
Relationship-Based Duplicate Detection

Melanie Weis and Felix Naumann
Institut für Informatik, Humboldt-Universiẗat zu Berlin

Unter den Linden 6, D-10099 Berlin, Germany
{mweis,naumann}@informatik.hu-berlin.de

Abstract

Recent work both in the relational and the XML world have shown that the efficacy and efficiency
of duplicate detection is enhanced by regarding relationships between ancestors and descendants. We
present a novel comparison strategy that uses relationships but disposes of the strict bottom-up and top-
down approaches proposed for hierarchical data. Instead, pairs of objects at any level of the hierarchy
are compared in an order that depends on their relationships: Objects withmany dependants influence
many other duplicity-decisions and thus it should be decided early if they are duplicates themselves. We
apply this ordering strategy to two algorithms. RECONA allows to re-examine an object if its influencing
neighbors turn out to be duplicates. Here ordering reduces the numberof such re-comparisons. ADAM A
is more efficient by not allowing any re-comparison. Here the order minimizes the number of mistakes
made.

1 Introduction

Duplicate detection is the problem of determining that different representations of entities actually represent
the same real-world object. Duplicate detection is a necessary task in data cleansing [9, 16] and is relevant
for data integration [6], personal information management[7], and many other areas. The problem has
been studied extensively for data stored in a single relational table with sufficient attributes to make sensible
comparisons. However, much data comes in more complex structures, so conventional approaches cannot
be applied. For instance, within XML data, XML elements may lack any text. However, the hierarchical
relationships with other elements potentially provide enough information for meaningful comparisons. The
problem of XML duplicate detection is particularly tackling in applications like catalog integration or on-
line data cleansing.

In this paper, we present a duplicate detection approach forXML data, which, unlike the common
top-down and bottom-up approaches, performs well in presence of all kinds of relationships between en-
tities, i.e., 1:1, 1:n, and n:m. The basic idea has been previously outlined in a poster [20]. Basically, we
consider an object to depend on another object if the latter helps finding duplicates of the first. For exam-
ple, actors help find duplicates in movies, so moviesdependon actors, and actorsinfluencemovies. Due
to mutual dependencies that can occur, detecting duplicates of one XML element helps find duplicates of
the other, and vice versa. Therefore, algorithms such as [7]use dependencies to increase effectiveness by
performing pairwise comparisons more than once. The focus of this paper lies on the efficient exploitation
of dependencies between entities. The contributions are summarized as follows.

Comparison order. We propose a comparison order that reduces the number of necessary re-comparisons,
while obtaining the same, optimal result as any other order.It is based on the estimated number of
re-comparisons of neighboring elements that become necessary if the pair indeed were a duplicate.

Algorithm R ECONA. The re-examining algorithm(RECONA), allows a pairwise comparison to be per-
formed more than once, and the proposed comparison order reduces the number of re-comparisons.
Experiments show that we save up to 90% of re-comparisons, compared to other orders, hence it is
suited to increase efficiency.

1



Algorithm A DAM A. The second algorithm, ADAM A, does not allow comparisons to be performed more
than once, so it is essential to perform the initial comparisons in an order that misses few re-
comparisons and thus obtain good effectiveness. In experiments our order yields up to 10% higher
f-measure than other orders.

Early classification is an extension to the algorithms, which computes an upper and a lower bound for the
similarity measure and can thereby classify a pair as duplicate or non-duplicate without expensively
computing the actual similarity. This extension saves up to35% of pairwise similarity computations.

Constraint enforcement is an extension, which prunes comparisons by introducing constraints. More
specifically, it prunes comparisons between elements that do not share a common related element, a
valid constraint in 1:1 and 1:n relationships, thereby restoring a top-down approach where appropri-
ate. Applied to real-world data up to 99% of pairwise comparisons are pruned.

We restrict the discussion to XML data, but the proposed algorithms apply to other types of data stored
in complex schemas, such as normalized relational data, as well.

The paper is organized as follows: Related work is discussedin Sec. 2. In Sec. 3, we provide pre-
liminaries, including definitions, the data structure we use and a motivating example. We show that the
order of comparisons is relevant and define a suited comparison order in Sec. 4. This order is applied to
ADAM A and RECONA in Sec. 5. Next, we present the two extensions in Sec. 6. In Sec. 7, we evaluate our
approaches before we conclude in Sec. 8.

2 Related Work

The problem of identifying multiple representation of a same real-world object, originally defined by New-
combe et al. [14], was first formalized by Fellegi and Sunter [8]. Since then, the problem has been addressed
in a large body of work. Ironically, it appears under numerous names itself, such as record linkage [21],
merge/purge [10], object matching [9], object consolidation [5], and reference reconciliation [7] to name
just a few.

Broadly speaking, research in duplicate detection falls into two categories: techniques to improve effec-
tiveness and techniques to improve efficiency. Research on the former problem is concerned with improv-
ing precision and recall, for instance by developing sophisticated similarity measures. Examples are [7]
and [18], where the relationships among objects are used to improve the quality of the results. Research on
the second problem assumes a given similarity measure and develops algorithms that try to avoid having
to apply the measure to all pairs of objects. An example is thesorted neighborhood method, which trades
off effectiveness for higher efficiency by comparing only objects within a certain window [10]. The main
contribution of this article falls into this second category, i.e., we assume a given similarity function and
find an efficient order of comparison. In a first algorithm, this order is used to obtain the same effectiveness
(same results) as any order, but faster; in a second variant we further enhance efficiency but at the price of
missing some duplicates. Both our extensions further reduce the number of comparisons.

DATA DETECTION APPROACH

MODEL Learning Clustering Iterative
Singla05[17] Chen05[5](Q) Dong05[7](Q)

Graph (Q) Lee05[12](Q,T ) RECONA/A DAM A(T )
Bhatt.05[2](Q,T )

Anant.02[1](Q,T )
Tree Weis04[18](Q,T )

Puhlmann06[15](T )
Bilenko03[3] Hernandez95[10](T )

Table (Q) Monge97[13](T )
Doan03[6] Chaud.05[4](Q, T )

(Q) Jin03[11](T )

Table 1: Summary of duplicate detection approaches (T : focus on efficiency,Q: focus on effectiveness)

2



In Tab. 1, we summarize several duplicate detection methodsincluding those presented in this paper,
classifying them along the two dimensionsdata modelanddetection approach. For the data model we
distinguish (i) data in a single relation, without multi-valued attributes, (ii) hierarchical data such as the
hierarchical organization of data warehouse tables or XML data, and (iii) data represented as a graph, e.g.,
XML with keyrefs or personal information management (PIM) data [7]. The second dimension discerns
between three approaches that have been used to perform duplicate detection: (i) machine learning, where
models and similarity measures are learned, (ii) the use of clustering algorithms, and (iii) iterative algo-
rithms, which iterate over the data to detect pairs of duplicates, which in turn are aggregated to clusters
in a post-processing step, e.g., using transitive closure.Tab. 1 also shows whether an article focuses on
efficiency (T ), effectiveness (Q), or both. We do not discuss all approaches in detail but we refer readers
to [22] for a broad survey. Instead, we limit the discussion to the approaches in [1] and [15], which—like
this paper—iteratively exploit relationships while havingefficiency in mind. We also discuss [7], which
proposes an effective iterative duplicate detection algorithm in graph data.

