
Discovering Linkage Patterns among Web Services
using Business Process Knowledge

Mohammed AbuJarour
Information Systems Group

Hasso-Plattner-Institut
University of Potsdam, Germany

mohammed.abujarour@hpi.uni-potsdam.de

Ahmed Awad
Business Process Technology Group

Hasso-Plattner-Institut
University of Potsdam, Germany
ahmed.awad@hpi.uni-potsdam.de

Abstract—Discovering relations among web services has been
a fruitful research topic in services computing. Such relations
are useful for service discovery, selection, composition, etc.
The much information about web services is available, the
better/more relations can be discovered. Based on the technical
information provided in WSDL files, simple relations can be
discovered. Finding more comprehensive relations requires
additional information, such as semantic descriptions, infor-
mation about service consumers, or service compositions. Rich
semantic service descriptions are not so common in practice.
Experiments have shown that similar users do not necessarily
use the same web services. Using service compositions gives
good results, however, researchers assume that they have
access to such compositions, which is not the typical case
in practice. Additionally, using service compositions is not
sufficient to determine types and strengths of such relations. In
this work, we propose a novel approach to discover relations
among web services in the form of linkage patterns based on
the configurations of business processes that use them. We
specify types and weights of the discovered linkage patterns
based on control flow patterns in business processes. We have
implemented this approach using Oryx, a process modeling tool
and repository, and Depot, a service registry, and validated it
through real-world examples, as we show in this paper.

Keywords-Service Discovery, Service Recommendation

I. Introduction: Web Service Discovery

Service providers represent the main source of informa-
tion about their offered web services in the form of service
descriptions. Such descriptions are crucial in several tasks
in services computing, such as service discovery, selection,
ranking, substitution, recommendation, etc. Nevertheless, it
has been observed that service providers usually release poor
service description [1]. Typically, service descriptions are
technical-oriented and their documentations appear as com-
ments and notes made by service developers [2]. Additional
factors that exacerbate this problem include the increasing
number of available web services, the increasing complexity
of existing web services, and the dynamic nature of business
and IT landscapes [3].

One of the main approaches to alleviate the impacts
of poor service descriptions on their usage is discovering
relations among web services. These relations help service

consumers find web services that match their business needs
efficiently. The traditional techniques that have been used to
achieve this task are input-output matching of web services
using their technical service descriptions [4], semantic ap-
proaches [5], using compositions of web services [6], and
using consumer-consumer similarity [7] (Cf. Sec. II).

It has been observed that the assumption of the existence
of complete, correct, and rich service descriptions is not
realistic in practice [8]. This fact limits the usability of
such approaches to discover relations among web services
using these descriptions. Additionally, studies have shown
that similar service consumers do not usually use the same
web services. This fact affects the discovered relations
among web services using consumer-consumer similarity.
Moreover, relations discovered from service compositions
usually lack types or strengths.

In this work, we propose an approach to discover
additional realistic and useful relations among web services
in the form of linkage patterns using business processes (BP)
that use them. We are able to identify five types of
such linkage patterns: predecessors, successors, similar,
complementary, and related web services. Additionally,
we assign weights to these linkage patterns to reflect their
strengths. Weights of predecessor and successor relations
are based on the (shortest) distance between the tasks that
use these web services in the corresponding BPs. Similarity
between terms of tasks’ labels and operations’ names are
used to give weights to the linkage pattern “similar ” using
WordNet. The other types of linkage patterns are assigned
the weight 1. These weights are then used to rank lists of
recommended web services in each of the five types, e.g.,
rank predecessor web services to a particular web service.

The main contributions of this work are:
1) Finding realistic linkage patterns among web services

with fine-grained types and weights
2) Providing sources to rank recommended web services
3) Disambiguating exclusive relations between web ser-

vices using lexical ontologies, e.g., WordNet.

The rest of this paper is organized as follows: Related
work is summarized in Sec. II. Our approach is presented in
Sec. III. A detailed real-world example is given in Sec. IV.
Further implementation details and usage scenarios are given
in Sec. V. We close this paper with a summary and future
work in Sec. VI.

II. RelatedWork

In this section, we summarize common approaches to dis-
cover relations between web services. Then, we give a brief
overview of the relationship between business processes and
web services.

