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Abstract

When working with large amounts of crawled semantic data as provided by the Billion Triple Challenge (BTC), it is
desirable to present the data in a manner best suited for end users. This includes conceiving and presenting explanatory
metainformation. The Vocabulary of Interlinked Data (voiD) has been proposed as a means to annotate sets of RDF
resources to facilitate not only human understanding, but also query optimization.

In this article we introduce tools that automatically generate voiD descriptions for large datasets. Our approach
comprises different means to identify (sub)datasets and annotate the derived subsets according to the voiD specification.
Due to the complexity of Web-scale Linked Data, all algorithms used for partitioning and augmenting are implemented
in a cloud environment utilizing the MapReduce paradigm. We employed the Billion Triple Challenge 2010 dataset [6]
to evaluate our approach, and present the results in this article. We have released a tool named voiDgen to the public
that allows the generation of metainformation for such large datasets.

Keywords: Semantic Web; Vocabulary of Interlinked Data; Semantic Data Profiling; RDF Metadata Generation;
Cloud Computing

1. Introduction

Open data emerges from a variety of sources, e.g., gov-
ernment agencies, bio-science institutes, social networks,
or community-driven knowledge bases. As of January
2011, ckan.net states to contain over 1,600 data pack-
ages. Often, such data is published as Linked Open Data
(LOD) – data that adheres to a set of guidelines to al-
low easy reuse and semantic integration [4]. Specifically,
ckan.net provides approximately 280 LOD sources. Due
to the wealth of information available, descriptive meta-
data is essential for every open dataset. Furthermore, we
believe that metainformation concerning relationships be-
tween distinct datasets represents valuable inter-domain
knowledge and therefore provides additional insight.

Metadata is useful in a multitude of scenarios: the most
obvious case is when data engineers search for information
about a specific topic. How do they know what a dataset
at hand is about and how can they quickly discover connec-
tions to other open sources that they already work with? A
data source should provide this information in a standard-
ized way. A second application is crawling the LOD cloud:
here, raw statistics, e.g., the number of triples, resources,
links, etc., are of interest for scheduling crawling tasks and
provisioning resources. Also, semantic information, such
as considered types or related resources, can facilitate use-
ful segmentation of the data. Query answering for Linked
Data is another scenario where statistics and metainforma-
tion can support decision making and help achieve better
results more efficiently. We believe that a wide availability

of well-defined metadata expedites the causes of data in-
terconnectivity and semantic integration. The Vocabulary
of Interlinked Datasets (voiD) addresses this need.

VoiD. The Vocabulary of Interlinked Datasets is an RDF-
based schema to describe linked datasets [2, 8]. By pro-
viding a standardized vocabulary, it aims at facilitating
the discovery of linked datasets as well as their usage.
VoiD offers two main classes: a void:Dataset describes
collections of data published and maintained by a single
provider. A void:Linkset on the other hand is a subclass
of void:Dataset, which describes entities linking to other
sources. For linksets, interlinking predicates or link direc-
tions can be stored. Additionally, a number of properties
defined in voiD describe technical or statistical features of
datasets.

VoiD was introduced in 2009 and is already used by a
number of projects. For instance, the authors of Zemánek
and Schenk. [15] plan to leverage voiD dataset statistics
for query optimization. The voiD browser [1] allows to
use URIs to search for datasets. These approaches require
existing voiD annotations, which have been created for
a number of sources, e.g., data.gov.uk [14], the OECD
Glossary [13], or just recently DBpedia [7]. Though it is
considered to be fairly simple to produce voiD descrip-
tions by hand, there are numerous sources in today’s LOD
cloud that do not provide them1. In our opinion, this is

1For example, at the time of writing the prominent New York
Times dataset did not provide a voiD description.
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due to the in fact substantial manual effort required to
create them. Also, we often find that this metadata is ei-
ther incomplete or does not reflect the entire contents of a
dataset. For this reason we developed a set of algorithms
and heuristics to create voiD descriptions automatically.