Using atop-down approachDELPHI [1] regards not only the immediate attributes of objects, but also
their children and parents in a complex warehouse schema. For instance, in the three sample<movie>
elements in Fig. 1 one may detect that all three are duplicates despite their different titles, using descendant
actors to compare movies, thereby increasing effectiveness. Within the top-down approach, efficiency is
improved by limiting subsequent comparisons in descendants to descendants that have same or duplicate
ancestors.

<movie> <movie> <movie>
<title> <title> <title>

Troy Troja The Illiad Project
</title> </title> </title>
<actors> <set>
<name> <actor> <actor>

Brad Pitt Brad Pit Prad Pitt
</name> </actor> </actor>
<name> <actor>

Eric Bana Erik Bana
</name> </actor>

<actor> <actor>
Brian Cox Brian Cox

</actor> </actor>
</actors> </set>

</movie> </movie> </movie>

Figure 1: Sample XML elements

This pruning technique is based on the assumption that two different movies do not share actors, a
valid assumption if a 1:n relationship between movies and their actors held. However, actors usually star in
several movies, that is, the entities movie and actor are in an m:n relationship. In this case, when detecting
duplicates in actors, actors starring in different movies should also be compared. SXNM [15] is abottom-
up approachthat first detects duplicates at leaf level and prunes comparisons in ancestors if their children
sets are not significantly similar. SXNM is efficient by usinga sliding window approach (initially proposed
in [10]) over comparable elements on the same hierarchy level. The bottom-up approach can thereby
efficiently detect duplicates among actors of different movies. However, the pruning of comparisons in
parents is efficient only if a 1:n relationship holds betweenparent and child. The work presented in this
paper overcomes the limitation of a strict bottom-up or top-down approach.

Dong et al. perform duplicate detection in the PIM domain by using relationships to propagate similar-
ities from one duplicate classification to another [7]. The main focus of their approach is the increase of
effectiveness by using relationships. In contrast, we concentrate on increasing efficiency by using relation-
ships. Before describing our approach in detail we give somedefinitions and present an example of our
approach.

3



3 Preliminaries

3.1 Definitions

In our approach it is important to distinguish “candidates”and “object descriptions”, which define what en-
tities are subject to comparisons and what data to use for these comparisons, respectively. These definitions
are used to define “influencing and dependent elements” of a given candidate. Afterwards, we formalize
the types of relationships between entities. Last, we provide a template for a similarity measure that is used
to classify pairs of candidates as duplicates or non-duplicates.

CANDIDATES AND OBJECT DESCRIPTIONS. In an XML document every XML element is considered to
represent an object, and every object can (but is not required to) be subject to duplicate detection, in which
case it is called acandidate. To define a set of candidates, we specify a set of XPathsP = {p1, p2, ..., pk}.
Every path expressionpi, 1 ≤ i ≤ k evaluates to a sequence of elementsEi. The set of candidates is
then defined as

⋃
1≤i≤k Ei. Every candidate is assigned anobject description (OD), which comprises all

information considered during comparisons. We define ODs using queries parameterized by the candidate.
Details are beyond the scope of this paper, for which we referreaders to [19].

As a simple example, consider the XML elements of Fig. 1. We decide that movies, titles, and actors
(represented by<actor> and<name> elements) are candidates. As Tab. 2 shows, movies are described
by their title and their descendants representing actors. Duplicate titles, in turn, can be recognized by the
movie they are subelement of and by their text node. Duplicate actors are determined by their text nodes
alone.

Candidate OD
movie ./title,

.//actor union .//name
movie/title ../movie, /text()

movie//actor, movie//name /text()

Table 2: Sample OD definition

I NFLUENCING AND DEPENDENT ELEMENTS . Two candidates are compared by comparing their ODs,
so we say that the candidates are influenced by the elements intheir ODs. Formally, we define influencing
elements as follows.

Definition 1 Let c be a candidate instance and letod(c) be the set of description instances ofc. Then, the
setI(c) of influencing elements of cis I(c) := od(c).

We define dependent elements similarly.

Definition 2 Let c be a candidate instance; letod(c) be the set of description instances ofc. Then, the set
D(c) of dependent elements of cis D(c) := {c′|c′ 6= c ∧ c ∈ od(c′))}.

ENTITY RELATIONSHIPS . Up to now, we have provided only an intuitive definition of 1:nand m:n
relationships between entities. In this section, we give a more concise definition.

Definition 3 Two entitiest and t′ are in a1:n relationshipif for a given instance oft there can be1 to n
influencing instances oft′ and a particular instance oft′ influences exactly one instance oft.

For example,<movie> and<title> are in a 1:n relationship because a movie can have multiple
alternative titles, and the same title element can belong only to one movie. Opposed to that,<movie> and
<actor> are in a m:n relationship, as defined below.

Definition 4 Two entitiest andt′ are in anm:n relationshipif for a given instance oft there can be1 to n
influencing instances oft′ and if a particular instance oft′ influences1 to m instances oft.

THRESHOLDED SIMILARITY M EASURE. To classify pairs of candidates as duplicates or non-duplicates,
we use a thresholded similarity approach. The details of theactual similarity function are not relevant in

4



this paper; here we provide a general template for the similarity measure that will be useful later on when
defining the early classification in Sec. 6. In our experiments, we use the similarity measure defined in [19]
that complies to this template.

First, we define the setN≈
inf of duplicate influencing neighbors of a pair of candidates(c, c′) as

N≈
inf (c, c′) :=

{(n1, n2)|n1 ∈ I(c) ∧ n2 ∈ ∪I(c′) ∧ n1, n2 duplicates}

The setN 6=
inf of non-duplicate influencing neighbors is

N 6=
inf (c, c′) :=

{(n1,⊥)|n1 ∈ I(c) ∧ n1 has no duplicates inI(c′)} ∪

{(⊥, n2)|n2 ∈ I(c′) ∧ n2 has no duplicates inI(c)}

We further introduce a weight functionw(S) with S being a set of pairs(ni, n
′
i) that captures the relevance

of a pair of elements(n, n′) when comparing two candidatesc, c′, n ∈ I(c), n′ ∈ I(c′). This weight
function has two properties:

w(S) =
∑

(ni,n
′

i
)∈S

w({(ni, n
′
i)}) (1)

w({(n,⊥)}) + w({(⊥, n′)}) ≥ w({(n, n′)}) (2)

where⊥ signifies a null value, becausen does not have a duplicate in this case. A simple example for such
a weight function isw(S) = |S|.

