Relationship-Based Duplicate Detection

Melanie Weis and Felix Naumann
Institut fur Informatik, Humboldt-Universit zu Berlin
Unter den Linden 6, D-10099 Berlin, Germany
{mnei s, naumann}@ nf or mat i k. hu- berlin. de

Abstract

Recent work both in the relational and the XML world have shown that tfieaef and efficiency
of duplicate detection is enhanced by regarding relationships betweestarecand descendants. We
present a novel comparison strategy that uses relationships busekspbthe strict bottom-up and top-
down approaches proposed for hierarchical data. Instead, gaitgaxts at any level of the hierarchy
are compared in an order that depends on their relationships: Objectmaiith dependants influence
many other duplicity-decisions and thus it should be decided early if tleeghugplicates themselves. We
apply this ordering strategy to two algorithmsz&ONA allows to re-examine an object if its influencing
neighbors turn out to be duplicates. Here ordering reduces the naifech re-comparisons.ham A
is more efficient by not allowing any re-comparison. Here the ordeimimes the number of mistakes
made.

1 Introduction

Duplicate detection is the problem of determining thateaight representations of entities actually represent
the same real-world object. Duplicate detection is a nergdask in data cleansing [9, 16] and is relevant
for data integration [6], personal information managenjéhtand many other areas. The problem has
been studied extensively for data stored in a single relati@ble with sufficient attributes to make sensible
comparisons. However, much data comes in more complextstas; so conventional approaches cannot
be applied. For instance, within XML data, XML elements magkl any text. However, the hierarchical
relationships with other elements potentially provideuwgtoinformation for meaningful comparisons. The
problem of XML duplicate detection is particularly tacldim applications like catalog integration or on-
line data cleansing.

In this paper, we present a duplicate detection approaclkftic data, which, unlike the common
top-down and bottom-up approaches, performs well in pasehall kinds of relationships between en-
tities, i.e., 1:1, 1:n, and n:m. The basic idea has been quely outlined in a poster [20]. Basically, we
consider an object to depend on another object if the latthrstHinding duplicates of the first. For exam-
ple, actors help find duplicates in movies, so modependon actors, and actoisfluencemovies. Due
to mutual dependencies that can occur, detecting dupdicdtene XML element helps find duplicates of
the other, and vice versa. Therefore, algorithms such assg@dependencies to increase effectiveness by
performing pairwise comparisons more than once. The fottlsopaper lies on the efficient exploitation
of dependencies between entities. The contributions anersuized as follows.

Comparison order. We propose a comparison order that reduces the number cfssgae-comparisons,
while obtaining the same, optimal result as any other ordés. based on the estimated number of
re-comparisons of neighboring elements that become rege$she pair indeed were a duplicate.

Algorithm R ECONA. There-examining algorithn{RECONA), allows a pairwise comparison to be per-
formed more than once, and the proposed comparison ordecesdhe number of re-comparisons.
Experiments show that we save up to 90% of re-comparisomspared to other orders, hence it is
suited to increase efficiency.

Algorithm A baAM A. The second algorithm, Bam A, does not allow comparisons to be performed more
than once, so it is essential to perform the initial commarssin an order that misses few re-
comparisons and thus obtain good effectiveness. In expetsrour order yields up to 10% higher
f-measure than other orders.

Early classification is an extension to the algorithms, which computes an uppkadmwer bound for the
similarity measure and can thereby classify a pair as dafglior non-duplicate without expensively
computing the actual similarity. This extension saves Wgb% of pairwise similarity computations.

Constraint enforcement is an extension, which prunes comparisons by introducintstcaints. More
specifically, it prunes comparisons between elements thabtishare a common related element, a
valid constraint in 1:1 and 1:n relationships, therebyaesy a top-down approach where appropri-
ate. Applied to real-world data up to 99% of pairwise comguams are pruned.

We restrict the discussion to XML data, but the proposedrélyns apply to other types of data stored
in complex schemas, such as normalized relational datagks w

The paper is organized as follows: Related work is discugs&kc. 2. In Sec. 3, we provide pre-
liminaries, including definitions, the data structure we asid a motivating example. We show that the
order of comparisons is relevant and define a suited congradsder in Sec. 4. This order is applied to
ADAMA and RECONA in Sec. 5. Next, we present the two extensions in Sec. 6. ¢th Bave evaluate our
approaches before we conclude in Sec. 8.

2 Related Work

The problem of identifying multiple representation of a samal-world object, originally defined by New-
combe et al. [14], was first formalized by Fellegi and Surgr$ince then, the problem has been addressed
in a large body of work. Ironically, it appears under numeraames itself, such as record linkage [21],
merge/purge [10], object matching [9], object consolioiatj5], and reference reconciliation [7] to name
just a few.

Broadly speaking, research in duplicate detection fattstiwo categories: techniques to improve effec-
tiveness and techniques to improve efficiency. Researcheofotmer problem is concerned with improv-
ing precision and recall, for instance by developing sdjfated similarity measures. Examples are [7]
and [18], where the relationships among objects are usedgmive the quality of the results. Research on
the second problem assumes a given similarity measure aretbgs algorithms that try to avoid having
to apply the measure to all pairs of objects. An example istireed neighborhood method, which trades
off effectiveness for higher efficiency by comparing onlyemts within a certain window [10]. The main
contribution of this article falls into this second categare., we assume a given similarity function and
find an efficient order of comparison. In a first algorithmstbider is used to obtain the same effectiveness
(same results) as any order, but faster; in a second varefiinther enhance efficiency but at the price of
missing some duplicates. Both our extensions further rettue number of comparisons.

DATA DETECTION APPROACH
MODEL Learning Clustering Iterative
Singla05[17] | Chen05[5]Q) Dong05[71@)
Graph (Q) Lee05[12]Q,7) | REcONA/ADAMA(T)
Bhatt.05[2]@Q,7")
Anant.02[1]Q,T)
Tree Weis04[18]Q,T)
Puhlmann06[15]()
Bilenko03[3] Hernandez95[10[()
Table Q) Monge97[13]1)
Doan03[6] Chaud.05[4]Q, T)
(@ Jin03[11]()

Table 1: Summary of duplicate detection approachkieddcus on efficiency): focus on effectiveness)

In Tab. 1, we summarize several duplicate detection methmdisding those presented in this paper,
classifying them along the two dimensiodata modeland detection approach For the data model we
distinguish (i) data in a single relation, without multitwad attributes, (ii) hierarchical data such as the
hierarchical organization of data warehouse tables or Xleiadand (iii) data represented as a graph, e.g.,
XML with keyrefs or personal information management (PINtal[7]. The second dimension discerns
between three approaches that have been used to perforivademletection: (i) machine learning, where
models and similarity measures are learned, (ii) the usdustering algorithms, and (iii) iterative algo-
rithms, which iterate over the data to detect pairs of dagpdis, which in turn are aggregated to clusters
in a post-processing step, e.g., using transitive clostiab. 1 also shows whether an article focuses on
efficiency (1), effectiveness@), or both. We do not discuss all approaches in detail but fiex readers
to [22] for a broad survey. Instead, we limit the discussmthe approaches in [1] and [15], which—like
this paper—iteratively exploit relationships while haviefficiency in mind. We also discuss [7], which
proposes an effective iterative duplicate detection @lgarin graph data.

Using atop-down approactDELPHI [1] regards not only the immediate attributes of alge but also
their children and parents in a complex warehouse schenmaingtance, in the three sampieovi e>
elements in Fig. 1 one may detect that all three are dupsadgspite their different titles, using descendant
actors to compare movies, thereby increasing effectiwen@sthin the top-down approach, efficiency is
improved by limiting subsequent comparisons in descesdaniescendants that have same or duplicate
ancestors.