Contribution. We have created a set of algorithms to au-
tomatically generate voiD descriptions for Web-scale data-
sets. Note that we do not mean to replace manual creation
of metadata – we rather target large, crawled datasets
without full voiD descriptions. In addition, we propose
extensions of the voiD standard, i.e., novel approaches to
distinguish datasets (see Sec. 3) as well as fuzzy linksets
(see Sec. 2.2). Due to the large volumes of data we
tackle, we employ the MapReduce paradigm to efficiently
compute voiD content. To demonstrate feasibility and
scalability of our approaches, we present results for the
Billion Triple Challenge Dataset 2010 [6] at https://

www.hpi.uni-potsdam.de/naumann/sites/btc2010. On
this site, we also offer a user-friendly tool as well as all
sources and comprehensive documentation for download.
For this article and our implementation, we use voiD ver-
sion 1 of May 07, 2010 (the most current at the time
of writing). To avoid namespace squatting2 and ambi-
guity we use voidgen3 as namespace prefix for the voiD
extensions we propose. For ease of reading, we reuse
voiD properties such as void:feature but note that, of
course, property values would require a proper definition
as void:TechnicalFeature.

Related Work. Related work includes tools meant to cre-
ate any sort of metainformation. Because such tools
mainly originate from traditional database vendors and are
not suitable for graph-structured RDF data, we do not dis-
cuss them here. However, in our group we are developing
ProLOD [5]4 for iterative RDF data profiling. ProLOD
aims at determining data quality issues instead of descrip-
tive metadata and does thus not address voiD descriptions.

Besides tools there are libraries such as NXParser5,
which reads files in Nx format and is capable of dump-
ing simple statistics about the data. RDFStats6 com-
putes statistics and outputs them using the so-called RDF-
Stats statistics vocabulary. Finally, many developers use
hand-crafted scripts to perform metadata extraction. On
Grimnes’ Blog7 one can find interesting results of such
an approach. Others use high-end hardware to perform
statistics computation for web-scale datasets [11].

For automatic generation of voiD properties, Virtuoso’s
database provides a function called RDF VOID STORE8

2http://www.w3.org/wiki/NamespaceSquatting
3Please note that we do not plan to formally allocate our own

namespace but rather suggest to incorporate our extensions in voiD.
4https://www.hpi.uni-potsdam.de/naumann/sites/prolod
5http://sw.deri.org/2006/08/nxparser
6http://rdfstats.sourceforge.net
7http://gromgull.net/blog/?s=btc
8http://virtuoso.openlinksw.com/

that creates descriptions for RDF graphs. For this tool,
we are unable to state how well it performs for Web-scale
datasets and heterogeneous data from multiple sources in a
single graph. Further, Virtuoso offers additional functions
that create metainformation.

Also, there are tools for manual curation of voiD de-
scriptions, e.g., ve29, which is a Web-based application.
It allows manual input for dataset characteristics such as
categories, interlinking, as well as technical features and
creates RDF output in an on-the-fly manner.

Last, there is a notable project10 by the RKB Explorer
team that collects existing voiD descriptions, stores them,
and provides query and browsing functionality.

Structure of this article. First, we introduce a basic par-
titioning algorithm that outputs dataset information ac-
cording to the voiD definition (Sec. 2.1). We then illus-
trate the computation of linksets, using both the original
approach and a new fuzzy version (Sec. 2.2), followed by
a description of dataset metadata generation (Sec. 2.3).
Next, we propose three new ideas for dataset partitioning
and the corresponding algorithms (Sec. 3) before conclud-
ing this article (Sec. 4).

2. Generating voiD annotations

As mentioned above, voiD is centered around datasets
and linksets. Datasets group subjects according to a spe-
cific property, i.e., the data publisher in the original voiD
definition. In contrast, linksets contain links, i.e., triples
among datasets. We first provide a way to compute both
concepts in their original form before discussing metadata
generation and possible voiD extensions. Note that while
in the next sections we assume the semantic data at hand
to be in a triple format (subject, predicate, object), our ap-
proaches also apply to quadruple format (with additional
context information) as presented in the BTC 2010 dump.

2.1. Basic Datasets

The voiD standard associates a dataset with a single
publisher, e.g., through a dereferencable HTTP URI or
a SPARQL endpoint [8]. Typically, this means that all
URIs described in a dataset are similar. Thus, we base
our clustering on the dataset notation of Def. 1.

Definition 1. Two triples belong to the same dataset, iff
the subjects’ URIs start with the same pattern. The length
of the pattern is determined by the longest common prefix
of all subjects in a dataset ending in one of the characters
:, /, or #.