The final similarity measure has the following template:

sim(c, c′) =
w(N≈

inf (c, c′))

w(N 6=
inf (c, c′)) + w(N≈

inf (c, c′))
(3)

Note that in definingN≈
inf andNinf 6=, we assume that we already know thatn1 andn2 are duplicates or

non-duplicates. Although we do not know these sets initially, the similarity measure is defined to increase
as this knowledge is gained during comparisons, so we can classify two candidates as duplicates after their
influencing neighbors have been classified.

The similarity measure obtains a result between 0 and 1. Given a user defined similarity thresholdθ, if
sim(v, v′) > θ, v andv′ are duplicates, otherwise they are classified as non-duplicates.

3.2 The Data Graph

To support our algorithms and comparisons between objects we use an internal graph representation—
thedata graph. The data graph comprises three components, namely elementvertices, text vertices, and
dependency edges. More specifically, an element vertexve is created for every candidate. For every text
node in an OD, we create a text vertexvt. We represent influence and dependence between elements
as directed edges in the graph. More specifically, letv andv′ be two object vertices. We add an edge
ed = (v, v′) directed fromv to v′ if v′ ∈ I(v)1.

In the XML data of Fig. 1 it is obvious for human experts that all three movie elements represent a
single movie (Troy) and there are three distinct actors (Brad Pitt, Eric Bana, and Brian Cox). For ease of
presentation, we identify movies, titles and actors usingmi, ti, andai, respectively. To mark duplicates,
we use′, e.g.,m1,m

′
1 signifies that the movies are duplicates. Figure 2 depicts the data graph, assuming

the OD definitions of Tab. 2. When considering the moviem1, the set of influencing neighborsI(m1) =
{t1, a1, a2}, and the set of dependent neighborsD(m1) = {t1}.

1I(v) denotes the set of influencing vertices of v, analogously toI(c) that denotes the set of influencing elements ofc. D(v) is
defined similarly.

5



Figure 2: Sample data graph

3.3 Example

To give readers an intuition of the discussion that follows in the subsequent sections, we illustrate the
benefit of re-comparisons and show the importance of comparison order on our example.

Assume that for pairwise comparisons, we decide to considerpairs of candidates in the order{(m1,m1′),
(m1,m1′′), (m1′,m1′′), (t1, t2), (t1, t3), (t2, t3), (a1, a2),...}. When comparingm1 andm1′, they ap-
pear to have no related object in common because actors and titles have not yet been compared, so we
conclude for now that they are not duplicates. The same is true for all other comparisons between movies
and between titles. Continuing along the list we start to compare actors and find duplicates(a1, a1′),
(a1, a1′′), (a1′, a1′′), (a2, a2′), and(a3, a3′). Knowing that movies depend on their actors, the similarity
of movies potentially increases due to shared actors. So we compare movies again and find that they are
duplicates. As titles in turn are related to movies, we compare titles again, but do not find further duplicates.
The point is that by re-comparing movies after duplicates inrelated objects have been detected, we were
able to find duplicates where we could not before; hence, re-comparing pairs can increase effectiveness.
In Sec. 5, we present two algorithms that are aware of the factthat due to cyclic dependencies between
entities it is useful to classify pairs of objects more than once.

It is easy to see that if we had started by comparing actors, wewould have saved re-classifying movies a
second time. Clearly, the order in which comparisons are performed influences the number of necessary re-
comparisons. Next we present a comparison order that reduces the number of necessary re-comparisons.

4 Comparison Order

The order is obtained by computing a rankr(v, v′) for every candidate pair(v, v′). Intuitively, r(v, v′)
estimates for every pair of candidatesv andv′ thenumber of re-comparisonsnecessary if the similarity was
calculated at the current processing state. We can reduce the total number of re-comparisons by comparing
candidates in ascending order ofr.

Calculation ofr takes into account both how often a pair(v, v′) is re-classified, estimated bynself (v, v′),
and how many comparisons of other pairs are triggered by pair(v, v′) if v andv′ were classified as dupli-
cates, estimated byntrig(v, v′).

ESTIMATING OWN RE -COMPARISONS (nself ): The integernself (v, v′) is an upper bound to the number
of times that the pair(v, v′) is re-classified. Intuitively, the comparison of pairs witha highnself value
should be performed as late as possible, at best after all influencing neighbors have been correctly classified.
The maximum number of re-comparisons of(v, v′) occurs when every neighboring pair(n1, n2), n1 n2 ∈
I(v) ∪ I(v′) is a duplicate and triggers the re-comparison of(v, v′).

Using additional knowledge about pairs that are already known to be duplicates and hence do not trigger
further re-comparisons, the worst case is reduced to the case where any influencing neighbor pair(n1, n2)
that has not been classified as duplicate is a duplicate and triggers a re-comparison of(v, v′). Following
that reasoning we definenself :

6



Definition 5 Letv andv′ be two object vertices and letI(v) andI(v′) be their respective sets of influencing
neighbors. Further, letI≈(v,v′) = {(n1, n2)|n1, n2 ∈ I(v) ∪ I(v′) ∧ (n1, n2) classified}. Then

nself (v, v′) := (|I(v)| − |I≈(v,v′)|) ∗ (|I(v′)| − |I≈(v,v′)|) (4)

By classified we mean that the pair is never re-classified, either because it is a duplicate or because of
other constraints. Further details are provided in Sec. 5 where we apply the order to two algorithms.

ESTIMATING TRIGGERED RE -COMPARISONS (ntrig): We definentrig in the same spirit asnself . When
comparing two object verticesv andv′, the worst case is that all dependent neighbors not yet classified
as duplicates need to be re-classified as the similarity of their influencing pair(v, v′) increases. Pairs with
a highntrig value should be classified as late as possible, because they trigger many comparisons and
re-comparisons.

Definition 6 Let v andv′ be two vertices, and letD(v) andD(v′) be their respective sets of dependent
neighbors. Further, letD≈

(v,v′) = {(n1, n2)|n1, n2 ∈ D(v) ∪ D(v′) ∧ (n1, n2) classified}. Then

ntrig(v, v′) := (|D(v)| − |D≈
(v,v′)|) ∗ (|D(v′)| − |D≈

(v,v′)|) (5)

ESTIMATING RANK (r(v,v′)): We use the two estimates above to calculate the estimate of the total
number of re-comparisonsr(v, v′) as

r(v, v′) := nself (v, v′) + ntrig(v, v′) ∗ nself (v, v′) (6)

The intuition behind this is that each time a pair (v,v’) may be reclassified, it may triggerntrig re-
comparisons.