A. Finding Relations among Web Services

Finding relations among web services has been considered
by several researchers in the community. Approaches that
tackle this problem can be grouped roughly in four groups:
• Input/output matching approach: This approach

matches inputs and outputs of operations of web ser-
vices to find relations among them [4]. In this approach,
the authors assume the existence of complete, rich, and
correct service descriptions, e.g., WSDL. However, such
assumption is not always realistic [8]. Additionally,
experiments have shown that WSDL descriptions only
are not sufficient [9]. This approach may lead to unre-
alistic/unusable relations, and misses relations between
web services with manual tasks in between. The main
goal of this approach is to investigate composability
among web services [10], [11].

• Semantic approach: This approach applies Artificial
Intelligence planning techniques to find valid compo-
sitions of web services [5], [12]. In this approach,
they assume that web services are described formally
using ontologies, such as OWL-S, WSMO, etc. In prac-
tice, semantic web services are not common [13]. Our
approach does not necessarily require the existence
of such formal descriptions. However, their existence
could enable it to find additional relations.

• Service compositions-based approach: This approach
is based on the idea that web services used in a service
composition are related [6], [14]. In this approach, the
authors assume that they have access to such composi-
tions. This approach is not able to specify the type of
relation between web services based on their usage in
service compositions. It depends on the co-occurrence
of web services in service compositions to decide that
there is a relation among them. In our approach, we
can determine types and weights of such relations using
business process knowledge.

• Consumer-consumer similarity approach: This ap-
proach uses the idea that similar service consumers
usually use the same web services [7]. However, this
approach assumes the ability to track web services used
by service consumers. This setting is not the typical one

in practice. Moreover, it has been shown that similar
service consumers do not necessarily use the same web
services.

Additionally, researchers have shown that the assumption
that service consumers can express their complex busi-
ness needs using keywords for service discovery is not
realistic [3]. Therefore, we consider such keywords as a
starting point to help service consumers find their target web
services. We track web services viewed by them and provide
recommendations based on these web services. These rec-
ommendations include fine-grained types of relations among
web services and are ranked according to their scores that
reflect the strength of the relation. These recommendations
enable service exploration, where services are inter-linked
with relation similar to hyperlinks among webpages.

B. Web Services and Business Processes

Although Service-oriented Architecture (SOA) is seen
as an implementation platform for business process mod-
els [15], only recently attention has been paid to bring
those two worlds closer. On the one hand, business process
models (BPM) have to be configured by assigning services
to service tasks in order to be executable [16], [17]. On the
other hand, service discovery can be enhanced with process
configuration knowledge. We believe that an integrated view
of both worlds is useful for both of them.

Buchwald et al. [17], propose an approach to bridge the
gap between business process models and service compo-
sitions. The proposed approach introduces an intermediate
layer between business process models (business view) and
executable models, service compositions (technical view).
The authors identify the need to store and maintain the
relationship between business view tasks and technical view
ones. To this point, the middle layer provides several types of
transformation rules from the business to the technical view.
However, this knowledge is kept in the middle layer and it is
not the intention of that approach to reuse this knowledge to
either enhance process modeling and/or service discovery.

The fact of having process repositories with hundreds
to thousands of process models has attracted researchers
to reuse-based process modeling. Smirnov et al. [18], use
so-called behavioral profiles of business process model to
extract association rules and action patterns among tasks.
Based thereon, process modeling tools can suggest the user
inserting certain tasks, if the user inserts other tasks within
the model. Moreover, the approach can suggest a structuring
relationship among the inserted tasks, e.g., tasks A and B
should be exclusive to each other.

In this work, we make an explicit bi-directional link
between business processes and web services. This link is
used to discover fine-grained linkage patterns among web
services used in BPs. The goal of this approach is to use
these linkage patterns to enhance service discovery which
reflects on the configuration of business process models.

III. Fine-grained Linkage Patterns

In our approach, we discover preliminary linkage patterns
among web services from their WSDL files, and derive
additional fine-grained ones using BPs that use them. Based
on such business processes, we can discover more concrete
relations such relations based on the usage of their web
servicces in the corresponding BP. This weight is used to
rank web services that have the same linkage pattern, e.g.,
rank web services that have the predecessor relation with a
particular web service. Finding preliminary-relations among
web services based on their WSDL descriptions is out of scope
of this paper.