<novi e> <novi e> <novi e>
<title> <title> <title>
Troy Troja The llliad Project
</title> </title> </title>
<act ors> <set >
<name> <act or> <act or>
Brad Pitt Brad Pit Prad Pitt
</ nane> </ actor> </ actor>
<nane> <act or>
Eric Bana Erik Bana
</ nane> </ actor>
<act or > <actor>
Brian Cox Brian Cox
</ actor> </ act or>
</ act or s> </ set >
</ novi e> </ nmovi e> </ novi e>

Figure 1: Sample XML elements

This pruning technique is based on the assumption that tiferelit movies do not share actors, a
valid assumption if a 1:n relationship between movies aeit tictors held. However, actors usually star in
several movies, that is, the entities movie and actor ara im:a relationship. In this case, when detecting
duplicates in actors, actors starring in different movieswd also be compared. SXNM [15] ishattom-
up approachthat first detects duplicates at leaf level and prunes coisgas in ancestors if their children
sets are not significantly similar. SXNM is efficient by usigliding window approach (initially proposed
in [10]) over comparable elements on the same hierarchyl. leVbe bottom-up approach can thereby
efficiently detect duplicates among actors of different lesv However, the pruning of comparisons in
parents is efficient only if a 1:n relationship holds betwearent and child. The work presented in this
paper overcomes the limitation of a strict bottom-up or dapvn approach.

Dong et al. perform duplicate detection in the PIM domain biyng relationships to propagate similar-
ities from one duplicate classification to another [7]. Thaimfocus of their approach is the increase of
effectiveness by using relationships. In contrast, we entrate on increasing efficiency by using relation-
ships. Before describing our approach in detail we give sdafmitions and present an example of our
approach.

3 Preliminaries

3.1 Definitions

In our approach it is important to distinguish “candidatastl “object descriptions”, which define what en-
tities are subject to comparisons and what data to use fee tt@mparisons, respectively. These definitions
are used to define “influencing and dependent elements” ofemgiandidate. Afterwards, we formalize
the types of relationships between entities. Last, we pimgitemplate for a similarity measure that is used
to classify pairs of candidates as duplicates or non-da@i

CANDIDATES AND OBJECT DESCRIPTIONS. Inan XML document every XML element is considered to
represent an object, and every object can (but is not redjtodebe subject to duplicate detection, in which
case itis called aandidate To define a set of candidates, we specify a set of XPBths{p1, po, ..., pr. }-
Every path expressiop;,1 < i < k evaluates to a sequence of elemehis The set of candidates is
then defined agJ, ., ., F;. Every candidate is assigned abject description (OD)which comprises all
information considered during comparisons. We define Olrgjugueries parameterized by the candidate.
Details are beyond the scope of this paper, for which we refeiders to [19].

As a simple example, consider the XML elements of Fig. 1. Wadiethat movies, titles, and actors
(represented byact or > and<name> elements) are candidates. As Tab. 2 shows, movies are loedcri
by their title and their descendants representing actoupli€ate titles, in turn, can be recognized by the
movie they are subelement of and by their text node. Dugieators are determined by their text nodes
alone.

Candidate oD
novi e title,
./lactor union .//name
movie/title .. I movi e, ftext()
nmovi e/ /[actor, novie//nane Itext()

Table 2: Sample OD definition

INFLUENCING AND DEPENDENT ELEMENTS. Two candidates are compared by comparing their ODs,
so we say that the candidates are influenced by the elemeaht=ii©ODs. Formally, we define influencing
elements as follows.

Definition 1 Letc be a candidate instance and l&f(c) be the set of description instancescofThen, the
setl(c) of influencing elements of is I(c) := od(c).

We define dependent elements similarly.

Definition 2 Letc be a candidate instance; leti(c) be the set of description instancescofThen, the set
D(c) of dependent elements of€D(c) := {c'|¢' # c A c € od(c))}.

ENTITY RELATIONSHIPS. Up to now, we have provided only an intuitive definition of Jand m:n
relationships between entities. In this section, we givebeenconcise definition.

Definition 3 Two entitiest andt’ are in al:n relationshigf for a given instance of there can bel to n
influencing instances of and a particular instance of influences exactly one instancetof

For example<novi e> and<ti t| e> are in a 1:n relationship because a movie can have multiple
alternative titles, and the same title element can belohgtorone movie. Opposed to thathovi e> and
<act or > are in a m:n relationship, as defined below.

Definition 4 Two entities and¢’ are in anm:n relationshipf for a given instance of there can bd ton
influencing instances of and if a particular instance of influenced to m instances of.

THRESHOLDED SIMILARITY MEASURE. To classify pairs of candidates as duplicates or non-dafas;
we use a thresholded similarity approach. The details ohtitieal similarity function are not relevant in

this paper; here we provide a general template for the giityilammeasure that will be useful later on when
defining the early classification in Sec. 6. In our experiragne use the similarity measure defined in [19]
that complies to this template.

First, we define the séV.“f of duplicate influencing neighbors of a pair of candiddies’) as

wm

:Lf (C’ C/) =
{(n1,mn2)|n1 € I(c) Ang € UI(c') A ny,ng duplicate$

The setNZfo of non-duplicate influencing neighbors is

N;flf(c,)=
{(n1, L)|n1 € I(c) A ny has no duplicates if(c¢’)} U
{(L,n2)|n2 € I(c') A ny has no duplicates ifi(c)}
We further introduce a weight functian(S) with .S being a set of pair&;, n;) that captures the relevance

of a pair of element$n,n’) when comparing two candidatesc’, n € I(c),n’ € I(¢’). This weight
function has two properties:

w(S) = > w({(nin))}) (1)
(ni,n})€S
w({(n, L)}) + w{(L,n")}) > w({(n,n')}))

where_L signifies a null value, becausadoes not have a duplicate in this case. A simple example fdr su
a weight function isuv(S) = |5].
The final similarity measure has the following template:

w(NG (e, c))
w(N7, (¢, ¢)) + w(NE (e,)

3 m

3)

sim(c,c') =

Note thatin defining\f;f andN;, ¢ #, we assume that we already know thatandn, are duplicates or
non-duplicates. Although we do not know these sets injtitttle similarity measure is defined to increase
as this knowledge is gained during comparisons, so we canifjfawo candidates as duplicates after their
influencing neighbors have been classified.

The similarity measure obtains a result between 0 and 1.nGiveser defined similarity threshaldif
sim(v,v") > 6, v andv’ are duplicates, otherwise they are classified as non-duptic

3.2 The Data Graph

To support our algorithms and comparisons between objeetsisg an internal graph representation—
the data graph The data graph comprises three components, namely elemeites, text vertices, and
dependency edges. More specifically, an element veytéx created for every candidate. For every text
node in an OD, we create a text vertex We represent influence and dependence between elements
as directed edges in the graph. More specificallyplaend v’ be two object vertices. We add an edge
eq = (v,v’) directed fromw to v’ if v’ € I(v)L.

In the XML data of Fig. 1 it is obvious for human experts thdttatee movie elements represent a
single movie (Troy) and there are three distinct actors ¢Brat, Eric Bana, and Brian Cox). For ease of
presentation, we identify movies, titles and actors usingt;, anda;, respectively. To mark duplicates,
we us¢€, e.g.,m,m} signifies that the movies are duplicates. Figure 2 depietsigia graph, assuming
the OD definitions of Tab. 2. When considering the movig, the set of influencing neighboigm1) =
{t1,al, a2}, and the set of dependent neighb&&nl) = {t1}.

1I(v) denotes the set of influencing vertices of v, analogousli(tg that denotes the set of influencing elements.ob(v) is
defined similarly.

