volume>9</volume>
<pages>57-94,</pages>
<year>1992.</year>

</NEWREFERENCE>

Listing 7: CORA example of two different reference
IDs for the same paper

Beside these real-world datasets, we are planning to create
larger datasets using data generators. Possible data genera-
tors are the UIS Database Generator8, the Febrl generator9,
and the Dirty XML Generator10. The problem of creating
a realistic synthetic dataset of personal information is dis-
cussed in [20].

5. EXPERIMENTAL COMPARISON
As mentioned in Sec. 1, a variety of duplicate detection

frameworks exists and they are compared in detail in [15].
In this section we want to compare DuDe and Febrl [6] both
experimentally and qualitatively. Table 2 summarizes our
findings.

Therefore, we conducted two experiments. The first uses
the naive approach for the restaurant dataset from Sec. 4
and applies the Levenshstein distance for the restaurant
name as comparison function. The second experiment uses
the CD dataset for the Sorted Neighborhood method with a
window size of 20 and the same settings as described for the
example experiment in Sec. 3. As we are mainly interested
in comparing the runtime performance of both frameworks,
a sophisticated similarity function is not necessary, as long

8http://userweb.cs.utexas.edu/users/ml/riddle/
data/dbgen.tar.gz
9http://sourceforge.net/projects/febrl/

10http://www.hpi.uni-potsdam.de/naumann/projekte/
completed_projects/dirtyxml.html



as both use the same settings. For both experiments, DuDe
uses in-memory processing.

The results of our comparison are shown in Tab. 2. The
table shows if the frameworks are publicly available, in which
programming language they were developed, if they support
the calculation of key indicators, such as precision and recall,
the supported data formats, and the execution time for the
two experiments. As we can see, DuDe performs better for
both experiments. Please note that for Febrl we used the al-
gorithm that is closest to the Sorted Neighborhood method,
namely the SortingIndex algorithm. To ensure the same set
of comparisons, we have therefore added the primary key at
the end of the sorting key to ensure unique values.

DuDe Febrl
Publicly available Yes Yes
Extensible Yes Yes
Programming language Java Python
Graphical user interface No Yes
Key figure calculation Yes Yes
Supported data formats Text file, XML, Text file

database, BibTeX,
JSON

Restaurant experiment 6.5 sec 95 sec
(372,816 comparisons)
CD experiment 21 sec 78 sec
(185,307 comparisons)

Table 2: Framework comparison

We did not describe precision and recall, since a major
difference between DuDe and Febrl is the calculation of key
figures. In Febrl, they are calculated based only on all com-
pared record pairs. In contrast, DuDe uses all candidate
pairs (as in the naive approach). An example for this dif-
ferent behavior is the calculation of the recall value for an
experiment using the Sorted Neighborhood method. Due
to erroneous attribute values, it is possible that the records
of a real duplicate pair are not in the same window and
consequently are not compared. While DuDe considers this
to be a false-negative, Febrl does not. As false-negatives
reduce the recall, DuDe achieves lower recall values than
Febrl. Therefore, experiment results from Febrl and DuDe
are only comparable to a limited extent.

6. CONCLUSION AND FUTURE WORK
With DuDe, we are developing a new duplicate detection

toolkit. Due to the component-based architecture, it is pos-
sible for researchers to implement their new ideas and com-
pare them with existing approaches. Additionally, DuDe
offers several real-world datasets and respective gold stan-
dards. Therefore, DuDe is suitable for duplicate detection
benchmarking.

The currently available toolkit offers the basic framework
to execute duplicate detection experiments on different data
sources with an acceptable performance. Our focus for the
next months is to increase the number of available data ex-
tractors, algorithms, comparators, and outputs. In paral-
lel, we will expand the number of available How-To guides,
which serve as starting points for new users to develop their
own components.

Regarding the classification, whether a pair of records rep-
resents the same real-world object or not, we plan to extend
our toolkit in a way that not only a single similarity func-
tion can be used, but also a set of rules can be applied. This
approach is described in [26].

As it is our goal to provide a toolkit that can be used
for duplicate detection benchmarking, we will also publish
results of our experiments on our website and try to extend
the number of available datasets. We encourage the data
cleansing community to send us new datasets or newly de-
veloped components and the results of their experiments.

7. ACKNOWLEDGMENTS
The authors would like to thank Fabian Lindenberg,

Matthias Pohl, and Ziawasch Abedjan who have made a
great effort to implement parts of the framework.

This research was partly supported by the German Re-
search Society (DFG grant no. NA 432).

8. REFERENCES
[1] Omar Benjelloun, Hector Garcia-Molina, David

Menestrina, Qi Su, Steven Euijong Whang, and
Jennifer Widom. Swoosh: a generic approach to entity
resolution. VLDB Journal, 18(1):255–276, 2009.

[2] Mikhail Bilenko and Raymond J. Mooney. Adaptive
duplicate detection using learnable string similarity
measures. In Proceedings of the International
Conference on Knowledge Discovery and Data Mining
(KDD), pages 39–48, 2003.

[3] Mikhail Bilenko and Raymond J. Mooney. On
evaluation and training-set construction for duplicate
detection. In Proceedings of the KDD-2003 Workshop
on Data Cleaning, Record Linkage, and Object
Consolidation, pages 7–12, 2003.

[4] Surajit Chaudhuri, Bee-Chung Chen, Venkatesh
Ganti, and Raghav Kaushik. Example-driven design of
efficient record matching queries. In Proceedings of the
International Conference on Very Large Databases
(VLDB), pages 327–338. VLDB Endowment, 2007.