In this section, we describe the business process knowl-
edge we use, and the types and weights of linkage patterns
that we find based thereon.

A. Business Process Knowledge

Relevant information about a BP can be captured using
the concept of behavioral profiles [19]. A behavioral profile
represents an abstract description of a business process that
identifies the behavioral relationship between any pair of
its nodes. This relationship can be: (1) strict order , (2)
concurrent ‖, (3) exclusive # or (4) inverse order f. The
formal definition of behavioral profiles is introduced in
Definiton 3.1.

Definition 3.1 (Behavioral Profile): Let N be the set of
nodes within a business process model. The behavioral
profile of a business process model is a function bhp :
N × N → { ,f, ‖, #} that assigns a behavioral property,
strict order, inverse order, parallel, or exclusive, between
each pair of nodes within the business process model.

If two tasks a, b appear in strict order, bhp(a, b) = ,
then task a executes before task b. Similarly, if two tasks
are concurrent then they can be executed in any order. Exclu-
siveness means that at most one of the two tasks can execute
within a process instance. The behavioral profile of the BP
shown in Figure 1 includes several behavioral properties,
such as: bhp(U,V) = #, bhp(W, X) = , bhp(X,W) =f,
bhp(Y,Z) = ‖, bhp(U, X) = , bhp(Y,V) =f, etc.

The definition of behavioral profiles is not sufficient to
achieve our goal, in particular, assigning weights to the
discovered linkage patterns. Therefore, we extend it by
incorporating the shortest distance between each pair of
tasks in addition to their behavioral property. The formal
definition of the extended behavioral profile is given in
Definition 3.2.

Definition 3.2 (Extended Behavioral Profile): Let N be a
set of nodes within a business process model. The extended
behavioral profile of a business process model is a function
bhp′ : N × N → { ,f, ‖, #} × N that assigns a behavioral
property, strict order, inverse order, parallel, or exclusive, and

a distance, between each pair of nodes within the business
process model.

For instance, the extended behavioral profile of the BP in
Figure 1 includes several pairs, such as: bhp′(U,V) = (#, 0),
bhp′(W, X) = (, 1), bhp′(X,W) = (f, 1), bhp′(Y,Z) =

(‖, 0), bhp′(U, X) = (, 3), bhp′(Y,V) = (f, 5), etc. To
derive useful behavioral properties between tasks of a BP, we
remove cyclic edges from such BPs because their existence
makes all connected tasks concurrent.

Tasks in a business process can be either manual or
service tasks. Manual tasks are performed by employees,
whereas, service tasks are executed through web services.
Transforming BPMs into executable processes is done
through a configuration step. In this step, business
engineers assign operations of web services to service
tasks in the considered BPM. This assignment involves
service discovery and selection. The formal definition of
BP configuration is given in Definition 3.3.

Definition 3.3 (BP Configuration): A service registry
usually contains a collection of web services. Each web
service, WS i, has one or more operations, OP j. Formally,
WS i = {OP1, · · · ,OPn}; n ∈ N. A service registry S R is
the collection of available operations, S R =

⋃
i=1...m WS i.

The configuration of a business process model – containing
service tasks T – is a function con fBPM

1 : T → S R that
assigns an operation for each service task in that business
process model.

The BP shown in Figure 1 can be used as a journey orga-
nizer, where its tasks are configured as follows: con f (U) =

BookFlightTicket, con f (V) = BookTrainTicket,
con f (W) = HotelReservation, con f (X) = CarRental,
con f (Y) = FindRestaurants, con f (Z) = FindSights.
Where values to the right of the con f function are operations
of web services.

Legend

U

V

XW

Y

Z

Label Task XOR Gate AND Gate

Figure 1. A simple business process modeled in BPMN 1.0

Saving a configured BPM ships the extended behavioral
profile and its configuration to the service registry. This
shipped information is then used by the service registry to
discover linkage patterns among operations of web services
used by that BP. Each linkage pattern has a type and weight,
as we show in the sequel.