Troja The llliad Project

[Brad Pitf||Eric Bana) [Brad Pit][Erik Band] [Brian CoX [Prad Pitt] [Brian Cox

O element vertex I:] text vertex ldependency edge

Figure 2: Sample data graph

3.3 Example

To give readers an intuition of the discussion that followghe subsequent sections, we illustrate the
benefit of re-comparisons and show the importance of cosanrder on our example.

Assume that for pairwise comparisons, we decide to conpiles of candidates in the ordgm1, m1’),
(m1,m1"), (ml’,m1"), (t1,t2), (t1,t3), (t2,t3), (al,a2),...}. When comparingnl andml’, they ap-
pear to have no related object in common because actorstislitave not yet been compared, so we
conclude for now that they are not duplicates. The same ésftiuall other comparisons between movies
and between titles. Continuing along the list we start to para actors and find duplicatésl, al’),
(al,al”), (al’,al”), (a2,a2’), and(a3, a3d’). Knowing that movies depend on their actors, the similarity
of movies potentially increases due to shared actors. Scowpare movies again and find that they are
duplicates. As titles in turn are related to movies, we camfiles again, but do not find further duplicates.
The point is that by re-comparing movies after duplicateselated objects have been detected, we were
able to find duplicates where we could not before; hencepmeparing pairs can increase effectiveness.
In Sec. 5, we present two algorithms that are aware of thetffi@ttdue to cyclic dependencies between
entities it is useful to classify pairs of objects more thacea

Itis easy to see that if we had started by comparing actorsyoudd have saved re-classifying movies a
second time. Clearly, the order in which comparisons arlopeed influences the number of necessary re-
comparisons. Next we present a comparison order that redineenumber of necessary re-comparisons.

4 Comparison Order

The order is obtained by computing a ranfo, v’) for every candidate paifv,v’). Intuitively, r(v,v’)
estimates for every pair of candidateandv’ thenumber of re-comparisomecessary if the similarity was
calculated at the current processing state. We can redadettii number of re-comparisons by comparing
candidates in ascending orderrof

Calculation ofr takes into account both how often a p@airv’) is re-classified, estimated ;¢ (v, v'),
and how many comparisons of other pairs are triggered by(pait) if v andv’ were classified as dupli-
cates, estimated by, (v, v').

ESTIMATING OWN RE -COMPARISONS (ngeir): The integem,;r(v,v’) is an upper bound to the number
of times that the paifv, v") is re-classified. Intuitively, the comparison of pairs wéthhighn.;; value
should be performed as late as possible, at best after akimfing neighbors have been correctly classified.
The maximum number of re-comparisons(ofv’) occurs when every neighboring péit;, ns),ny no €
I(v) U I(v")is aduplicate and triggers the re-comparisoftofy’).

Using additional knowledge about pairs that are alreadyrio be duplicates and hence do not trigger
further re-comparisons, the worst case is reduced to treevelsre any influencing neighbor péit; , o)
that has not been classified as duplicate is a duplicate @ukts a re-comparison @b, v"). Following
that reasoning we define,.;;:

Definition 5 Letv andv’ be two object vertices and I&tv) and I (v’) be their respective sets of influencing
neighbors. Further, lef7) = {(n1,n2)|n1,ne € I(v) UI(v') A (n1,n2) classified}. Then

Nsetf (0,0") = ()] = |15) * (H@)] = 11T) (4)

By classified we mean that the pair is never re-classifiedeehecause it is a duplicate or because of
other constraints. Further details are provided in Sec. &w®ive apply the order to two algorithms.

ESTIMATING TRIGGERED RE -COMPARISONS (n¢rig): We definen,.;, in the same spirit as,; ;. When
comparing two object vertices andv’, the worst case is that all dependent neighbors not yetifitaks
as duplicates need to be re-classified as the similarityedf thfluencing pair(v, v') increases. Pairs with
a highn,,;, value should be classified as late as possible, becauserihggrtmany comparisons and
re-comparisons.

Definition 6 Letv andv’ be two vertices, and leb(v) and D(v’) be their respective sets of dependent
neighbors. Further, leDf) = {(n1,n2)|n1,n2 € D(v) U D) A (n1,n2) classified}. Then
Nirig(v,0") = (|D(v)| = [DF, o) * (ID@)] = DT, 1) (5)

(v,0")

ESTIMATING RANK (r(v,v’)): We use the two estimates above to calculate the estimateedital
number of re-comparisongv, v’) as

7(0,0") = Ngerf (V,0") + Nigpig(V, V") * Ngerf (v, V") ©)

The intuition behind this is that each time a pair (v,v') may teclassified, it may triggen,;rig re-
comparisons.

Applying this estimate- to the pairs of candidates used in our example, we obtainnitialiorder
shown in Tab. 3. Note that in general, pairs are not necégsaried by type.

pair h
(al,a2) 0+1%x0=0
(al,al’) 0+1%x0=0

(t1,t2) T+1%x1=2

(ml,ml1”) | 9+9x1=18
(m1,m1’) 12 +12*1 =24
(m1',m1”) | 12 +12*1 = 24

Table 3: Example for initial order

5 Comparison Algorithms

We present two algorithms,ER ONA and ADAM A, which use the ascending orderadnd exploit relation-
ships between objects for the purpose of duplicate deteciReCONA re-computes similarities between
two objects whenever there is a potential increase in siityildue to classified duplicates in their influ-
encing sets, until the result converges. In the casemMMA, re-comparisons are altogether avoided to
further increase efficiency.

In choosing the ascending orderiofs comparisons order, we basically want to compare objests fi
that have few dependent objects. In that case, if two obpretsletected to be duplicates, the ripple effect
to neighbors is low. Thus, a carefully chosen order helpsoidare-comparisons in BCONA, improving
efficiency. For AoAMA a carefully chosen order improves effectiveness, becaosgarison of objects
that are highly dependent on the status of their neighberpastponed until the status of their neighbors
has been determined.

Please note that in the following, text vertices are not meetd explicitly when discussing the algo-
rithms. Of course, whenever we have text available for a @igpn, we use it by computing its similarity
using edit distance in addition to dependencies, the maiusfof our discussion.

5.1 RecoNA: Allowing Re-comparisons

RECONA is based on the observation that detecting duplicates tbpatt may affect similarity and dupli-
cate classification on other objects. It is an exact algerithr solving the duplicate detection problem, in
that it guarantees to final duplicates as defined by the similarity measure and the ODs.

The algorithm has two phases (Listing 1). The initializatihase (lines 2-10) defines a priority queue
OPEN, which contains all pairs of candidates. The priority ordeIOPEN is the ascending order of
r. DUPSIs a set of candidate pairs and is used to keep track of fouptcates to avoid unnecessary
recomparisons, and to compute the ranithere the set of classified neighbor pairs (see Equationd 8)an
is the set of neighbor pairs that arefiiV P.S. CLOSEDIs the set of possibly re-classified pairs, i.e., a set
of pairs that have been classified as duplicates. Only theseqan be added ©PENagain. For duplicate
classification, we specify a similarity thresh@ldDuring the initialization phase, we also initialize theala
graphG by reading the XML data.