For example, the two subjects
http://dbpedia.org/resource/Category:Germany

9http://lab.linkeddata.deri.ie/ve2
10http://void.rkbexplorer.com
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and http://dbpedia.org/resource/Tim Berners-Lee

belong to the same dataset – in this case
http://dbpedia.org/resource/. For simplicity and
readability, we identify a dataset by its URI endpoint,
i.e., the void:uriLookupEndpoint. The generation of the
remaining void:Dataset attributes is described in Sec. 2.3.

In other words, our basic dataset grouping partitions
a data corpus using the individual subjects’ uniform re-
source identifiers if present. According to the W3C RDF
format specification, a subject has to be either referenced
by a URI or a blank node [12]. In the latter case, the asso-
ciated triples are ignored for dataset grouping, as there is
no publisher associated with them. Malformed URIs are
disregarded as well. As the majority of subject URIs in our
corpus adhere to the HTTP scheme, all other schemes each
form one individual dataset, such as the set of phone num-
bers (with its scheme identifier tel). However, for non-
HTTP schemes it is also possible to use domain-specific
properties to distinguish subsets, e.g., the country code in
case of phone numbers.

Discovering datasets based on the longest common URI
prefix is conceptually straightforward and requires two
MapReduce runs. The first run determines all possible
non-trivial prefixes for every subject. For example, for
http://dbpedia.org/resource/Category:Germany the pre-
fixes http://dbpedia.org/, http://dbpedia.org/resource/,
and http://dbpedia.org/resource/Category: are discov-
ered. In the second step, the most suitable prefix for a
dataset is determined, i.e., the longest one common to all
subjects in the dataset. Consider the sample structure
given in Fig. 1. Here, datasets identified by this basic par-
titioning approach are indicated by the color of the sub-
jects that belong to them. They are also listed accordingly
in the first column of Tab. 1.

To avoid ambiguity, for the remainder of this article the
original, unpartitioned BTC 2010 dump is referred to as
‘corpus’, whereas a ‘dataset’ describes any logical subset
of the corpus determined by one of the introduced parti-
tioning approaches.

After partitioning the data corpus, we compute differ-
ent voiD statistics of the newly discovered datasets, such
as void:numberOfPredicates, void:numberOfSubjects, etc.
Notice that these attributes each refer to unique entities
within a dataset only. These voiD attributes already pro-
vide interesting insight into the structure of the datasets:
for example, a low number of void:numberOfPredicates rel-
ative to void:numberOfSubjects suggest that the included
entities all belong to the same type and thus share most of
their attributes. For a heterogeneous dataset like DBpedia
on the other hand, this relation is very different. Listing 1
presents a sample voiD description for the example.com/

dataset from Fig. 1 in the Turtle RDF serialization for-
mat [3] .

2.2. Linksets

Crisp Linksets. Besides datasets, the voiD standard also
introduces the notion of linksets. A void:Linkset contains

@pref ix v o i d : <h t t p : // r d f s . org /ns/ void#> .
@pre f ix dcterms : <h t t p : // pur l . org /dc/ terms /> .
@pre f ix : <baz :onto logy#> .

:example . com/ a vo id :Datase t ;
d c t e r m s : t i t l e ”example . com/” ;
d c t e r m s : d e s c r i p t i o n ” This datase t conta in s

in fo rmat ion about : c i t y , : c a p i t a l ” ;
void:ur iLookupEndpoint <example . com/> ;
vo id :ur iRegexPatte rn ”ˆexample . com/.+” ;
void :exampleResource <example . com/ Al i c e> ;
void:numberOfSubjects 4 ;
vo id :numberOfPredicates 3 ;
void:numberOfObjects 4 ;
vo id :numberOfTrip les 6 .

Listing 1: A void:Dataset description

@pref ix v o i d : <h t t p : // r d f s . org /ns/ void#> .
@pre f ix dcterms : <h t t p : // pur l . org /dc/ terms /> .
@pre f ix owl : <h t t p : //www. w3 . org /2002/07/ owl#> .

: ba r . net / LinksTo foo . org / a v o i d : L i n k s e t ;
d c t e r m s : t i t l e ” L inkset bar . net / to foo . org /” ;
d c t e r m s : d e s c r i p t i o n ” Links from bar . net /

Dataset to foo . org / Dataset ” ;
v o i d : s u b j e c t s T a r g e t :ba r . net / ;
v o i d : o b j e c t s T a r g e t : f o o . org / ;
v o i d : l i n k P r e d i c a t e owl:sameAs ;
v o i d : t r i p l e s 2 .