1When the BPM is clear from the context, we drop the subscript

B. Types of Linkage Patterns
Traditional approaches to discover relations among oper-

ations of web services use the heuristic that operations used
in service compositions or by similar service consumers are
related. However, they do not provide execution semantics,
e.g., parallel, sequence, etc. Such relations are not sufficient
given the increasing number and complexity of web services
and business processes. In our approach – based on extended
behavioral profiles –, we are able to identify five types
of relations among operations of web services based on
their usage in BPMs. Consider two tasks, A and B, whose
configurations are: con f (A) = OP1 and con f (B) = OP2.
Based on their behavioral properties, the following five types
of linkage patterns can be identified:

1) Predecessor: An operation OP1 is a predecessor of
another operation OP2 if it appears typically before
OP2 in the configurations of BPMs where both oper-
ations have been used, i.e., bhp(A, B) = .

2) Successor: An operation OP1 is a successor of another
operation OP2 if it appears typically after OP2 in the
configurations of BPMs where both operations have
been used, i.e., bhp(A, B) =f.

3) Similar: An operation OP1 is similar to another oper-
ation OP2 if it appears typically within exclusive rela-
tions with OP2 in the configurations of BPMs where
both operations have been used (i.e., bhp(A, B) = #)
and there is a high semantic similarity between the
terms used to label both tasks and their executing
operations, e.g., “rent a bike” and “buy a bike”.

4) Complementary: An operation OP1 is complemen-
tary to another operation OP2 if it appears typically
within exclusive relations with OP2 in the configura-
tions of BPMs where both operations have been used
(i.e., bhp(A, B) = #) but their is no high semantic
similarity between the terms used to label both tasks
and their executing operations, e.g., accept and reject.

5) Related: An operation OP1 is a related to another
operation OP2 if it appears typically concurrently to
OP2 in the configurations of BPMs where both opera-
tions have been used, i.e., bhp(A, B) = ‖. For instance,
“validate address” and “validate email address”.

C. Weights of Linkage Patterns
Existing approaches of discovering relations among web

services determine whether there is a relation between two
web services or not. Such decisions depend on the co-
occurrence of both services in service compositions, for
instance. In our approach, we can determine fine-grained
relations and give a weight (between 0 and 1) to each relation
to reflect its strength. These weights are used to rank web
services in each type of relations, e.g., predecessors, similar,
etc. during service recommendation.

The first type of information that we use to calculate the
weight of a relation between two web services is the distance

between their consuming tasks in the corresponding BP. This
information is provided in the extended behavioral profile
of the BP. The distance between any two tasks in a BP is
greater than 0 if their behavioral property is either strict
order or inverse order. Therefore, the distance is used to
assign a weight to predecessor and successor linkage patterns
only. The weight, ω, of a linkage pattern, r, between two
operations where the distance between their consuming tasks
is, d, and the maximum distance between any pair of tasks
in their BP is len, is given by Equation 1.

ω(r) =
len − d

len
(1)

Exclusive tasks can be similar (doing the same func-
tionality) or complementary to each other (doing different
functionalities). For instance, “Get weather by city” and “Get
weather by post code” are similar tasks. Whereas, “Send
acceptance” and “Send rejection” are complementary tasks.
To determine the linkage pattern between two web services
whose consuming tasks are exclusive to each other, we
investigate the semantics of terms appearing in their names
and their consuming tasks. We use WordNet [20] to find
synsets for these terms and calculate the average distance,
(syn dist), among their nearest common ancestors (NCA)
in WordNet [21]. The special value (−1) means that there
is no similarity between both terms, e.g., acceptance and
rejection. If the average distance, (syn dist), is between 0
and a predefined threshold, then the linkage pattern between
both services is similar and its weight is calculated using
the same equation above, where len is replaced by our
threshold value, and d is replaced by syn dist. For instance,
syn dist(“bookFlightT icket′′, “BookTrainT icket′′) = 16.
Based on our experiments, we set the value of the maximum
WordNet distance threshold to 20. Given this value, the
aforementioned web services are similar and the weight of
their linkage pattern is 0.2. It is worth mentioning that the
linkage patterns complementary and related are assigned the
weight 1.

Whenever a new BPM is created by a service consumer,
we discover all possible linkage patterns from that BPM
and store them in the database of the service registry.
Frequencies and weights of linkage patterns are used to
derive scores for these patterns to rank recommended web
services within each type of recommendations. The score
of each linkage pattern is the aggregation of weights of all
instances of this pattern that are typically discovered from
multiple BPMs. Currently, we ignore inconsistent linkage
patterns, i.e., different types of linkage patterns for the same
web services from different BPMs. As a result, a web service
could appear in more than one type of recommendation for
the same web service.