The comparison phase (1.10-19) compares pairs of candidatag a similarity measure complying to
the template of Sec. 3. As a reminder, to classify pairs oflicktes as duplicates, we use a thresholded
similarity approach, i.e., ikim(v,v') > 0 they are classified as duplicates. For recomparisons, it is
important to note thatim(v,v’) is a complex operation that increases with increasing coHoence in
the influencing neighbor sefgv) and/(v’). Detected duplicates are addedXPS(1.16) to ensure that
duplicates are never revoked in subsequent comparisomsegoently, similarity can only increase when
re-calculated, and the algorithm always terminates. Ngplicate pairs of dependent neighborsvadnd
v’ are fed back int@PEN (I.17) according to the proceduterdateOpen(v,v’) described in Listing 2,
because their similarity may yet increase.

procedure ReconA()
G: data G aph;
OPEN: priority queue of candidate pairs
ordered in ascendi ng order of r;
DUPS: set of duplicate pairs;
CLOSED: set of possibly re-classified pairs;
0: simlarity threshold;
Initialize G
Add all candidate pairs to OPEN;
while OPEN not enpty do
begin
(vi,vj) < OPEN. popFirst();
stm = stm(vi, vj);
if stim > 6 then
begin
DUPS := DUPS U {(v;, v;)};
updat eQpenReconA(v;, v;) ;
end
end

Listing 1: RECONA Algorithm

PO ©®~N®uhA®WNR

P

procedure updat eOpenReconA(Vertex v, Vertex v’)
D(v,v") = {(n1,n2)|n1 € D(v) Any € D(v') Any # na};
forall (ni,n2) € D(v,v") do

if (n1,n2) not € DUPS then
begin
Tupdate := T(n1,n2);
if (n1,n2) € OPEN then
OPEN. updat eRank((n1,n 2), Tupdate) ;
else if (ni,nz) € CLOSED then
OPEN. push((n1,n2), Tupdate) ;
end

Listing 2: Updating OPEN in RCONA

The procedureipdateOpenReconA(v,v') first determines the set of dependent neighbor pairs of
andv’ (1.2). Pairs inDUPSare not added back tBPEN, because they are already known to be duplicates.
If a pair is not inDUPS we distinguish two cases. In the first case, the potentallyed pai(ni,ns) is
already inOPEN, because it has not been classified yet, and we merely ugdatesition in the priority
queue according to the newly calculated rank. This is regurecause the value ofn,n2) depends on
duplicates amond(n;) andI(ny), and the neighbor paiw, v’) has just been classified as duplicate. In
case(ny, ng) is neither inOPEN, nor inDUPS (n1,ns) is pushed intdPEN

The complexity of RCONA is IV in the best caséy being the size oOPENat initialization. Note that
it does not necessarily contain all possible pairs if a fitiigtechnique is used prior to duplicate detection.
The purpose o£LOSEDis to avoid adding pairs to OPEN that were filtered beforaah#ation. The
average and worst case @éN?).

Let us examine how RCONA behaves using to sortOPEN Using the initial order of Tab. 3, we first
pop(al,a2) from OPEN. The pair is classified as non-duplicate. Next, we clagsifya1’), find that they
are duplicates, and add the pail@PS Now, we must add all pair&:;, ny) of depending neighbors to
OPEN, if they are not inrDUPSalready. To this end, we reestimatg:;, n,) and addn, ny) with a new
rankr(n1,n2) back toOPEN as defined in updateOpenReconA(). After comparing all actod titles,
we obtain, without any re-comparison yet,

OPEN= {(ml,ml’),r =2),((ml",ml"”),r = 2),

((m1,m1"”),r = 4)}
DUPS= {(al,al’),(al,al”), (al’,al”), (a2, a2’), (a3,a3’)}

After this, we find movies to be duplicates and consequeratiehio reclassify their titles. We see that
the number of re-comparisons usings less than the number of re-comparisons necessary wheg the
arbitrary order of the example in Sec. 3.3, thus, duplicateation is performed more efficiently while
achieving the same, optimal effectiveness.

Note that re-estimating resulted in reversing the relative order(ef1, m1”) to the other movie pairs.
Whereas in Tab. 3ym1,m1”) precededm1,ml’) and(m1’,m1”), it is now last nOPEN Of course,
reestimating is costly, so we also examine in the experiments an ordexdaltatic, which is independent
of duplicates found.

5.2 ADAMA: No Re-comparisons

ADAMA is defined similarly to RCONA using the order of-, but with an important difference: We do
not add candidate pairs ©PEN again once they have been classified, regardless of whétbemtere
classified as duplicates or non-duplicates. Thus, no psérwomparison is performed more than once
(Listing 3).

procedure AdamA()
G, OPEN, t, sim, DUPS as in ReconA
NONDUPS: set of non-duplicate pairs;
Initialize G
Add all candidate pairs to OPEN;
while OPEN not enpty do
begin
(vi,v5) < OPEN. popFirst();
sim = sim(vi, vj);
if sim > 60 then
updat eOpenAdamA(v;, vy) ;

NONDUPS : = NONDUPS U {(v1,v;)};

end

Listing 3: ADAMA Algorithm

Note that in the initialization phase we declare anotheofeandidates, namelMONDUPS which
contains all pairs classified as non-duplicates. It is useprévent recomparisons and to compute the
rank » where the set of classified neighbor pairs is now defined asdfghbor pais not ilDUPS and
not in OPEN. For ADAMA, the order in whichOPEN is initially sorted is important to increase the
duplicates found without re-comparisons. If we choose tiw prder used in Sec. 3.3, we would find only
duplicates among actors, because we do not reconsider snd@ie the other hand, if we take the better
order actors, titles, and then movies, we find all duplicat#lout re-computing any similarity. We see
that when a pair's similarity is below the threshdldit is added taNONDUPSand is never reconsidered
for re-comparisons as defined updateOpenAdamA(kee Listing 4). WithinupdateOpenAdamA(ye
update only ranks of pairs that are still@PEN. Clearly, by not allowing re-comparisons, the complexity
of ADAMA is N.

© ® N U N WN R

procedure updat eOpenAdam(Vertex v, Vertex v’)
D(v,v") = {(n1,n2)|n1 € D(v) Ans € D(v') Ani #na};
forall (ni,n2) € D(v,v") do

if (n1,n2) not € DUPS UNONDUPS then
begin
Tupdate := T(n1,n2);
if (n1,n2) € OPEN then
OPEN. updat eRank((n1,n 2), Tupdate;
end

Listing 4: Updating OPEN in AAMA

6 Extensions

Up to this point we have introduced two algorithms that perfpairwise comparisons between candidate
duplicates. As mentioned earlier, filtering techniques lsamised to reduce the size of the initial priority
gueue. In this section, we present two techniques to prumgansons during the comparison phase of our
algorithms to further increase efficiency by (i) avoidingrmqautations of the complex similarity measure
using early classification and (ii) avoiding pairwise com@ans using constraint enforcement.

6.1 Early Classification

Early classification calculates an upper and a lower bouittgetgimilarity of two elements to classify pairs
as duplicates and non-duplicates without actually compgutie similarity measure.

In definingNﬁlf andNZflf for the similarity measure in Sec. 3 we assume that we alrkaoly for any
influencing neighbors; andns whether they are duplicates or non-duplicates. In the abfy@ithms,
we do not have that information at initialization, becauseandns have to be compared first. However,
we can approximate these sets during the comparison phaiged, when coming to classifyandv’, we
have already performed classifications, and we can deteragetS,,,q¢c1 (v, v") € N7 f(v, v') of already

classified influencing neighbor pairs that are duplicatesvell as a se$,, o, match(v,0) € N;if(vv v'). As
comparisons proceef,, ..., approaches the final, andS,onmaqtcn approaches_.. We further know the
remaining comparisons summarized in the $gt.iqssi riea. Using these sets, we define an upper bound

fu(v,v") and a lower bound; (v, v') to sim(v, v'):

w(Smatch) + w(Sunclassified)
u = 7
f w(Snonmatch) + w(Smatch) ()
wW(Smate
fi= (Smateh) 8)

B w(Snonmatch) + w(Smatch) + w(Sunclassified)

If f. < 6 we can classify the pair of objects as non-duplicates witlfther comparing influencing
elements. Iff; > 6 we can classify the pair of objects as duplicates withouthfircomparing influenc-
ing elements. Early classification is an exact pruning teglewith respect to any similarity measure
complying to Equation 3, because the final classificatiohéssame as the one obtained without pruning.