Listing 2: A (crisp) void:Linkset description

all links from one dataset to another, where links are iden-
tified by triples in which the subject belongs to a different
dataset than the object. In our implementation, a linkset
may also be reflexive, i.e., it can describe the connections
within a single dataset. Linksets are not symmetric, but
rather directed from one dataset to another. For example,
we discovered 4,042 links from DBpedia to GeoNames, but
6,956 links in the other direction.

Once datasets have been determined, linksets among
them can be obtained in one MapReduce run. In the Map
phase, all triples in which both subject and object are
members of previously identified datasets are extracted.
The emitted tuple then contains the subject and object
dataset identifier as key. The Reduce phase subsumes all
tuples identified by the same key. Listing 2 presents the
voiD description for the linkset from bar.net to foo.org.

Fuzzy Linksets. In addition to these ‘crisp’ linksets, we
also examine links between different datasets that are not
explicitly stated. We introduce the notion of k-similarity,
where two subjects are k-similar, iff k of their predi-
cate/object combinations are exact matches. Def. 2 pro-
vides a formal definition that helps identify ‘fuzzy’ linksets
among datasets.

Definition 2. For a fixed subject s1, and a number of
associated predicates p1,i with objects o1,i, i.e., for the
triples 〈s1 p1,1 o1,1〉, 〈s1 p1,2 o1,2〉, . . ., the set C1 denotes all

3



example.com/Muni

example.com/Berl

:city

f / l #Lfoo.org/place#Lyon

foo.org/place#Berli:capital

foo.org/place#Paris

rdf:type
:worksIn

rdfs:subClassOf

:livesIn
owl:sameAs

ich example.com/Alice

in example.com/Bob

f / #Alin

n

foo.org/person#Alice

foo.org/person#Bob

bar.net/entity:Alice
s

bar.net/entity:Bob

Figure 1: Running example; filled ellipses indicate resources, arrows represent predicates.

basic owl:sameAs connected :livesIn connected hierarchical (d = 1)

example.com/Munich example.com/Alice example.com/Berlin example.com/Munich
example.com/Berlin foo.org/person#Alice example.com/Alice example.com/Berlin
example.com/Alice bar.net/entity:Alice example.com/Bob foo.org/place#Lyon
example.com/Bob

example.com/Bob foo.org/place#Berlin example.com/Berlin
foo.org/place#Lyon foo.org/person#Bob foo.org/person#Alice foo.org/place#Berlin
foo.org/place#Berlin bar.net/entity:Bob foo.org/person#Bob foo.org/place#Paris
foo.org/place#Paris

foo.org/person#Alice
foo.org/person#Bob remaining: remaining: remaining:

example.com/Munich example.com/Munich example.com/Alice
bar.net/entity:Alice example.com/Berlin foo.org/place#Lyon example.com/Bob
bar.net/entity:Bob foo.org/place#Berlin foo.org/place#Paris foo.org/person#Alice

foo.org/place#Lyon bar.net/entity:Alice foo.org/person#Bob
foo.org/place#Lyon bar.net/entity:Bob bar.net/entity:Alice

bar.net/entity:Bob

Table 1: Different dataset partitioning approaches and results for running example in Fig. 1.

of the predicate/object combinations at hand. For k > 0,
two subjects s1 and s2 are k-similar iff

C1 = {(p1,1, o1,1), . . . , (p1,n, o1,n)} ,

C2 = {(p2,1, o2,1), . . . , (p2,m, o2,m)} , and

|C1 ∩ C2| = k,with

(pi,j , oi,j) = (pk,l, ok,l)⇔ pi,j = pk,l ∧ oi,j = ok,l

The intuition of k-similarity is that two subjects are to
some degree similar if they share a common set of attribute
values, and might therefore be relatable, e.g., using one of
the methods introduced in [10]. These fuzzy linksets con-
nect similar entities (and thereby datasets) that are not ex-
plicitly referenced by one another. Instead of k-similarity
one could use any other notion of similarity among sub-
jects. With k-similarity, however, we chose a strict starting
point for fuzzy linksets that is generic, simple, and easy to

parameterize (using k). It should be noted that in con-
trast to crisp linksets, fuzzy linksets using k-similarity are
always symmetrical.