Applying this estimater to the pairs of candidates used in our example, we obtain the initial order
shown in Tab. 3. Note that in general, pairs are not necessarily sorted by type.

pair h
(a1, a2) 0 + 1 ∗ 0 = 0
(a1, a1′) 0 + 1 ∗ 0 = 0

... ...
(t1, t2) 1 + 1 ∗ 1 = 2

... ...
(m1, m1′′) 9 + 9 ∗ 1 = 18
(m1, m1′) 12 + 12*1 = 24
(m1′, m1′′) 12 + 12*1 = 24

Table 3: Example for initial order

5 Comparison Algorithms

We present two algorithms, RECONA and ADAM A, which use the ascending order ofr and exploit relation-
ships between objects for the purpose of duplicate detection. RECONA re-computes similarities between
two objects whenever there is a potential increase in similarity due to classified duplicates in their influ-
encing sets, until the result converges. In the case of ADAM A, re-comparisons are altogether avoided to
further increase efficiency.

In choosing the ascending order ofr as comparisons order, we basically want to compare objects first
that have few dependent objects. In that case, if two objectsare detected to be duplicates, the ripple effect
to neighbors is low. Thus, a carefully chosen order helps to avoid re-comparisons in RECONA, improving
efficiency. For ADAM A a carefully chosen order improves effectiveness, becausecomparison of objects
that are highly dependent on the status of their neighbors are postponed until the status of their neighbors
has been determined.

Please note that in the following, text vertices are not mentioned explicitly when discussing the algo-
rithms. Of course, whenever we have text available for a comparison, we use it by computing its similarity
using edit distance in addition to dependencies, the main focus of our discussion.

7



5.1 RECONA: Allowing Re-comparisons

RECONA is based on the observation that detecting duplicates to anobject may affect similarity and dupli-
cate classification on other objects. It is an exact algorithm for solving the duplicate detection problem, in
that it guarantees to findall duplicates as defined by the similarity measure and the ODs.

The algorithm has two phases (Listing 1). The initialization phase (lines 2-10) defines a priority queue
OPEN, which contains all pairs of candidates. The priority orderof OPEN is the ascending order of
r. DUPS is a set of candidate pairs and is used to keep track of found duplicates to avoid unnecessary
recomparisons, and to compute the rankr where the set of classified neighbor pairs (see Equations 4 and 5)
is the set of neighbor pairs that are inDUPS. CLOSEDis the set of possibly re-classified pairs, i.e., a set
of pairs that have been classified as duplicates. Only these pairs can be added toOPENagain. For duplicate
classification, we specify a similarity thresholdθ. During the initialization phase, we also initialize the data
graphG by reading the XML data.

The comparison phase (l.10-19) compares pairs of candidates using a similarity measure complying to
the template of Sec. 3. As a reminder, to classify pairs of candidates as duplicates, we use a thresholded
similarity approach, i.e., ifsim(v, v′) > θ they are classified as duplicates. For recomparisons, it is
important to note thatsim(v, v′) is a complex operation that increases with increasing co-occurrence in
the influencing neighbor setsI(v) andI(v′). Detected duplicates are added toDUPS(l.16) to ensure that
duplicates are never revoked in subsequent comparisons. Consequently, similarity can only increase when
re-calculated, and the algorithm always terminates. Non-duplicate pairs of dependent neighbors ofv and
v′ are fed back intoOPEN (l.17) according to the procedureupdateOpen(v, v′) described in Listing 2,
because their similarity may yet increase.

1 procedure ReconA()
2 G: data Graph;
3 OPEN:priority queue of candidate pairs
4 ordered in ascending order of r;
5 DUPS: set of duplicate pairs;
6 CLOSED: set of possibly re-classified pairs;
7 θ: similarity threshold;
8 Initialize G;
9 Add all candidate pairs to OPEN;

10 while OPEN not empty do
11 begin
12 (vi, vj) ← OPEN.popFirst();
13 sim = sim(vi, vj);
14 i f sim > θ then
15 begin
16 DUPS := DUPS ∪ {(vi, vj)};
17 updateOpenReconA(vi,vj);
18 end
19 end

Listing 1: RECONA Algorithm

1 procedure updateOpenReconA(Vertex v,Vertex v′)
2 D(v, v′) = {(n1, n2)|n1 ∈ D(v) ∧ n2 ∈ D(v′) ∧ n1 6= n2};
3 f o r a l l (n1, n2) ∈ D(v, v′) do
4 i f (n1, n2) not ∈ DUPS then
5 begin
6 rupdate := r(n1, n2);
7 i f (n1, n2) ∈ OPEN then
8 OPEN.updateRank((n1,n 2),rupdate);
9 else i f (n1, n2) ∈ CLOSED then

10 OPEN.push((n1, n2),rupdate);
11 end

Listing 2: Updating OPEN in RECONA

The procedureupdateOpenReconA(v, v′) first determines the set of dependent neighbor pairs ofv
andv′ (l.2). Pairs inDUPSare not added back toOPEN, because they are already known to be duplicates.
If a pair is not inDUPS, we distinguish two cases. In the first case, the potentiallyadded pair(n1, n2) is
already inOPEN, because it has not been classified yet, and we merely update its position in the priority
queue according to the newly calculated rank. This is required because the value ofr(n1, n2) depends on
duplicates amongI(n1) andI(n2), and the neighbor pair(v, v′) has just been classified as duplicate. In
case(n1, n2) is neither inOPEN, nor inDUPS, (n1, n2) is pushed intoOPEN.

8



The complexity of RECONA is N in the best case,N being the size ofOPENat initialization. Note that
it does not necessarily contain all possible pairs if a filtering technique is used prior to duplicate detection.
The purpose ofCLOSEDis to avoid adding pairs to OPEN that were filtered before initialization. The
average and worst case areO(N2).

Let us examine how RECONA behaves usingr to sortOPEN. Using the initial order of Tab. 3, we first
pop(a1, a2) from OPEN. The pair is classified as non-duplicate. Next, we classify(a1, a1′), find that they
are duplicates, and add the pair toDUPS. Now, we must add all pairs(n1, n2) of depending neighbors to
OPEN, if they are not inDUPSalready. To this end, we reestimater(n1, n2) and add(n1, n2) with a new
rank r(n1, n2) back toOPEN as defined in updateOpenReconA(). After comparing all actors and titles,
we obtain, without any re-comparison yet,

OPEN= {(m1, m1′), r = 2), ((m1′, m1′′), r = 2),
((m1, m1′′), r = 4)}

DUPS= {(a1, a1′), (a1, a1′′), (a1′, a1′′), (a2, a2′), (a3, a3′)}

After this, we find movies to be duplicates and consequently have to reclassify their titles. We see that
the number of re-comparisons usingr is less than the number of re-comparisons necessary when using the
arbitrary order of the example in Sec. 3.3, thus, duplicate detection is performed more efficiently while
achieving the same, optimal effectiveness.