We now sketch a proof for the correctness of the upper andrltwoand tosim. We know that
Smaten(v,0") C N;f(v,v’), hencew(Satcn) < w(N;f). Furthermore,

Snonmatch < fol , S0 it is also true that)(S,onmaten) < N;flf. According to the first property defined

in Sec. 3.1, we also know that any pair that is]‘i/'r;ﬁf but not in S,,,.¢c results in a higher weight of

Sunclassified OF Sunmatched, depending on where it is. However, it cannot be in both. €quoently,
w(Smatch) + w(sunclassified) (Nzif)

> w
and w<Snonmatch) + w(Smatch) S w(NZTLf) + w(N;if)
= fu > sim

10

Similarly,

w(Sunclassified)
+w(Snonmatch)
+w(S7natch) > w(N;,f) + w(Nznf)
and w(Smatch) < w(N;Lf
= fi < sim

Implementing the early classification extension is strdagivard. We do not have to compute bounds for
similarities at initialization, becaus®,,.:cr, = {} andSyonmatcr = {}. HeNce, we compute the range and
check if we can perform early classification only when we @ersadding a pair t€©PEN again during
the comparison phase. As we have seen earlier, adding adeéadhiair(v, v') back toOPEN can either
mean to update its rank{v,v’) if (v,v’) is already iINOPEN, and if not, adding it again. Because an
update ofr can occur in RCONA and ADAM A, the filters can be applied to both algorithms. However, it
is interesting to note that filtering using the upper boundbisapplicable to RCONA. Indeed,S,,onmatch

is always empty because we are never sure that a pair is mtassified, hence,,cq4ssi ried CONtains all
neighbors not inS,,.:c,. Except at initialization wheré,,,.... = {} and f,, is thereby undefined, we
note thatf, > 1 at any time, and therefore never filters any pair. In the cAgeDBMA, S, onmatch IS
not always empty. If the filterf,, classifies a pair as non-duplicate, we add iNNONDUPS For both
algorithms, if a pair is classified as duplicate according;tave have to add its depending neighbors to
OPENas well. Also note that the filter may have an influence on coispa order because as duplicates
get classified their dependent neighbors’ rank changes.

6.2 Constraint enforcement

We have seen in Sec. 3 that for 1:1 and 1:N relationshipstritiesthat there is exactly one possible child
for a same parent or there is a set of children that can belomyly a single parent. In this scenario,
efficiency can be greatly improved using a top-down apprddchro reestablish a top-down approach
when applicable, we introduce an additional constrainbhédata graph as a new type of edge.

Definition 7 A dependency edgedirected from a vertex to a vertext is marked asnandatory edge if
its sources requires that its target is equal or similar between candidate duplicates.

In our implementation we define a functitmolean isCandidate(v,y"which is called before every
potential insertion intdPEN, i.e., at initialization and during comparisons. We firseck whether any
out-edge ofv or v’ is a mandatory edge. If there are mandatory out-edges, vify teat they share all
targets. If they dojsCandidate(v,v") returns true, otherwise false. If it returns false, the jsaiot added
to OPEN In our experimental evaluation, we show the savings in $esfrtomparisons are very high.

7 Experiments

In this section, we evaluate the performance of our ordermpared to other orders in terms of efficiency
(by reducing the number of pairwise comparisons ECRNA) and in terms of effectiveness (by missing
few duplicates in dAMA). Furthermore, we compareER ONA and ADAM A with each other in these two
dimensions. Finally, we evaluate early classification amstraint enforcement.

7.1 Three Data Sets
7.1.1 Artificial Data with Interdependencies

We generate artificial data, which has the advantage of tammius to vary several parameters that we
can take into account for our experiments on re-comparisdfare specifically, we evaluate the order
defined by rank:, ADAMA, and RECONA as well as early classification on artificial data and we \they
interdependence that exists between candidates. Furbherme can easily measure recall and precision
because we know all true duplicates in the data.

11

We generate an artificial data graph consisting of two tyfedements, namelyxa> and<m. Each
<a> depends on its text node containing an actor name (extrécteda set of actor names from IMDB
known to be non-duplicates), and a variable numbemof elements that represent movies. Similarly, each
<P depends on its text node, generated to contain a moviedigiairf extracted from a set of titles from
IMDB known to be non-duplicates), and a variable numbexa@$ elements. To generate dependencies
betweer<a> and<n elements, we use two parameters: (i) the inteivathich defines how mangn
elements have at least ona> by the formula number ofn® /i, and (ii) the connection degregm (short
for “actors per movie”), defined as the average numbetasf elements influencing ann® selected by
1. Relationship edges betweem® and<a> are added in both directions, so that> depend or<a>
and vice versa. To each of the clean vertices, we create é&dtgthat can contain typographical errors
or contradictory data, i.e., data not recognized as sirbjaour text similarity measure. The errors are
not mutually exclusive. In the example shown in Fig. 3, weehav= 1 andapm = 2, meaning that
every<nme has two associateda>. In the generated duplicates, we have two out of eight tedeaavith
typographical errors, i.e., typos were introduced with 2&%bability. The same is true for contradictory
data.

Good Good | rs=—mnd [liiiad

[Dogmal | Wil Ocean's| 7, Dogma Hill
g Huntlng Eleven - m Cllmb/ng Eleven Pro;ect

Ben Brad Erlc Ben Matt Brad Erlc
Affleck Damon Pitt Bana Affleck| | Diamond Pit Bana

I:] Typographical error |:| Contradiction

Figure 3: Sample artificial data graph

We generate two data sets using the graph generator. Therigstcalledsmall data graph (SG)
consists of 400 vertices with non-empty text node from wHiéB are clean actors, 100 are clean movies,
and each is duplicated once. Tlheger data graph (LGkonsists of 250 clean actors, 250 clean movies, and
one duplicate of each, i.e., 1,000 vertices, none of whichdmempty text node. Relationships between
<a> and<n® nodes are varied usingand apm. In the experiments shown, typographical errors and
contradictory data are introduced with a 20% probabilitptéNthat using these data sets, bothcRNA
and ADAM A perform at least 39,800 (249,500) pairwise comparisomgusG (LG).

7.1.2 Real-World Data with Hierarchical dependencies

When re-comparisons are not the primary concern of the axpets, we can use real-word data that
contains few interdependencies. The constraint enforneextension, that allows us to enforce a top-down
approach when applicable, can be applied on these dataFsmtshis purpose, we reuse two real-world
data that we previously used in [19].

The first data set comes from the CD donfaind is referred to as CD. Dependencies (on schema level)
are shown in Fig. 4(a). We extracted 1272 entities and vdrifianually that they contain no duplicates.
We then added a duplicate to every entity, giving us a totailver of 2544 entities to compare. Duplicates
were artificially added to the clean CD data sample usingtg diML data generator. This way, we can
easily measure recall and precision.

2nttp: // www. freedb. or g/

12

We also use a data set from the movie domain, dubbed MOVIEchwéxclusively consists of real-
world data. It was obtained by integrating data from two neavata sourcésand duplicates are due to
two representations of a movie, each from one of the sourtles.data set we consider here consists of
2140 entities and 8796 dependencies. The dependencies ddith set are depicted in Fig. 4(b) at schema
level.

In both real-world data sets, we have some mutual deperefeneig., between movies and actors.
However, due to the small size of the data set, a movie hasclonsabut an actor is rarely associated with
more than one movie. Hence, the number of potential re-casges is negligible. As for the other mutual
dependencies, they can be defined because we have a 1.anshéti between the elements, e.g., a track
list exists for one CD only and a CD has only one track list,alhagain results in negligible number of
recomparisons. Consequently, a top-down approach igdsuitecrease efficiency, and mandatory edges
are added as depicted in Fig. 4(again at schema level). Wenasthat the domain-expert is capable of
placing mandatory edges at appropriate positions in the ¢édBraa.