IV. Example: Purchase Order Processing

In this section, we apply our approach to a real-world
purchase order processing scenario from the SAP Reference
Model. The BP behind this scenario is shown in Figure 2.
When this process is configured, we assume that a single
operation of a web service is assigned to each task in this
model. For instance, operation A is assigned to task “pro-
cess purchase requisition order”. Following the traditional
approaches of discovering relations among web services,
we get the result that there is a relation between A and B.
No further information about the type and strength of this
relation is provided. In our approach, we get the extended
behavioral profile that encapsulates business process knowl-
edge for these operations as shown in the previous section.
This extended behavioral profile is shown in Table I.

From Table I, we notice that operations A and E are
exclusive and also are the operations A and B. We refine
this relation further as either similar or complementary. To
achieve this refinement, we analyze the semantics of the
terms in the labels of their corresponding tasks. Based on
our experiments, we set our threshold maximum WordNet
distance to 20 to control the similarity search in WordNet.We
repeat this step for each pair of operations that are exclusive
to each other. With result obtained, we establish the linkage
patterns among the operations as shown in Table II.

Based on the semantic analysis, the exclusive relation
between operations A, E – obtained from the profile – is
refined to a complementary linkage pattern. On the other
hand, the exclusive relation between A, B is identified
as similar because of the high similarity between terms
appearing in the labels of their counterpart tasks.

Using these linkage patterns, users who search for a par-
ticular service, e.g, A, get useful lists of recommendations.
These recommendations represent inter-links among web
services that help service consumers explore web service
comfortably.

Table I
Extended Behavioral profile for business process in Figure 2

A B C D E F G H I J

A (‖ , 0) (#, 0) (, 2) (, 3) (#, 0) (#, 0) (, 5) (, 6) (, 8) (, 8)
B (# , 0) (‖, 0) (, 2) (, 3) (#, 0) (#, 0) (, 5) (, 6) (, 8) (, 8)
C (f, 2) (f, 2) (‖, 0) (, 1) (#, 0) (#, 0) (, 3) (, 4) (, 6) (, 6)
D (f, 3) (f, 3) (f, 1) (‖, 0) (#, 0) (#, 0) (, 2) (, 3) (, 5) (, 5)
E (# , 0) (#, 0) (#, 0) (#, 0) (‖, 0) (, 1) (, 3) (, 4) (, 6) (, 6)
F (# , 0) (#, 0) (#, 0) (#, 0) (f, 1) (‖, 0) (, 2) (, 3) (, 5) (, 5)
G (f, 5) (f, 5) (f, 3) (f, 2) (f, 3) (f, 2) (‖, 0) (, 1) (, 3) (, 3)
H (f, 5) (f, 5) (f, 3) (f, 2) (f, 4) (f, 3) (f, 1) (‖, 0) (, 2) (, 2)
I (f, 8) (f, 8) (f, 6) (f, 5) (f, 6) (f, 5) (f, 3) (f, 2) (‖, 0) (‖, 0)
J (f, 8) (f, 8) (f, 6) (f, 5) (f, 6) (f, 5) (f, 3) (f, 2) (‖, 0) (‖, 0)

V. Implementation and Usage Scenarios

We have implemented a prototype that realizes our ap-
proach to discover additional linkage patterns among web
services using business process knowledge. In this section,
we give details about the implementation of this prototype
that integrates Oryx, which is a business process modeling
platform and repository [22], and Depot, which is a public
web service registry [23]. Additionally, we show how our
approach can be used to enable service exploration through
service recommendations.

A. Implementation Details

The integration between both projects is depicted in Fig-
ure 3. During the configuration phase of a business process
model, a web service is assigned to each service task in that
model. This assignment is done using Depot to find relevant
web services. The selection made for each task affects the
ranking of web services in the result list for next tasks.
Saving the finalized, configured BPM ships the extended
behavioral profile and the configurations of that BPM to
Depot. Based on this information, Depot derives linkage
patterns between web services used in that BPM. These
linkage patterns are then used to provide recommendations
to service consumers during service discovery, either in Oryx
or Depot.