Note that re-estimatingr resulted in reversing the relative order of(m1,m1′′) to the other movie pairs.
Whereas in Tab. 3,(m1,m1′′) preceded(m1,m1′) and(m1′,m1′′), it is now last inOPEN. Of course,
reestimatingr is costly, so we also examine in the experiments an order calledr-static, which is independent
of duplicates found.

5.2 ADAM A: No Re-comparisons

ADAM A is defined similarly to RECONA using the order ofr, but with an important difference: We do
not add candidate pairs toOPEN again once they have been classified, regardless of whether they were
classified as duplicates or non-duplicates. Thus, no pairwise comparison is performed more than once
(Listing 3).

1 procedure AdamA()
2 G, OPEN, t, sim, DUPS as in ReconA;
3 NONDUPS: set of non-duplicate pairs;
4 Initialize G;
5 Add all candidate pairs to OPEN;
6 while OPEN not empty do
7 begin
8 (vi, vj) ← OPEN.popFirst();
9 sim = sim(vi, vj);

10 i f sim > θ then
11 updateOpenAdamA(vi,vj);
12 else
13 NONDUPS := NONDUPS ∪ {(v1, vj)};
14 end

Listing 3: ADAM A Algorithm

Note that in the initialization phase we declare another setof candidates, namelyNONDUPS, which
contains all pairs classified as non-duplicates. It is used to prevent recomparisons and to compute the
rank r where the set of classified neighbor pairs is now defined as theneighbor pais not inDUPS and
not in OPEN . For ADAM A, the order in whichOPEN is initially sorted is important to increase the
duplicates found without re-comparisons. If we choose the poor order used in Sec. 3.3, we would find only
duplicates among actors, because we do not reconsider movies. On the other hand, if we take the better
order actors, titles, and then movies, we find all duplicateswithout re-computing any similarity. We see
that when a pair’s similarity is below the thresholdθ, it is added toNONDUPSand is never reconsidered
for re-comparisons as defined inupdateOpenAdamA()(see Listing 4). WithinupdateOpenAdamA()we
update only ranks of pairs that are still inOPEN. Clearly, by not allowing re-comparisons, the complexity
of ADAM A is N .

9



1 procedure updateOpenAdamA(Vertex v, Vertex v′)
2 D(v, v′) = {(n1, n2)|n1 ∈ D(v) ∧ n2 ∈ D(v′) ∧ n1 6= n2};
3 f o r a l l (n1, n2) ∈ D(v, v′) do
4 i f (n1, n2) not ∈ DUPS ∪ NONDUPS then
5 begin
6 rupdate := r(n1, n2);
7 i f (n1, n2) ∈ OPEN then
8 OPEN.updateRank((n1,n 2),rupdate;
9 end

Listing 4: Updating OPEN in ADAM A

6 Extensions

Up to this point we have introduced two algorithms that perform pairwise comparisons between candidate
duplicates. As mentioned earlier, filtering techniques canbe used to reduce the size of the initial priority
queue. In this section, we present two techniques to prune comparisons during the comparison phase of our
algorithms to further increase efficiency by (i) avoiding computations of the complex similarity measure
using early classification and (ii) avoiding pairwise comparisons using constraint enforcement.

6.1 Early Classification

Early classification calculates an upper and a lower bound tothe similarity of two elements to classify pairs
as duplicates and non-duplicates without actually computing the similarity measure.

In definingN≈
inf andN 6=

inf for the similarity measure in Sec. 3 we assume that we alreadyknow for any
influencing neighborsn1 andn2 whether they are duplicates or non-duplicates. In the abovealgorithms,
we do not have that information at initialization, becausen1 andn2 have to be compared first. However,
we can approximate these sets during the comparison phase. Indeed, when coming to classifyv andv′, we
have already performed classifications, and we can determine a setSmatch(v, v′) ⊆ N≈

inf (v, v′) of already

classified influencing neighbor pairs that are duplicates, as well as a setSnonmatch(v,v′) ⊆ N 6=
inf (v, v′). As

comparisons proceed,Smatch approaches the finalS≈ andSnonmatch approachesS 6=. We further know the
remaining comparisons summarized in the setSunclassified. Using these sets, we define an upper bound
fu(v, v′) and a lower boundfl(v, v′) to sim(v, v′):

fu =
w(Smatch) + w(Sunclassified)

w(Snonmatch) + w(Smatch)
(7)

fl =
w(Smatch)

w(Snonmatch) + w(Smatch) + w(Sunclassified)
(8)

If fu ≤ θ we can classify the pair of objects as non-duplicates without further comparing influencing
elements. Iffl > θ we can classify the pair of objects as duplicates without further comparing influenc-
ing elements. Early classification is an exact pruning technique with respect to any similarity measure
complying to Equation 3, because the final classification is the same as the one obtained without pruning.

We now sketch a proof for the correctness of the upper and lower bound tosim. We know that
Smatch(v, v′) ⊆ N=

inf (v, v′), hencew(Smatch) ≤ w(N=
inf ). Furthermore,

Snonmatch ⊆ N 6=
inf , so it is also true thatw(Snonmatch) ≤ N 6=

inf . According to the first property defined
in Sec. 3.1, we also know that any pair that is inN=

inf but not inSmatch results in a higher weight of
Sunclassified or Sunmatched, depending on where it is. However, it cannot be in both. Consequently,

w(Smatch) + w(Sunclassified) ≥ w(N=
inf )

and w(Snonmatch) + w(Smatch) ≤ w(N=
inf ) + w(N 6=

inf )

⇒ fu ≥ sim

10



Similarly,
w(Sunclassified)
+w(Snonmatch)

+w(Smatch) ≥ w(N=
inf ) + w(N 6=

inf )

and w(Smatch) ≤ w(N=
inf )

⇒ fl ≤ sim

Implementing the early classification extension is straightforward. We do not have to compute bounds for
similarities at initialization, becauseSmatch = {} andSnonmatch = {}. Hence, we compute the range and
check if we can perform early classification only when we consider adding a pair toOPENagain during
the comparison phase. As we have seen earlier, adding a candidate pair(v, v′) back toOPENcan either
mean to update its rankr(v, v′) if (v, v′) is already inOPEN, and if not, adding it again. Because an
update ofr can occur in RECONA and ADAM A, the filters can be applied to both algorithms. However, it
is interesting to note that filtering using the upper bound isnot applicable to RECONA. Indeed,Snonmatch

is always empty because we are never sure that a pair is not re-classified, henceSunclassified contains all
neighbors not inSmatch. Except at initialization whereSmatch = {} andfu is thereby undefined, we
note thatfu ≥ 1 at any time, and therefore never filters any pair. In the case of A DAM A, Snonmatch is
not always empty. If the filterfu classifies a pair as non-duplicate, we add it toNONDUPS. For both
algorithms, if a pair is classified as duplicate according tofl, we have to add its depending neighbors to
OPENas well. Also note that the filter may have an influence on comparison order because as duplicates
get classified their dependent neighbors’ rank changes.