?/‘m

dISC l—— dtitle | ‘Prod com H movie

Figure 4: Relationships in MOVIE and CD

7.1.3 Real-world Data with Interdependencies

As real-world data with interdependencies, we used the Hetreled Cora dataset, which is provided
by McCallum and has previously been used by [7, 17] and oth&ee XML version of the data we
created from the downloadable fileontains 1643publ i cat i on> elements, which nestvenue>,
<titl e>, and<aut hor > elements. Venues in turn neshanme> elements. The elements refer to 174
distinct publications, i.e, a publication is cited 9.4 tsnen average. In addition to the readily labeled
duplicate publications, we labeled roughly 30% of dupkcetnues, as well. The venues being nested
under publications, only a single publication influencesaue. We did not add foreign keys to relate a
venue to other publications.

The schema of the data graph and the dependencies usedhbubuyr experiments are shown in
Fig. 5. We justify the choice of dependency edges as follddaving labels for publications and venues
only, we consider publications and venues to be the carefidstinterest, whose interdependence is con-
sidered by having mutual dependency. The other entitie®rigeconsidered to help find duplicates in
publications. Once a duplicate has been detected in ptiblisa we are not interested in finding more
duplicates among titles and authors, because they willriggfdr any other re-comparison of publications.
Consequently, we do not add dependency edges back froratitileor) to publication.

venue|| title | author

Figure 5: Relationships in CORA

Shttp://ww. i mdb. comandhttp://filmdienst.kiminfo.de/
4http://www.cs.umass.ediiccallum/data/cora-refs.tar.gz

13

7.2 Competing Orders

The first series of experiments aims at showing the influehoeder in both RECONA and ADAMA.

In addition to the order defined by rankdenoted , we use the three additional orders of Tab. 4. The
orderr - st ati c is defined similarly ta , but does not take into account previously detected dupkca
Hence, there is no need to update it when callipglateOpen(Yboth for ADAMA and RECONA). It
basically keeps the order thatgives at initialization.r - | i ght is defined as the order obtained when
using the ascending order of;4r; = |D(v)| * |D(v’)|. It thus can be considered a static version of
Nerig (OF ngerp, because the graph generate&)| = D(v)). Itis considered a small simplification of
r-static. Finally, fifo simply takes comparable pairs (meaning of same schema ityple¢ order
they appear in the input data. This is a fairly random order.

Order Description
r the order obtained using ramk
r-static | orderr atinitialization
r-1ight | orderdefined byD(v)|x |D(v")]
fifo first-in-first-out

Table 4: Comparison Orders

ORDER AND RE-COMPARISONS FOR RECONA. For RECONA we evaluate the number of re-comparisons
that are performed using the different orders describedin 4. Results for data séGare shown in Fig. 6
for connection degrees epm = 1, apm = 3, apm = 7, andapm = 10 ((a) through (d)).

" 4512 ” 700

g 2k £ e00f

2 35k r-static 2 500p+

g o fifo - - - S 4001

§ oo MO § 3001

8] | \

Q \ N\

H* N
4567 910
interval

@ apm=1 (b) apm =3

12345678910

12345678910
interval interval

) apm =17 (d) apm =10

Figure 6: Recomparisons usingeRONA

The graphs show the number of re-comparisons necessargfegmconnection degree and a varying
intervali. We observe that for large valuesiothe number of re-comparisons is generally low but increase
with increasing connection degree, meaning with decrgais{as more<n® get actors) and increasing
apm. This is easily explained by the fact that the highethe less mutual dependencies we have, so the
less re-comparisons are possible. Similarly, the higherctinnection degree, the higher the number of
re-comparisons necessary when duplicates are detecteé.iMerestingly, we also observe in Fig. 6 that
orderr performs significantly less re-comparisons than otherrsrdenapm ands: represent a significant
degree of connectivity. Indeed, for lowpm (a), we do not observe a significant difference, however as
apm increases ((b) through (d)) the benefirabver other orders increases fox 4. This shows that is a
well suited order to reduce the number of recomparisons EmdNA. In this scenario, we also observe that

14

r-static does not provide a significantly better order thar i ght . This can be explained by the fact
thatr - st at i ¢ orders candidate pairs similarlyte | i ght , because the in-degree and the out-degree of
every vertex is generated to be equal. Hemeest at i ¢ is essentiallyr(- | i ght)2.

The same behavior can be observedlL@) as shown in Fig. 7. Again we observe that for small
intervals,r performs better thahi f 0. At i = 1, the difference of 90% in the number of comparisons
signifies that performs only 10,667 re-comparisons instead of 115,260d(@» = 20). However, the
decrease in benefit of overf i f 0 is very steep, at intervals as small as 4, we already obseatéitf o
is better tharr . Put in perspective, the -60% for pm ati = 8 represent 530 re-comparisons only.
For such small variations in the number of re-comparisoresda not observe a significant difference in
processing time, as Fig. 7(b) shows. For instance, the tifferehce fori = 8 is less than a second for
20 apm, in favor ofr , opposed to the difference in re-comparisons wiiéreo performed better. On the
other hand, for 3@pm andi = 1, we save 34 seconds by using

2]

c

@ 1§8 apm = 10mm 50

g 60 apm = 20 E40

£ 40 apm = 30mmm = 30

8 20 0320

? 0 n_ m 10 I I

2 20 | l 5 o _=

» -40 < -

S -60 0 |

X -80 4} 20— ‘f
|nterva interva

(a) Comparison difference (b) Time difference

Figure 7: Comparing andfi f o onLG

From this set of experiment we conclude that (i) the ordemeefiby rank- outperforms other orders
when the entities strongly depend on each other, which waslated by using small intervals and large
connection degrees, and (ii) when entities do not strongpedd on each other, the difference in terms of
saved comparisons and hence efficiency is not significant.

ORDER AND EFFECTIVENESS FOR ADAM A. We reuse the same graph generator and orders asfor R
CONA and perform experiments on bo8GandLG.

For SG we have measured the f-measure for the different ordergerdals varying between 1 and 10
for a connection degrees of 10 actors per movie. We obseate tbbtains highest f-measure in roughly
80% of all intervals tested for < ¢ < 4. The interval between = 1 and: = 4 is the interval where
the difference in the number of missed re-comparisons usimgm A is highest (e.qg., Fig. 6(d) shows the
difference forg = 0.7). As representative results, we show the graphs ferl andi = 4 in Fig. 9. They
show the f-measure obtained using#v A and different orders for different similarity thresho{¢s) and
(c)), and the corresponding difference of f-measure betwarderr and order - st ati c, as well as
betweerr andfi f o((b) and (d)).

N
ST

[—

| r-static

K fifo - - -
8 8
82 t?lresho?d 09 83 t%reshon 09
(a) f-measure; = 6 (b) f-measure; =7

Figure 8: AbAM A Effectiveness (large i)

Fori > 4 the orders miss roughly the same amount of re-comparis@@eRentative results are shown
in Fig. 8 fori = 6 (a) andi = 7 (b). We observe that the ordr f 0 starts behaving indeterminably and is

15

sometimes better, sometimes worse that the other ordersr&\iurrently investigating on the reason for
this irregular behavior, and want to find out what makes fifttdvén some cases. Opposed to that random
behavior, we observe thatandr - st at i ¢ degrade gracefully.