In Listing 3, a description for a fuzzy linkset between
example.com and foo.org is denoted in Turtle format.
The listing refers to Fig. 1, where there are three 1-
similar links with predicate rdf:type and object :city

connecting example.com/Munich, example.com/Berlin,
and foo.org/place#Lyon, thus indicating a fuzzy
linkset. As fuzzy linksets are not yet defined in
the Vocabulary of Interlinked Data, we propose a
new class voidgen:FuzzyLinkset and a new attribute
voidgen:kSimilarity to specify them properly. The latter
may also be represented as a technical feature as is the
case in Listing 3.

A number of factors influence the ‘interestingness’ of
fuzzy links. On the one hand, a higher value for k indi-
cates that the two subjects have a high number of pred-
icate/object combinations in common. Hence, k (calcu-
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@pref ix v o i d : <h t t p : // r d f s . org /ns/ void#> .
@pre f ix dcterms : <h t t p : // pur l . org /dc/ terms /> .
@pre f ix r d f : <h t t p : //www. w3 . org /1999/02/22− rdf−

syntax−ns#> .
@pre f ix vo idgen : <h t t p : // hpi−web . de/naumann/

voidgen#> .

:example . com/ LinksTo foo . org / a
vo idgen :FuzzyLinkset ;

d c t e r m s : t i t l e ” FuzzyLinkset example . com/ and
foo . org /” ;

d c t e r m s : d e s c r i p t i o n ”Fuzzy Links between
example . com/ and foo . org / Datasets ” ;

v o i d : s u b j e c t s T a r g e t :example . com/ ;
v o i d : o b j e c t s T a r g e t : f o o . org / ;
v o i d : l i n k P r e d i c a t e r d f : t y p e ;
v o i d : t r i p l e s 3 ;
v o i d : f e a t u r e ”k−S i m i l a r i t y 1” .

Listing 3: A fuzzy Linkset description

lated absolute or relative) can indicate similarity of sub-
jects and thus a new relationship between the associated
entities is disclosed. To illustrate this effect, we analyzed a
10% sample of the BTC 2010 corpus, containing 317 mil-
lion quadruples. Of these, around 122 million had one
predicate/object combination in common with at least one
other quadruple. By setting k to 2, the number of associ-
ated quadruples drastically decreased to 25.

On the other hand, some predicate/object combina-
tions appear very often, and are therefore not insight-
ful. In the BTC 2010 corpus for example, the rdf:type

predicate occurs quite frequently in conjunction with the
rdf:Resource object, rendering a small value for k unsuit-
able for our approach and this specific combination. In
general, more specific predicates, i.e., predicates that do
not appear very often themselves, provided a better lead
for detecting dataset similarity. Overall, k-similar linksets
can be considered an extension to the void:Linkset class,
revealing implicit, fuzzy connections between two datasets.

The computation of k-similarity is implemented as
two MapReduce runs. The first run clusters subjects by
a hash value obtained from respective predicate/object
pairs. The second run performs a Map-Side (Self-)Join
on the hash values and determines k-similarity values in
the Reducer.

2.3. Dataset Metadata

The voiD standard introduces a number of properties
that characterize a dataset. However, some of the prop-
erties are meant to be augmented manually by the data
provider and cannot be derived automatically, e.g., the
license of a dataset or the date of its creation. Hence,
we limit ourselves to the subset of properties that can be
deduced from the resources within the dataset, but still
provide interesting insights for data consumers.

The attribute void:exampleResource provides a link to
a representative entity within the dataset. In our ap-
proach, we filtered the subject that provided the most

predicate/object combinations as a sample resource. Pre-
sumably, this entity is described most thoroughly. The
dcterms:description attribute provide a textual, human-
readable description of the dataset. We chose to base the
textual description on the most common types of the sub-
jects included in the dataset. More specifically, we filtered
all resources described by a rdf:type predicate and ranked
those according to the respective number of occurrences.
For example, in DBpedia we discovered 12,151 subjects of
type http://dbpedia.org/ontology/Place, 11,285 subject
of type http://dbpedia.org/ontology/Person, etc. Thus,
we can conclude that this dataset provides information
about places, people, etc. We found that by limiting our-
selves to the top 10 types discovered, the generated de-
scription offers a good overview of the dataset contents.
As mentioned above, we used the URI pattern analysis
to determine the void:uriLookupEndpoint. Additionally,
we compute void:statItem content such as the number of
distinct subjects, predicates, etc.