[5] Zhaoqi Chen, Dmitri V. Kalashnikov, and Sharad
Mehrotra. Exploiting context analysis for combining
multiple entity resolution systems. In Proceedings of
the ACM International Conference on Management of
Data (SIGMOD), pages 207–218, 2009.

[6] Peter Christen. Febrl: a freely available record linkage
system with a graphical user interface. In Proceedings
of the second Australasian workshop on Health data
and knowledge management, pages 17–25, 2008.

[7] Peter Christen and Karl Goiser. Quality and
complexity measures for data linkage and
deduplication. In Fabrice Guillet and Howard J.
Hamilton, editors, Quality Measures in Data Mining,
volume 43 of Studies in Computational Intelligence,
pages 127–151. Springer, 2007.

[8] Xin Dong, Alon Halevy, and Jayant Madhavan.
Reference reconciliation in complex information
spaces. In Proceedings of the ACM International
Conference on Management of Data (SIGMOD),
pages 85–96, 2005.

[9] Uwe Draisbach and Felix Naumann. A comparison
and generalization of blocking and windowing
algorithms for duplicate detection. In Proceedings of



the International Workshop on Quality in Databases
(QDB), pages 51–56, 2009.

[10] Mohamed Elfeky, Vassilios Verykios, and Ahmed
Elmagarmid. Tailor: A record linkage tool box. In
Proceedings of the International Conference on Data
Engineering (ICDE), page 17, 2002.

[11] Ahmed K. Elmagarmid, Panagiotis G. Ipeirotis, and
Vassilios S. Verykios. Duplicate record detection: A
survey. IEEE Transactions on Knowledge and Data
Engineering (TKDE), 19(1):1–16, 2007.

[12] Oktie Hassanzadeh, Fei Chiang, Hyun Chul Lee, and
Renée J. Miller. Framework for evaluating clustering
algorithms in duplicate detection. Proceedings of the
VLDB Endowment, 2(1):1282–1293, 2009.

[13] Mauricio A. Hernández and Salvatore J. Stolfo. The
merge/purge problem for large databases. In
Michael J. Carey and Donovan A. Schneider, editors,
Proceedings of the ACM International Conference on
Management of Data (SIGMOD), pages 127–138.
ACM Press, 1995.

[14] H. Köpcke and E. Rahm. Training selection for tuning
entity matching. In Proceedings of the Sixth
International Workshop on Quality in Databases and
Management of Uncertain Data (QDB/MUD ’08),
pages 3–12, 2008.

[15] Hanna Köpcke and Erhard Rahm. Frameworks for
entity matching: A comparison. Data and Knowledge
Engineering (DKE), 69(2):197–210, 2010.

[16] Lúıs Leitão, Pável Calado, and Melanie Weis.
Structure-based inference of XML similarity for fuzzy
duplicate detection. In Proceedings of the International
Conference on Information and Knowledge
Management (CIKM), pages 293–302, 2007.

[17] Felix Naumann and Melanie Herschel. An Introduction
to Duplicate Detection (Synthesis Lectures on Data
Management). Morgan and Claypool Publishers, 2010.

[18] Mattis Neiling, Steffen Jurk, Hans-J. Lenz, and Felix
Naumann. Object identification quality. In in
Proceedings of the International Workshop on Data
Quality in Cooperative Information Systsems (DQCIS,
pages 187–198, 2003.

[19] H. B. Newcombe, J. M. Kennedy, S. J. Axford, and
A. P. James. Automatic linkage of vital records.
Science, 130:954–959, 1959.

[20] Agus Pudjijono and Peter Christen. Accurate
synthetic generation of realistic personal information.
In Proceedings of the 13th Pacific-Asia Conference on
Advances in Knowledge Discovery and Data Mining,
2009.

[21] Parag Singla and Pedro Domingos. Object
identification with attribute-mediated dependences. In
Aĺıpio Jorge, Lúıs Torgo, Pavel Brazdil, Rui Camacho,
and João Gama, editors, European Conference on
Principles of Data Mining and Knowledge Discovery
(PKDD), volume 3721 of Lecture Notes in Computer
Science, pages 297–308. Springer, 2005.

[22] Sheila Tejada, Craig A. Knoblock, and Steven Minton.
Learning object identification rules for information
integration. Information Systems, 26(8):607–633, 2001.

[23] Sheila Tejada, Craig A. Knoblock, and Steven Minton.
Learning domain-independent string transformation
weights for high accuracy object identification. In
Proceedings of the International Conference on
Knowledge Discovery and Data Mining (KDD), pages
350–359, 2002.

[24] Andreas Thor and Erhard Rahm. Moma - a
mapping-based object matching system. In
Proceedings of the Conference on Innovative Data
Systems Research (CIDR), pages 247–258.
www.crdrdb.org, 2007.

[25] Melanie Weis, Felix Naumann, and Franziska Brosy. A
duplicate detection benchmark for XML (and
relational) data. In Proceedings of the SIGMOD
International Workshop on Information Quality for
Information Systems (IQIS), 2006.

[26] Melanie Weis, Felix Naumann, Ulrich Jehle, Jens
Lufter, and Holger Schuster. Industry-scale duplicate
detection. Proceedings of the VLDB Endowment,
1(2):1253–1264, 2008.

[27] Huimin Zhao and Sudha Ram. Entity identification
for heterogeneous database integration: a multiple
classifier system approach and empirical evaluation.
Information Systems, 30(2):119–132, 2005.