100¢ S 6 r - r-staticemmm
=90 8 5 r - fifo
& 80 5 4
@ 70 N Eu;) 3
S 60| r— £
@ 50}~ r-static T2
g 40 fifo - - - 51
7]
« 30 ©
o 0
20 g
'8 © b 3040505070500]
4 05 0.6 0.7, 0.8 0.9-0.304050.60.70.809 1
t%reshold threshold
(a) f-measure; = 1 (b) f-measure differenceé,= 1
g
s 5
2 4
()
o 3
=
T 2
[0
51
N @
N > 0
]]]] 1S

8205 0.6 0.7 0.8 0.9« 930.4050.60.70809 1
threshold threshold

(c) f-measure; = 4 (d) f-measure differencé,= 4
Figure 9: AbAM A Effectiveness (small)

Throughout our experiments, we observed that usiag order obtains better f-measure in most cases
where the number of missed re-comparisons when usibgvA is significant. However, the benefit in
f-measure obtained usimgin ADAMA is less than the benefit in efficiency when usingh RECONA. For
example, in Fig. 7, we see that fapm = 20 andi = 1, 91% of re-comparisons have been saved using
at threshold = 0.7. In all experiments of effectiveness fomAM A, we in fact never observed a benefit
in effectiveness of using overf i f o larger than 10%. This shows that in the additional reconspas
other orders perform comparedstothere are not proportionally more duplicates.

COMPARISON OF ADAMA AND RECONA. We now evaluate AAMA against RECONA in terms of
effectiveness and efficiency. We expect tha®NA is more effective than AAMA because it allows re-
comparisons. On the other hand, the recomparisons repasstly comparisons and we expecbAv A

to be faster than RCONA. We again usd.G and vary the connection degree defineddpyn and the
interval between movies having actors. In terms of effectass, RCONA obtains the same recall and
precision for different orders (at different cost, thoughiich is higher or equal to the precision and recall
obtained using AAMA with any order. This is shown in Fig. 10(a), where the f-m&ass plotted for
ordersr andf i f o applied to AbAMA as well as for RCONA in function of the interval. The chosen
similarity threshold is 0.7, an@dpm = 10.

We observe that the difference in f-measure betweeadA and ADAMA usingr orf i f o behaves
similarly to the number of re-comparisons that have beersedis That is, for increasing interval, the
difference between the result obAM A and RECONA decreases, just like the number of re-comparisons
performed by RCONA and missed by AAM A decreases with increasing interval.

Clearly, we obtain better effectiveness by using reconspas. In Fig. 10(b), we show the time needed
for RECONA and ADAMA using the same order r. We observe that the time is simileaming that a
significant overhead due to re-comparisons f&@CRNA cannot be observed. This is explained by the
fact that the number of re-comparisons performed IBC8NA is a very small fraction of the number of
pairwise comparisons performed by bota®NA and ADAMA. Indeed, to compare the 1,000 vertices in
the graph, we have to perform 249,500 comparisons, so fongbeethe 3,151 re-comparisons additionally
performed by RCONA ati = 1 represent only 1% of additional comparisons.

16

100 AdamA, rmm 12,
.95~ AdamaA, fifo 11 AdamA, r—
S 90 105 AdamaA, fifo
T g5 g " ReconA- - -
2 80 i
g 75 5
o 70 g

65 5 s 1

60 1

1 2 4 8 16 3264128 .
interval interval

(a) f-measure comparison (b) time comparison

1 2 4 8 16 32 64128

Figure 10: Comparison of BaM A and RECONA

7.3 Early Classification

We evaluate our early classification techniqueSgh In Fig. 11, we see the selectivity of the early classi-
fication extension obtained using the extension @t&NA (a) and ADAMA (b) with apm = 10,60 = 0.7
and varying intervals. The selectivity is defined as theorafiearly classifications (that would otherwise
have update@PEN) to the total number of updates. Note that facdONA, only the lower bound applies.

45 40
40 4 ap M. 35
X 35 S 30
<30 S
2 225
=3
315 215
210 $ 10
b d M, oL A
01234567 891011 01234567 891011
interval interval
(a) REcoNA (b) ADAMA

Figure 11: Early Classification

We observe that for increasimgm and decreasing interval (i.e., with increasing interdeleeice), the
lower bound becomes less selective and soon reaches 0%wsglethis has two reasons. First, the more
apm, the less significant a duplicate in the set of descriptiats.g-or example, atpm = 1, assuming a
unit weight for any dependence, we hafje= 1/2 when the actors are not known to be duplicates. (we
consider the text node to be similar, hence, the only diffeeeis the actor). After having identified that
the actors matchyf; = 1, which represents an increase of 0.5 per duplicate founufluneincing actors. For
apm = 2, f; = 1/3 and increases t®/3 when the actors are classified as duplicates, i.e., andaseref
only 1/3. Sincef; is still below the similarity threshold of 0.7, we would haedfind the other pair of actors
to be duplicates and to re-classify the movies a second tirhe fable to classify them as duplicates using
/1. This however, is avoided by the second reason: by usingrther b, we avoid re-comparisons so the
comparison of the above pair is postponed until the act@zlassified. Hence, premature classification
using f; gets no chance to consider a pair before the classifier dseff it.

Let us now consider how early classification performs farafd A. In this case, we can use both the
upper and the lower bound. We see that the selectivity of edaksification on AAMA increases with
increasingypm and reaches selectivities of up to 35%. On this small dataveadid not observe significant

differences in processing time (neither better nor worga)jraexplained by the fact thatprovides a good
ordering that generates few update ©IREN.

7.4 Constraint Enforcement

The principle of increasing efficiency and possibly effeetiess has already been shown elsewhere[1, 18],
here, we want to focus on the fact that the extension of caimstenforcement can enforce top-down and
the ensuing efficiency gains when applicable. This is ofesttbwn in Fig. 12.

17

< 8000 constrain

no constraint —
5 6000 L 100
£ £
IS
5 4000 £ 500
#* 2000

0 0
D MOVIE CD MOVIE
data set data set
(a) Comparisons (b) Time

Figure 12: Effects of Constraint Enforcement

7.5 The CORA Dataset

We use the Cora data set to evaluate our approach againgiygepproaches. Due to the large number
of element pairs, it is impractical to compare them all. We aslocking technique to drastically reduce
the number of pairwise comparisons to 1.9% of all possiblagarisons, without pruning a significant
number of true duplicates. The remaining pairs are comgastdusing RRCONA and ADAMA, and order

r. RECONA performs 34983 recomparisons, which represent 3.5% opewisons performed by BamA.

Approach Runtime Recall Precision F-measure Recall Precision | F-measure
Publication | Publication | Publication Venue Venue Venue
[ADAMA N 83.3% 89.3 % 86.2 % 16.8 % 100 % 28.8 %
| RECONA O(N?) 83.3% 89.3 % 86.2 % 88.7 % 72.6 % 79.8 %
Standard [17] N 89.7 % 85.3 % 86.9 % 36.0 % 75.4 % 48.6 %
Combined Polynomial 86.1 % 87.1% 85.8 % 85.7 % 88.7 % 86.5 %

Learning [17]

[Standard [7] N 91.3% 98.5 % 94.8 % 36.9 % 98.2 % 52.9 %
| DEPGRAPH [7] O(N?) 92.4 % 98.5 % 95.4 % 71.4% 83.7 % 77.1%

Table 5: Comparison of Results on Cora dataset

In Tab. 5, we summarize the results of ®NA and ADAMA and results on the cora dataset reported
in [17] and [7], two approaches that use relationships toeiase effectiveness. Within these papers, the
authors also compared their results to the standard agptiacdoes not use relationships, which we name
Standard AbAMA performs the same number of comparisons as Standard,Kag ¢tare in choosing a
good order for comparisons by usingBold results in Tab. 5 are part of the discussion below.