The following Tab. 2 summarizes the runtimes for the
generation of all basic voiD metainformation using 20
“High-CPU Extra Large” (c1.xlarge) computing instances
on the Amazon Elastic Compute Cloud (EC2)11. The data
already resided in Amazon’s Simple Storage Service (S3)
offering and hence upload times are omitted. Note that
the use of the Hadoop MapReduce framework allows for
an easy transition from a local cluster for testing purpose
to a large-scale commercial cluster (such as Amazon’s).
Therefore, voiDgen allows an easy specification of the de-
sired cluster setup.

task runtime in mm:ss

Load into HDFS 28:21
RDF statistics 16:21
Dataset detection (basic) 13:20
Textual description 08:04
Linkset detection (crisp) 01:32

Total 67:37

Table 2: Runtimes for generating voiD metainformation for the
BTC2010 corpus on 20 Amazon EC2 c1.xlarge instances.

3. Extending voiD Content

Detecting individual datasets provides interesting in-
sights into the contents of large data corpora. In its orig-
inal voiD definition, a dataset identifies a set of data pro-
vided by a specific publisher. We define semantic datasets,
i.e., partitions of resources that share certain semantic fea-
tures. Specifically, we provide means to identify connected
sets of resources or sets of conceptually similar resources.

11Each such instance has 7 GB of memory, 20 EC2 Compute Units,
1.69 TB of instance storage, and 64-bit Linux OS.
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Given two such semantic datasets and respective linksets,
one can, for instance, observe the connectivity among con-
cepts.

3.1. Connected Datasets

Two resources reside within the same connected data-
set, iff there is a link of a specific type between them.
Hence, we compute connected components of a predicate-
based subgraph H of the original RDF graph G. Ding et
al. provide a formal definition of a predicate-based sub-
graph filter psf and the resulting subgraph H [9].

Definition 3. A predicate-based subgraph filter is a func-
tion H = psf(G,P ), where H and G are RDF graphs and
P is a set of RDF properties. The function psf returns H
which is a subgraph of G, and the predicate of any triple
in H is a member of P .

If the type of the link is undefined, i.e., P is the set
of all predicates in the RDF graph, any two connected
resources share the same dataset and there are no linksets.
In contrast, if the links among resources are fixed to one
specific type, e.g., P = {owl:sameAs} or P = {livesIn}
in Fig. 1, then one can derive meaningful linksets. Tab. 1
lists the datasets for owl:sameAs and the custom-defined
livesIn link in the second and third column, respectively.
In the first case, linksets contain livesIn and worksAt links
whereas in the second case linksets contain owl:sameAs and
worksAt links (for simplicity, we here disregard the other
two link types).

A suggested notation for connected datasets is pre-
sented in Listing 4. It should be pointed out that
besides specifying the void:linkPredicate, it is essen-
tial to indicate a pivot resource to be able to gather
all entities belonging to a connected dataset. In List-
ing 4 the resource example.com/Berlin can be used to
determine all other elements of the dataset by execut-
ing the appropriate SPARQL query using the specified
void:linkPredicate attribute value. Notice that besides
a new class (voidgen:ConnectedDataset), no further addi-
tions would need to be made to voiD. However, it could be
argued that the improper use of void:exampleResource and
void:linkPredicate should be rectified by adding new, un-
ambiguous attributes. In addition, some of the attributes
reserved for void:Dataset might be omitted for connected
datasets as they do not seem to bear much information,
such as void:uriLookupEndpoint.

To compute connected datasets, we have implemented
a two-phase MapReduce sequence: the pseudocode in
Jobs 1 and 2 exemplarily illustrate these MapReduce jobs.
First, connected resources are assigned to individual clus-
ters (Job 1 map), and then resources and ids are assigned
to the respective minimum cluster id (Job 1 reduce). The
second phase iteratively builds the transitive closure of
clusters until all clusters are merged (Job 2).

@pref ix v o i d : <h t t p : // r d f s . org /ns/ void#> .
@pre f ix dcterms : <h t t p : // pur l . org /dc/ terms /> .
@pre f ix vo idgen : <h t t p : // hpi−web . de/naumann/

voidgen#> .
@pre f ix : <baz :onto logy#> .