Configure
BPM Save BPM

Search for
WSs

Linkage pattern
finder

Extended
Behavioral

Profile
+

Configurations

Linkage Patterns

New BPM

Service
Selection

Refined
Results

Figure 3. Context: An integrated view of Business Process Modeling
(Oryx) and Web Services (Depot)

It is worth mentioning that our approach does not suffer a
cold start because we discover preliminary linkage patterns
among web services from their annotated WSDL descriptions.
These annotations for web services are generated automati-
cally from the websites of their providers [24] and through
automatic invocation analysis [25]. These additional anno-
tations for web services can be used as a semantics source.
This additional source of semantics is extremely helpful to
determine fine-grained linkage patterns among web services
that are typically used with exclusiveness in BPs. In par-
ticular, for operations with technical or semantically-poor
names.

Schedule
Agreement

Delivery

Process purchase
requisition for

contract release
order

Processing of
Shipping

Notifications/
Confirmations

Delivery and
Acknowledgment

Expediter

Transmit Shipping
Notifications

Create inbound
delivery for

purchase order

Process purchase
requisition order

Transmit
Scheduling
Agreement

Release of
Purchase Orders

Transmission of
Purchase Orders

E

A

B D

C

F

G H

I

J

Figure 2. A Business Process for “Purchase Order Processing” from SAP Reference Model represented in BPMN 1.0

Table II
Linkage Patterns for business process in Figure 2. P: Predecessor, S : Successor, M: Similar, C: Complementary, R: Related

A B C D E F G H I J

A – (M, 0.300) (S , 0.875) (S , 0.750) (C, 1.000) (C, 1.000) (S , 0.500) (S , 0.375) (S , 0.125) (S , 0.125)
B (M, 0.300) – (S , 0.875) (S , 0.750) (C, 1.000) (C, 1.000) (S , 0.500) (S , 0.375) (S , 0.125) (S , 0.125)
C (P, 0.875) (P, 0.875) – (S , 1.000) (C, 1.000) (C, 1.000) (S , 0.750) (S , 0.625) (S , 0.375) (S , 0.375)
D (P, 0.750) (P, 0.750) (P, 1.000) – (C, 1.000) (C, 1.000) (S , 0.875) (S , 0.750) (S , 0.500) (S , 0.500)
E (C, 1.000) (C, 1.000) (C, 1.000) (C, 1.000) – (S , 1.000) (S , 0.750) (S , 0.625) (S , 0.375) (S , 0.375)
F (C, 1.000) (C, 1.000) (C, 1.000) (C, 1.000) (P, 1.000) – (S , 0.875) (S , 0.750) (S , 0.500) (S , 0.500)
G (P, 0.500) (P, 0.500) (P, 0.750) (P, 0.875) (P, 0.750) (P, 0.875) – (S , 1.000) (S , 0.750) (S , 0.750)
H (P, 0.500) (P, 0.500) (P, 0.750) (P, 0.875) (P, 0.625) (P, 0.750) (P, 1.000) – (S , 0.875) (S , 0.875)
I (P, 0.125) (P, 0.125) (P, 0.375) (P, 0.500) (P, 0.375) (P, 0.500) (P, 0.750) (P, 0.875) – (R, 1.000)
J (P, 0.125) (P, 0.125) (P, 0.375) (P, 0.500) (P, 0.375) (P, 0.500) (P, 0.750) (P, 0.875) (R, 1.000) –

B. Exploration and Recommendation of Web Services

One of our goals in this work is to enhance service
discovery. In particular, with poor service descriptions. Ser-
vice exploration is a common approach to enhance service
discovery [25]. For instance, exploring web services based
on provider, category, etc. In our approach, we use service
recommendation to enable service exploration, where rec-
ommendations are provided based on the discovered linkage
patterns among web services.

The typical service discovery scenario starts when a
service consumer specifies a particular (business) need in
keywords, for instance. Candidate web services that match
these keywords are ranked according to their degrees of
match. After that, the service consumer examines these
candidate web services further. Detailed information about
each chosen web service is provided, such as provider, oper-
ations, etc. In our approach, this information is augmented
with recommended web services. These recommendations
are grouped in five groups as shown in Figure 4.

Predecessor and successor web services are ranked ac-
cording to their weights based on distances between their
consuming task in BPs that use them. Similar web services
are ranked according to the similarity between terms used in
their names and labels of tasks that consumer them. Com-

plementary and related web services are ranked according
to their frequencies.