PUBLICATIONS . We observe that BAMA and RECONA obtain the same result in terms of effective-
ness when considering publications. That is, by choosingitacscomparison order, we are able to be as
effective as more complex algorithms (runtimeN). The results are comparable to those in [17]. The
results in [7] are better for both the standard approach la@@pproach using relationships. The standard
approach already being better indicates that the simjlaniasure used is better than ours, because the
comparisons that are performed are the same.

VENUES. Effectiveness for venues, measured on the 30% of venuesnegadad is low compared to
the effectiveness of other approaches that use the statetdmoique. This may be due to (i) a poor simi-
larity measure, or (ii) the fact that we did not link a venualiqpublications, but only to the publication it
is nested in. That is, venues whose only publication has @en lidentified as duplicate are unlikely to be
classified as a duplicate. By increasing the number of patitins per venue, it is more likely that publica-
tions are shared, which increases their similarity. We scisfhat the second reason is the cause, because
the recall for venues obtained byeRONA outperforms the recall for venues of other approachesvailp
re-comparisons. In that case, venues are simply re-comh@ar¢heir related publication is classified as
duplicate. The re-comparisons performed byd®NA only represent an overhead of 3.5 % compared to
ADAMA, hence, efficiency is not compromised. These promisingltesvill be verified on the complete
data set in the near future.

18

8 Conclusion

In this paper we presented a novel duplicate detection apprfor XML data, which, unlike the common
top-down and bottom-up approaches, performs well in pasehall kinds of relationships between en-
tities, i.e., 1:1, 1:n, and m:n. The comparison strategy vesgnted considers pairwise comparisons in
ascending order of a rank, which estimates how many pair$ bauseconsidered if the original pair was
classified at the current processing state. We appliedtifaitegy to two algorithms: RCONA uses the or-
der to classify only few pairs more than once, whereagMA does not perform re-comparisons and uses
the order to miss few re-comparisons and therefore potbnteav duplicates. We further presented two
extensions to the algorithms: Early classification redulesyumber of complex similarity computations
by computing an upper and lower bound to the similarity meathat can be used as filters. Constraint-
enforcement is used to benefit from a top-down strategy wipplicable, by enforcing that influencing
elements are required to be duplicates in order for a catedjuir to be duplicates.

Experiments showed that the order obtained using ascendénery effective in reducing the number
of re-comparisons for RCONA, given a high interdependency between entities. For Iderdependency
there are only few possible re-comparisons, so the difterdsetween the orders is not significant for
efficiency. When applied to Bam A we observed that the order usingerforms slightly better in terms of
recall and precision than other orders for high interdepanyg However, the benefit in effectiveness is less
than the benefit of saved re-comparisons BECRNA, which shows that additional re-comparisons induced
by other orders do not find proportionally more duplicates.eWhomparing RCONA and ADAMA we
observe that the more re-comparisons are missed VA4, the larger the difference is between the f-
measure achieved byERONAWhen evaluating our extensions we observed that the satgativearly
classification is moderate, because it applies only to repagisons, which do not occur frequently when
using orderr. As for constraint enforcement, we showed that we can stgmifly improve efficiency
by enforcing top-down when appropriate. On the real-wontteCdataset, we observed that our solution
is competitive with other, possibly more complex solutioasd that re-comparisons do not jeopardize
efficiency while greatly improving effectiveness.

Future work will include further validation both on the Catataset and a large real-world data set
for which we are currently manually (and tediously) deterimg all duplicates. In order to apply our
algorithms on this data, we will also address scalabilgyés. We will also further investigate on increasing
effectiveness, which was not the goal of this research. Aerésting research issue we plan to tackle is
how to resolve the conflicts between nested XML duplicatasbtain clean XML data.

Acknowledgment. This research was supported by the German Research Sdbiey grant no. NA
432).

References

[1] R. Ananthakrishna, S. Chaudhuri, and V. Ganti. Eliminating fuzzylidates in data warehouses.lirternational
Conference on Very Large Databases (VLDB)ng Kong, China, 2002.

[2] I. Bhattacharya and L. Getoor. Relational clustering for multi-typatgmesolution. Workshop on Multi-
Relational Data Mining (MRDM)2005.

[3] M. Bilenko and R. J. Mooney. Adaptive duplicate detection using lelalen string similarity measures. In
International Conference on Knowledge Discovery and Data Mining (KMzashington, DC, 2003.

[4] S. Chaudhuri, V. Ganti, and R. Motwani. Robust identification of fudzplicates. InProceedings of the
International Conference on Data Engineering (ICDEYkyo, Japan, 2005.

[5] Z.Chen, D. V. Kalashnikov, and S. Mehrotra. Exploiting relationstigr object consolidation. IBIGMOD-2005
Workshop on Information Quality in Information SysteBaltimore, MD, 2005.

[6] A. Doan, Y. Lu, Y. Lee, and J. Han. Object matching for informatiategration: A profiler-based approach.
IEEE Intelligent Systems, pages 54-2003.

[7] X. Dong, A. Halevy, and J. Madhavan. Reference reconciliaticcomplex information spaces. International
Conference on the Management of Data (SIGM(E3Itimore, MD, 2005.

[8] I. P. Fellegi and A. B. Sunter. A theory for record linkagleurnal of the American Statistical Associatjdi969.

19

El
[10]
[11]

[12]

[13]

[14]

[15]

[16]

[17]

(18]

[19]

[20]

[21]

[22]

H. Galhardas, D. Florescu, D. Shasha, E. Simon, and C. Saidafaéve data cleaning: Language, model, and
algorithms. Ininternational Conference on Very Large Databases (VLBpes 371-380, Rome, Italy, 2001.

M. A. Hernandez and S. J. Stolfo. The merge/purge problem for large datathaseternational Conference on
Management of Data (SIGMODpages 127-138, San Jose, CA, May 1995.

L. Jin, C. Li, and S. Mehrotra. Efficient record linkage in largéedzets. Irinternational Conference on Database
Systems for Advanced Applications (DASFEA@)oto, Japan, 2003.

D. Lee, B.-W. On, J. Kang, and S. Park. Effective and sdalablutions for mixed and split citation problems
in digital libraries. INSIGMOD-2005 Workshop on Information Quality in Information Syst&akimore, MD,
2005.

A. E. Monge and C. P. Elkan. An efficient domain-independégurithm for detecting approximately duplicate
database records. BIGMOD-1997 Workshop on Research Issues on Data Mining and ll€dges Discovery
pages 23-29, Tuscon, AZ, May 1997.

H. Newcombe, J. Kennedy, S. Axford, and A. James. Autontiati@ge of vital recordsScience 130 (1959) no.
3381 pages 954-959, 1959.

S. Puhlmann, M. Weis, and F. Naumann. XML duplicate detectiongusimted neigborhoodslnternational
Conference on Extending Database Technology (EDBI0)6.

E. Rahm and H. H. Do. Data cleaning: Problems and currentoaphes. |EEE Data Engineering Bulletin,
Volume 23, pages 3-13000.

P. Singla and P. Domingos. Object identification with attribute-mediadgemdences. IBuropean Conference
on Principles and Practice of Knowledge Discovery in Databases (PKPDito, Portugal, 2005.

M. Weis and F. Naumann. Duplicate detection in XML.StGMOD-2004 Workshop on Information Quality in
Information Systempages 10-19, Paris, France, 2004.

M. Weis and F. Naumann. Dogmatix tracks down duplicates in XML. International Conference on the
Management of Data (SIGMODPBaltimore, MD, 2005.

M. Weis and F. Naumann. Detecting duplicates in complex XML datalnternational Conference on Data
Engineering (ICDE)Atlanta, Georgia, 2006.

W. E. Winkler. Advanced methods for record linkage. Technieplort, Statistical Research Division, U.S.
Census Bureau, Washington, DC, 1994.

W. E. Winkler. The state of record linkage and current reseproblems. Technical report, U. S. Bureau of the
Census, 1999.

20