: l i v e s In DS 1 a voidgen:ConnectedDataset ;
d c t e r m s : t i t l e ” : l i v e s I n Connected Dataset with

s t a r t i n g po int example . com/ Ber l i n ” ;
d c t e r m s : d e s c r i p t i o n ” This datase t conta in s

in fo rmat ion about concepts connected by
: l i v e s I n , i n c l u d i n g <example . com/ Ber l in>” ;

void :exampleResource <example . com/ Ber l i n> ;
void:numberOfSubjects 2 ;
vo id :numberOfPredicates 1 ;
void:numberOfObjects 1 ;

Listing 4: A (:livesIn) connected dataset description

MapReduce Job 1 Connected Datasets Step 1

function map (Object k, Text v):
1: quadruple← parse(v)
2: if quadruple.predicate ∈ P then
3: # generates new cluster id
4: cid← counter.get(′cid′).increment()
5: emit(quadruple.subject, cid)
6: emit(quadruple.object, cid)
7: end if

function reduce (StringLong k, List<Long> vs):
8: minClusterId← min(vs)
9: # entities will be put into minClusterId cluster

10: emit(minClusterId, k)
11: # all clusters get the id of their base cluster
12: for all v ∈ vs do
13: emit(v,minClusterId)
14: end for

3.2. Conceptual Datasets

Two resources are contained in the same conceptual
dataset, iff they are of the same or of related type. To
calculate this relationship, we provide two approaches.

The hierarchical approach assigns any resource repre-
senting a concept and all its superconcepts (up to a certain
level d) to an individual dataset. Consider the last column
of Tab. 1 as an example: for d = 1, the first partition con-
tains all resources of type :city whereas the second par-
tition comprises entities of type :capital. By increasing
d to 2, the transitive closure of :capital is determined,
and the aforementioned two partitions are merged into a
single one. The number of MapReduce runs for this parti-
tioning approach is variable, depending on the number of
iterations d allocated for detecting transitive links.

The distinct approach selects a single concept type per
resource and assigns the resource to the respective data-
set. For example, in Fig. 1 example.com/Berlin is both a
city and a capital. The previous transitive approach as-
signs it to both respective partitions for d = 1, and forms

6



MapReduce Job 2 Connected Datasets Step 2

function map (Long k, StringLong v):
1: emit(key, value)

function reduce (LongString k, List<LongString> vs):
2: if vs.getFirst() is Id and vs.getFirst() < k then
3: minClusterId← vs.getFirst()
4: emit(k,minClusterId)
5: else
6: minClusterId← k
7: end if
8: for all v ∈ vs do
9: if v is ressource then

10: emit(minClusterId, v)
11: else
12: emit(v,minClusterId)
13: end if
14: end for

a single partition for d > 1. The distinct approach on
the other hand selects exactly one specific dataset for the
assignment. The dataset selection is driven by the con-
cepts’ levels of generality. We use the concepts’ occurrence
rates to determine that level of generality: we consider
frequent concepts to be more general whereas infrequent
concepts have a lower level of generality. This requires
two MapReduce runs: the first one gathers statistical in-
formation about the concepts within a corpus; the second
determines the best-fitting dataset allocation based on the
desired level of generality.

Listing 5 presents a sample description of a hierarchi-
cal conceptual dataset, based on the :capital class. Here,
d is set to 1, therefore no superconcepts of :capital are
included in the conceptual dataset (i.e., :city). As be-
fore with connected datasets, a new class is introduced as
a possible extension to voiD: voidgen:ConceptualDataset.
The technical feature specifying d as well as the attributes
void:objectTarget and void:linkPredicate that are al-
ready reserved for other purposes can again be replaced
by new, dedicated attributes.

4. Conclusion

We have presented a scalable approach for segmenting,
annotating, and enriching large corpora of Linked Data, as
present in the Billion Triple Challenge 2010 dataset. For
this purpose, we have administered the current version of
the Vocabulary of Interlinked Data as well as introduced
new ideas extending the current scope of voiD. Specifi-
cally, we propose semantic datasets, which can be formed
either by connectivity of the graph or according to seman-
tic types of resources. Note that for these novel dataset
partitioning means, most voiD metainformation genera-
tion algorithms as described in Sec. 2.3 can still be ap-
plied and thus provide further insight into the contents of

@pref ix v o i d : <h t t p : // r d f s . org /ns/ void#> .
@pre f ix dcterms : <h t t p : // pur l . org /dc/ terms /> .
@pre f ix r d f : <h t t p : //www. w3 . org /1999/02/22− rdf−

syntax−ns#> .
@pre f ix vo idgen : <h t t p : // hpi−web . de/naumann/

voidgen#> .
@pre f ix : <baz :onto logy#> .