6.2 Constraint enforcement

We have seen in Sec. 3 that for 1:1 and 1:N relationships, it istrue that there is exactly one possible child
for a same parent or there is a set of children that can belong to only a single parent. In this scenario,
efficiency can be greatly improved using a top-down approach[1]. To reestablish a top-down approach
when applicable, we introduce an additional constraint in the data graph as a new type of edge.

Definition 7 A dependency edgee directed from a vertexs to a vertext is marked asmandatory edge if
its sources requires that its targett is equal or similar between candidate duplicates.

In our implementation we define a functionboolean isCandidate(v,v’), which is called before every
potential insertion intoOPEN, i.e., at initialization and during comparisons. We first check whether any
out-edge ofv or v′ is a mandatory edge. If there are mandatory out-edges, we verify that they share all
targets. If they do,isCandidate(v, v′) returns true, otherwise false. If it returns false, the pairis not added
to OPEN. In our experimental evaluation, we show the savings in terms of comparisons are very high.

7 Experiments

In this section, we evaluate the performance of our order compared to other orders in terms of efficiency
(by reducing the number of pairwise comparisons in RECONA) and in terms of effectiveness (by missing
few duplicates in ADAM A). Furthermore, we compare RECONA and ADAM A with each other in these two
dimensions. Finally, we evaluate early classification and constraint enforcement.

7.1 Three Data Sets

7.1.1 Artificial Data with Interdependencies

We generate artificial data, which has the advantage of permitting us to vary several parameters that we
can take into account for our experiments on re-comparisons. More specifically, we evaluate the order
defined by rankr, ADAM A, and RECONA as well as early classification on artificial data and we varythe
interdependence that exists between candidates. Furthermore, we can easily measure recall and precision
because we know all true duplicates in the data.

11



We generate an artificial data graph consisting of two types of elements, namely<a> and<m>. Each
<a> depends on its text node containing an actor name (extractedfrom a set of actor names from IMDB
known to be non-duplicates), and a variable number of<m> elements that represent movies. Similarly, each
<m> depends on its text node, generated to contain a movie title (again extracted from a set of titles from
IMDB known to be non-duplicates), and a variable number of<a> elements. To generate dependencies
between<a> and<m> elements, we use two parameters: (i) the intervali, which defines how many<m>
elements have at least one<a> by the formula number of<m>/i, and (ii) the connection degreeapm (short
for “actors per movie”), defined as the average number of<a> elements influencing an<m> selected by
i. Relationship edges between<m> and<a> are added in both directions, so that<m> depend on<a>
and vice versa. To each of the clean vertices, we create a duplicate that can contain typographical errors
or contradictory data, i.e., data not recognized as similarby our text similarity measure. The errors are
not mutually exclusive. In the example shown in Fig. 3, we have i = 1 andapm = 2, meaning that
every<m> has two associated<a>. In the generated duplicates, we have two out of eight text nodes with
typographical errors, i.e., typos were introduced with 25%probability. The same is true for contradictory
data.

Figure 3: Sample artificial data graph

We generate two data sets using the graph generator. The firstone, calledsmall data graph (SG)
consists of 400 vertices with non-empty text node from which100 are clean actors, 100 are clean movies,
and each is duplicated once. Thelarger data graph (LG)consists of 250 clean actors, 250 clean movies, and
one duplicate of each, i.e., 1,000 vertices, none of which has an empty text node. Relationships between
<a> and<m> nodes are varied usingi andapm. In the experiments shown, typographical errors and
contradictory data are introduced with a 20% probability. Note that using these data sets, both RECONA
and ADAM A perform at least 39,800 (249,500) pairwise comparisons using SG (LG).

7.1.2 Real-World Data with Hierarchical dependencies

When re-comparisons are not the primary concern of the experiments, we can use real-word data that
contains few interdependencies. The constraint enforcement extension, that allows us to enforce a top-down
approach when applicable, can be applied on these data sets.For this purpose, we reuse two real-world
data that we previously used in [19].

The first data set comes from the CD domain2 and is referred to as CD. Dependencies (on schema level)
are shown in Fig. 4(a). We extracted 1272 entities and verified manually that they contain no duplicates.
We then added a duplicate to every entity, giving us a total number of 2544 entities to compare. Duplicates
were artificially added to the clean CD data sample using a dirty XML data generator. This way, we can
easily measure recall and precision.

2http://www.freedb.org/

12



We also use a data set from the movie domain, dubbed MOVIE, which exclusively consists of real-
world data. It was obtained by integrating data from two movie data sources3, and duplicates are due to
two representations of a movie, each from one of the sources.The data set we consider here consists of
2140 entities and 8796 dependencies. The dependencies of the data set are depicted in Fig. 4(b) at schema
level.

In both real-world data sets, we have some mutual dependencies, e.g., between movies and actors.
However, due to the small size of the data set, a movie has 1:n actors but an actor is rarely associated with
more than one movie. Hence, the number of potential re-comparisons is negligible. As for the other mutual
dependencies, they can be defined because we have a 1:1 relationship between the elements, e.g., a track
list exists for one CD only and a CD has only one track list, which again results in negligible number of
recomparisons. Consequently, a top-down approach is suited to increase efficiency, and mandatory edges
are added as depicted in Fig. 4(again at schema level). We assume that the domain-expert is capable of
placing mandatory edges at appropriate positions in the OD schema.

Figure 4: Relationships in MOVIE and CD

7.1.3 Real-world Data with Interdependencies

As real-world data with interdependencies, we used the hand-labeled Cora dataset, which is provided
by McCallum and has previously been used by [7, 17] and others. The XML version of the data we
created from the downloadable file4 contains 1643<publication> elements, which nest<venue>,
<title>, and<author> elements. Venues in turn nest<name> elements. The elements refer to 174
distinct publications, i.e, a publication is cited 9.4 times on average. In addition to the readily labeled
duplicate publications, we labeled roughly 30% of duplicate venues, as well. The venues being nested
under publications, only a single publication influences a venue. We did not add foreign keys to relate a
venue to other publications.

The schema of the data graph and the dependencies used throughout our experiments are shown in
Fig. 5. We justify the choice of dependency edges as follows.Having labels for publications and venues
only, we consider publications and venues to be the candidates of interest, whose interdependence is con-
sidered by having mutual dependency. The other entities areonly considered to help find duplicates in
publications. Once a duplicate has been detected in publications, we are not interested in finding more
duplicates among titles and authors, because they will not trigger any other re-comparison of publications.
Consequently, we do not add dependency edges back from title(author) to publication.