Web Service Details

Predecessor
Web Services

Successor
Web Services

Similar
Web Services

Service Name
http://www.example.org/service1?wsdl

Service Description

Operations
...

...

Complementary
Web Services

Related
Web Services

1 2

3 4

5

Figure 4. Five types of recommendation of web services in Depot

Based on this approach, service consumers can explore
huge collections of web services that can be used together
to build useful and realistic business needs (BPs). This

approach can be compared to browsing webpages that are
linked together using hyperlinks.

Configuring BPs becomes easier using our approach.
Service selection made in a task affects ranking web services
for the next task. This ranking help process engineers build
and configure their BPs quickly and easily.

VI. Summary and FutureWork
Service discovery has been among the top challenges in

services computing. Several factors exacerbate this chal-
lenge, such as the lack of rich service descriptions, the in-
creasing number and complexity of web services, etc. To en-
hance service discovery, several approaches have been pro-
posed to investigate relation among web services. Typically,
four approaches are used to find such relations, namely,
input-output matching, semantic web services, service com-
positions, and consumer-consumer similarity approaches.
Despite their efficiency (under certain assumptions), these
approaches cannot specify fine-grained types or strengths of
the found relations.

In our approach, we utilize the business process configu-
ration to discover fine-grained linkage patterns among web
services used in such processes. The required business pro-
cess knowledge is captured using the notion of extended be-
havioral profiles. Based on these profiles, we can determine
five types of linkage patterns among web services, namely,
predecessor, successor, similar, complementary, and related.
Additionally, each linkage pattern is assigned a weight that
reflects its strength. These weights are used to rank service
recommendations that enables service exploration.

In this work, we ignore contradicting and inconsistent
behavioral properties among web services. Investigating
such inconsistencies is part of our future work.

References

[1] D. Kuropka, P. Tröger, S. Staab, and M. Weske, Semantic
Service Provisioning. Germany: Springer, 2008.

[2] M. Sabou, C. Wroe, C. Goble, and G. Mishne, “Learning
Domain Ontologies for Web Service Descriptions: An
Experiment in Bioinformatics,” in Proceedings of the 14th
international conference on World Wide Web, 2005. [Online].
Available: http://portal.acm.org/ft gateway.cfm?id=1060776

[3] Sun Microsystems, “Effective SOA Deployment using an
SOA Registry Repository, A Practical Guide,” 2005, white
paper.

[4] X. Dong, A. Halevy, J. Madhavan, E. Nemes, and J. Zhang,
“Similarity search for web services,” in Proceedings
of the Thirtieth international conference on Very large
data bases - Volume 30, ser. VLDB ’04. VLDB
Endowment, 2004, pp. 372–383. [Online]. Available: http:
//portal.acm.org/citation.cfm?id=1316689.1316723

[5] L. Lin and I. B. Arpinar, “Discovery of semantic relations
between web services,” in Proceedings of the IEEE Interna-
tional Conference on Web Services. Washington, DC, USA:
IEEE Computer Society, 2006, pp. 357–364.

[6] S. Basu, F. Casati, and F. Daniel, “Toward web service
dependency discovery for soa management,” in Proceedings
of the 2008 IEEE International Conference on Services
Computing - Volume 2. Washington, DC, USA: IEEE
Computer Society, 2008, pp. 422–429. [Online]. Available:
http://portal.acm.org/citation.cfm?id=1443230.1444300

[7] W. Rong, K. Liu, and L. Liang, “Personalized web service
ranking via user group combining association rule,” in
Proceedings of the 2009 IEEE International Conference on
Web Services, ser. ICWS ’09. Washington, DC, USA: IEEE
Computer Society, 2009, pp. 445–452. [Online]. Available:
http://dx.doi.org/10.1109/ICWS.2009.113

[8] D. Fensel, U. Keller, H. Lausen, A. Polleres, and I. Toma,
“WWW or what is wrong with web service discovery?”
in Proceedings of the W3C Workshop on Frameworks
for Semantics in Web Services, 2005. [Online]. Avail-
able: http://members.deri.at/∼uwek/publications/WWW or
What is Wrong with Web service Discovery.pdf

[9] S. Sharma and S. Batra, “Applying association rules for web
services categorization,” International Journal of Computer
and Electrical Engineering, vol. 2, no. 3, pp. 465–468, 2010.