: c a p i t a l a vo idgen:ConceptualDataset ;
d c t e r m s : t i t l e ” Dataset d e s c r i b i n g concept

: c a p i t a l ” ;
d c t e r m s : d e s c r i p t i o n ” This h i e r a r c h i c a l datase t

conta in s in fo rmat ion about : c a p i t a l with d
= 1 ( no superconcepts ) ” ;

vo id :exampleResource <example . com/ Ber l i n> ;
void:numberOfSubjects 3 ;
vo id :numberOfPredicates 1 ;
void:numberOfObjects 1 ;
vo id :numberOfTrip les 3 ;

Listing 5: A conceptual dataset description (:capital)

the connected or conceptual datasets. Furthermore, crisp
and fuzzy linksets also yield connectivity information of
semantic components. We believe that the techniques in-
troduced in this article simplify the annotation process for
Web-scale datasets and therefore encourage providers of
such datasets to adopt voiD.

For detailed findings and an analysis of the com-
plete BTC 2010 dataset as presented at the Interna-
tional Semantic Web Conference 2010, we kindly invite
the reader to visit our project website: https://www.hpi.
uni-potsdam.de/naumann/sites/btc2010. On this web-
site we also offer our tool voiDgen including its source code
and documentation for download. The tool allows users
to compute the various voiD information and statistics on
dumps of Linked Open Data as illustrated in this article.
Additionally, the tool facilitates the proposed extensions,
such as connected and conceptual partitioning.
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[5] C. Böhm, F. Naumann, Z. Abedjan, D. Fenz, T. Grütze,

D. Hefenbrock, M. Pohl, and D. Sonnabend. Profiling linked
open data with ProLOD. In Workshop on New Trends in In-
formation Integration (NTII), 2010.

7

https://www.hpi.uni-potsdam.de/naumann/sites/btc2010
https://www.hpi.uni-potsdam.de/naumann/sites/btc2010
http://kwijibo.talis.com/voiD/
http://kwijibo.talis.com/voiD/
http://www.w3.org/TeamSubmission/turtle/
http://www.w3.org/DesignIssues/LinkedData.html
http://www.w3.org/DesignIssues/LinkedData.html


[6] Billion Triple Challenge 2010 Dataset. http://km.aifb.kit.

edu/projects/btc-2010/, access: 08/2010.
[7] C. Bizer, J. Lehmann, S. A. Georgi Kobilarov, C. Becker, R. Cy-

ganiak, and S. Hellmann. DBpedia – A Crystallization Point for
the Web of Data. Journal of Web Semantics: Science, Services
and Agents on the World Wide Web, 7:154–165, 2009.

[8] K. Alexander, R. Cyganiak, M. Hausenblas, and J. Zhao. De-
scribing Linked Datasets with the VoID Vocabulary. http:

//www.w3.org/TR/2011/NOTE-void-20110303, March 2011. ac-
cess: 05/2011.

[9] L. Ding, J. Shinavier, Z. Shangguan, and D. McGuinness.
SameAs Networks and Beyond: Analyzing Deployment Status
and Implications of owl:sameAs in Linked Data. In 9th Inter-
national Semantic Web Conference (ISWC2010), 2010.

[10] H. Halpin, P. Hayes, J. P. McCusker, D. McGuinness, and H. S.
Thompson. When owl:sameas isn’t the same: An analysis of
identity in linked data. In 9th International Semantic Web
Conference (ISWC2010), 2010.

[11] C. Joslyn, B. Adolf, S. al Saffar, J. Feo, E. Goodman, D. Haglin,
G. Mackey, and D. Mizell. High Performance Semantic Factor-
ing of Giga-Scale Semantic Graph Databases. Contribution to
Semantic Web Challenge at ISWC, 2010.

[12] G. Klyne and J. J. Carroll. Resource Description Framework
(RDF): Concepts and Abstract Syntax. http://www.w3.org/

TR/2004/REC-rdf-concepts-20040210/, February 2004. access:
08/2010.

[13] OECD Glossary of Statistical Terms. http://stats.oecd.

org/glossary and http://oecd.dataincubator.org, access:
08/2010.

[14] Public Sector Information Catalogues Aggregator.
http://bagatelles.ecs.soton.ac.uk/psi/federator/, ac-
cess: 08/2010.
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