Figure 5: Relationships in CORA

3http://www.imdb.com andhttp://film-dienst.kim-info.de/
4http://www.cs.umass.edu/m̃ccallum/data/cora-refs.tar.gz

13



7.2 Competing Orders

The first series of experiments aims at showing the influence of order in both RECONA and ADAM A.
In addition to the order defined by rankr, denotedr, we use the three additional orders of Tab. 4. The

orderr-static is defined similarly tor, but does not take into account previously detected duplicates.
Hence, there is no need to update it when callingupdateOpen()(both for ADAM A and RECONA). It
basically keeps the order thatr gives at initialization.r-light is defined as the order obtained when
using the ascending order ofrlight = |D(v)| ∗ |D(v′)|. It thus can be considered a static version of
ntrig (or nself , because the graph generates|I(v)| = D(v)). It is considered a small simplification of
r-static. Finally, fifo simply takes comparable pairs (meaning of same schema type)in the order
they appear in the input data. This is a fairly random order.

Order Description
r the order obtained using rankr

r-static orderr at initialization
r-light order defined by|D(v)| ∗ |D(v′)|

fifo first-in-first-out

Table 4: Comparison Orders

ORDER AND RE-COMPARISONS FOR RECONA. For RECONA we evaluate the number of re-comparisons
that are performed using the different orders described in Tab. 4. Results for data setSGare shown in Fig. 6
for connection degrees ofapm = 1, apm = 3, apm = 7, andapm = 10 ((a) through (d)).

r-light
fifo

r-static
r

interval

#r
ec

om
pa

ris
on

s

10987654321

50
45
40
35
30
25
20
15
10
5
0

(a) apm = 1

interval

#r
ec

om
pa

ris
on

s

10987654321

700
600
500
400
300
200
100

0

(b) apm = 3

interval

#r
ec

om
pa

ris
on

s

10987654321

7000
6000
5000
4000
3000
2000
1000

0

(c) apm = 7

interval

#r
ec

om
pa

ris
on

s

10987654321

16000
14000
12000
10000
8000
6000
4000
2000

0

(d) apm = 10

Figure 6: Recomparisons using RECONA

The graphs show the number of re-comparisons necessary for agiven connection degree and a varying
intervali. We observe that for large values ofi, the number of re-comparisons is generally low but increases
with increasing connection degree, meaning with decreasing i (as more<m> get actors) and increasing
apm. This is easily explained by the fact that the higheri, the less mutual dependencies we have, so the
less re-comparisons are possible. Similarly, the higher the connection degree, the higher the number of
re-comparisons necessary when duplicates are detected. More interestingly, we also observe in Fig. 6 that
orderr performs significantly less re-comparisons than other orders whenapm andi represent a significant
degree of connectivity. Indeed, for lowapm (a), we do not observe a significant difference, however as
apm increases ((b) through (d)) the benefit ofr over other orders increases fori ≤ 4. This shows thatr is a
well suited order to reduce the number of recomparisons for RECONA. In this scenario, we also observe that

14



r-static does not provide a significantly better order thanr-light. This can be explained by the fact
thatr-static orders candidate pairs similarly tor-light, because the in-degree and the out-degree of
every vertex is generated to be equal. Hence,r-static is essentially (r-light)2.

The same behavior can be observed onLG, as shown in Fig. 7. Again we observe that for small
intervals,r performs better thanfifo. At i = 1, the difference of 90% in the number of comparisons
signifies thatr performs only 10,667 re-comparisons instead of 115,260 (for apm = 20). However, the
decrease in benefit ofr overfifo is very steep, at intervals as small as 4, we already observe thatfifo
is better thanr. Put in perspective, the -60% for 10apm at i = 8 represent 530 re-comparisons only.
For such small variations in the number of re-comparisons, we do not observe a significant difference in
processing time, as Fig. 7(b) shows. For instance, the time difference fori = 8 is less than a second for
20apm, in favor ofr, opposed to the difference in re-comparisons wherefifo performed better. On the
other hand, for 30apm andi = 1, we save 34 seconds by usingr.

apm = 30
apm = 20
apm = 10

interval

%
of

sa
ve

d
co

m
pa

ris
on

s

1 2 4 8

100
80
60
40
20
0

-20
-40
-60
-80

(a) Comparison difference

interval
%

of
sa

ve
d

tim
e

1 2 4 8

50
40
30
20
10
0

-10
-20

(b) Time difference

Figure 7: Comparingr andfifo onLG

From this set of experiment we conclude that (i) the order defined by rankr outperforms other orders
when the entities strongly depend on each other, which was simulated by using small intervals and large
connection degrees, and (ii) when entities do not strongly depend on each other, the difference in terms of
saved comparisons and hence efficiency is not significant.

ORDER AND EFFECTIVENESS FOR ADAM A. We reuse the same graph generator and orders as for RE-
CONA and perform experiments on bothSGandLG.

ForSG, we have measured the f-measure for the different orders andintervals varying between 1 and 10
for a connection degrees of 10 actors per movie. We observe thatr obtains highest f-measure in roughly
80% of all intervals tested for1 ≤ i ≤ 4. The interval betweeni = 1 andi = 4 is the interval where
the difference in the number of missed re-comparisons usingADAM A is highest (e.g., Fig. 6(d) shows the
difference forθ = 0.7). As representative results, we show the graphs fori = 1 andi = 4 in Fig. 9. They
show the f-measure obtained using ADAM A and different orders for different similarity thresholds((a) and
(c)), and the corresponding difference of f-measure between orderr and orderr-static, as well as
betweenr andfifo((b) and (d)).

fifo
r-static

r

threshold

f-
m

ea
su

re
(%

)

0.90.80.70.60.50.4

91
90
89
88
87
86
85
84
83

(a) f-measure,i = 6

threshold

f-
m

ea
su

re
(%

)

0.90.80.70.60.50.4

90
89
88
87
86
85
84
83

(b) f-measure,i = 7

Figure 8: ADAM A Effectiveness (large i)

Fori > 4 the orders miss roughly the same amount of re-comparisons. Representative results are shown
in Fig. 8 fori = 6 (a) andi = 7 (b). We observe that the orderfifo starts behaving indeterminably and is

15



sometimes better, sometimes worse that the other orders. Weare currently investigating on the reason for
this irregular behavior, and want to find out what makes fifo better in some cases. Opposed to that random
behavior, we observe thatr andr-static degrade gracefully.

fifo
r-static

r

threshold
f-

m
ea

su
re

(%
)