[10] A. Segev, “Circular context-based semantic matching to
identify web service composition,” in Proceedings of the
2008 international workshop on Context enabled source and
service selection, integration and adaptation: organized with
the 17th International World Wide Web Conference (WWW
2008), ser. CSSSIA ’08. New York, NY, USA: ACM, 2008,
pp. 7:1–7:5.

[11] A. M. Omer and A. Schill, “Web service composition using
input/output dependency matrix,” in Proceedings of the 3rd
workshop on Agent-oriented software engineering challenges
for ubiquitous and pervasive computing, ser. AUPC 09.
New York, NY, USA: ACM, 2009, pp. 21–26. [Online].
Available: http://doi.acm.org/10.1145/1568181.1568189

[12] F. Lecue and A. Leger, “Semantic web service composition
based on a closed world assumption,” in Proceedings of
the European Conference on Web Services. Washington,
DC, USA: IEEE Computer Society, 2006, pp. 233–
242. [Online]. Available: http://portal.acm.org/citation.cfm?
id=1191829.1192660

[13] A. Bose, “Effective Web Service Discovery using a com-
bination of a Semantic Model and a Data mining tech-
nique,” Master’s thesis, Queensland University of Technology,
Queensland, Australia, 2008.

[14] M. Winkler, T. Springer, E. D. Trigos, and A. Schill,
“Analysing dependencies in service compositions,” in
Proceedings of the 2009 international conference on
Service-oriented computing, ser. ICSOC/ServiceWave’09.
Berlin, Heidelberg: Springer-Verlag, 2009, pp. 123–133.
[Online]. Available: http://portal.acm.org/citation.cfm?id=
1926618.1926633

[15] M. Weske, Business Process Management. Springer, 2007.

[16] S. Buchwald, J. Tiedeken, and M. Reichert, “Anforderungen
an ein metamodell für soa-repositories,” in ZEUS, ser. CEUR
Workshop Proceedings, C. Gierds and J. Sürmeli, Eds., vol.
563. CEUR-WS.org, 2010, pp. 17–24.

[17] S. Buchwald, T. Bauer, and M. Reichert, Bridging the Gap
Between Business Process Models and Service Composition
Specifications, 2011, ch. Int’l Handbook on Service Life Cy-
cle Tools and Technologies: Methods, Trends and Advances.

[18] S. Smirnov, M. Weidlich, J. Mendling, and M. Weske, “Action
patterns in business process models,” in ICSOC/ServiceWave,
ser. Lecture Notes in Computer Science, L. Baresi, C.-H. Chi,
and J. Suzuki, Eds., vol. 5900, 2009, pp. 115–129.

[19] M. Weidlich, A. Polyvyanyy, J. Mendling, and M. Weske,
“Efficient computation of causal behavioural profiles using
structural decomposition,” in Petri Nets, ser. Lecture Notes in
Computer Science, J. Lilius and W. Penczek, Eds., vol. 6128.
Springer, 2010, pp. 63–83.

[20] G. A. Miller, “Wordnet: a lexical database for english,”
Commun. ACM, vol. 38, pp. 39–41, November 1995. [Online].
Available: http://doi.acm.org/10.1145/219717.219748

[21] “The yago-naga project: Harvesting, searching, and ranking
knowledge from the web,” http://www.mpi-inf.mpg.de/yago-
naga/.

[22] G. Decker, H. Overdick, and M. Weske, “Oryx - An Open
Modeling Platform for the BPM Community,” in BPM, ser.
LNCS, vol. 5240. Springer, 2008, pp. 382–385.

[23] M. AbuJarour and F. Naumann, “Information integration in
Service-oriented Compuitng,” in Ph.D. Symposium at the
European Conference on Web Services, Ayia Napa, Cyprus,
2010.

[24] M. AbuJarour, F. Naumann, and M. Craculeac, “Collecting,
Annotating, and Classifying Public Web Services ,” in OTM
2010 Conferences. Crete, Greece: Springer, 2010.

[25] M. AbuJarour and F. Naumann, “Dynamic Tags For Dynamic
Data Web Services,” in Workshop on Enhanced Web Service
Technologies. Ayia Napa, Cyprus: ACM, 2010.