0.90.80.70.60.50.4

100
90
80
70
60
50
40
30
20
10

(a) f-measure,i = 1

r - fifo
r - r-static

threshold

f-
m

ea
su

re
di

ffe
re

nc
e

(%
)

10.90.80.70.60.50.40.3

6
5
4
3
2
1
0

-1

(b) f-measure difference,i = 1

threshold

f-
m

ea
su

re
(%

)

0.90.80.70.60.50.4

92
90
88
86
84
82
80
78

(c) f-measure,i = 4

threshold
f-

m
ea

su
re

di
ffe

re
nc

e
(%

)
10.90.80.70.60.50.40.3

5

4

3

2

1

0

-1

(d) f-measure difference,i = 4

Figure 9: ADAM A Effectiveness (smalli)

Throughout our experiments, we observed that usingr as order obtains better f-measure in most cases
where the number of missed re-comparisons when using ADAM A is significant. However, the benefit in
f-measure obtained usingr in ADAM A is less than the benefit in efficiency when usingr in RECONA. For
example, in Fig. 7, we see that forapm = 20 andi = 1, 91% of re-comparisons have been saved usingr
at thresholdθ = 0.7. In all experiments of effectiveness for ADAM A, we in fact never observed a benefit
in effectiveness of usingr overfifo larger than 10%. This shows that in the additional recomparisons
other orders perform compared tor, there are not proportionally more duplicates.
COMPARISON OF ADAM A AND RECONA. We now evaluate ADAM A against RECONA in terms of
effectiveness and efficiency. We expect that RECONA is more effective than ADAM A because it allows re-
comparisons. On the other hand, the recomparisons represent costly comparisons and we expect ADAM A
to be faster than RECONA. We again useLG and vary the connection degree defined byapm and the
interval between movies having actors. In terms of effectiveness, RECONA obtains the same recall and
precision for different orders (at different cost, though), which is higher or equal to the precision and recall
obtained using ADAM A with any order. This is shown in Fig. 10(a), where the f-measure is plotted for
ordersr andfifo applied to ADAM A as well as for RECONA in function of the interval. The chosen
similarity threshold is 0.7, andapm = 10.

We observe that the difference in f-measure between RECONA and ADAM A usingr or fifo behaves
similarly to the number of re-comparisons that have been missed. That is, for increasing interval, the
difference between the result of ADAM A and RECONA decreases, just like the number of re-comparisons
performed by RECONA and missed by ADAM A decreases with increasing interval.

Clearly, we obtain better effectiveness by using recomparisons. In Fig. 10(b), we show the time needed
for RECONA and ADAM A using the same order r. We observe that the time is similar, meaning that a
significant overhead due to re-comparisons for RECONA cannot be observed. This is explained by the
fact that the number of re-comparisons performed by RECONA is a very small fraction of the number of
pairwise comparisons performed by both RECONA and ADAM A. Indeed, to compare the 1,000 vertices in
the graph, we have to perform 249,500 comparisons, so for example the 3,151 re-comparisons additionally
performed by RECONA at i = 1 represent only 1% of additional comparisons.

16



ReconA
AdamA, fifo

AdamA, r

interval

f-
m

ea
su

re
(%

)

1 2 4 8 16 32 64 128

100
95
90
85
80
75
70
65
60

(a) f-measure comparison

ReconA
AdamA, fifo

AdamA, r

interval

tim
e

(s
)

1 2 4 8 16 32 64 128

12
11
10
9
8
7
6
5
4
3
2
1

(b) time comparison

Figure 10: Comparison of ADAM A and RECONA

7.3 Early Classification

We evaluate our early classification technique onSG. In Fig. 11, we see the selectivity of the early classi-
fication extension obtained using the extension on RECONA (a) and ADAM A (b) with apm = 10, θ = 0.7
and varying intervals. The selectivity is defined as the ratio of early classifications (that would otherwise
have updatedOPEN) to the total number of updates. Note that for RECONA, only the lower bound applies.

10 apm
7 apm
4 apm

interval

se
le

ct
iv

ity
(%

)

11109876543210

45
40
35
30
25
20
15
10
5
0

(a) RECONA

interval

se
le

ct
iv

ity
(%

)

11109876543210

40
35
30
25
20
15
10
5
0

(b) ADAM A

Figure 11: Early Classification

We observe that for increasingapm and decreasing interval (i.e., with increasing interdependence), the
lower bound becomes less selective and soon reaches 0% selectivity. This has two reasons. First, the more
apm, the less significant a duplicate in the set of descriptions gets. For example, atapm = 1, assuming a
unit weight for any dependence, we havefl = 1/2 when the actors are not known to be duplicates. (we
consider the text node to be similar, hence, the only difference is the actor). After having identified that
the actors match,fl = 1, which represents an increase of 0.5 per duplicate found in influencing actors. For
apm = 2, fl = 1/3 and increases to2/3 when the actors are classified as duplicates, i.e., and increase of
only1/3. Sincefl is still below the similarity threshold of 0.7, we would haveto find the other pair of actors
to be duplicates and to re-classify the movies a second time to be able to classify them as duplicates using
fl. This however, is avoided by the second reason: by using the orderr, we avoid re-comparisons so the
comparison of the above pair is postponed until the actors are classified. Hence, premature classification
usingfl gets no chance to consider a pair before the classifier itselfdoes it.

Let us now consider how early classification performs for ADAM A. In this case, we can use both the
upper and the lower bound. We see that the selectivity of early classification on ADAM A increases with
increasingapm and reaches selectivities of up to 35%. On this small data set, we did not observe significant
differences in processing time (neither better nor worse) again explained by the fact thatr provides a good
ordering that generates few updates inOPEN.

7.4 Constraint Enforcement

The principle of increasing efficiency and possibly effectiveness has already been shown elsewhere[1, 18],
here, we want to focus on the fact that the extension of constraint enforcement can enforce top-down and
the ensuing efficiency gains when applicable. This is clearly shown in Fig. 12.

17



no constraint
constraint

data set

#c
om

pa
ris

on
s

CD MOVIE

100000

80000

60000

40000

20000

0

(a) Comparisons

data set

tim
e

(s
)

CD MOVIE

1500

1000

500

0

(b) Time

Figure 12: Effects of Constraint Enforcement

7.5 The CORA Dataset

We use the Cora data set to evaluate our approach against previous approaches. Due to the large number
of element pairs, it is impractical to compare them all. We use a blocking technique to drastically reduce
the number of pairwise comparisons to 1.9% of all possible comparisons, without pruning a significant
number of true duplicates. The remaining pairs are comparedboth using RECONA and ADAM A, and order
r. RECONA performs 34983 recomparisons, which represent 3.5% of comparisons performed by ADAM A.

Approach Runtime Recall Precision F-measure Recall Precision F-measure
Publication Publication Publication Venue Venue Venue

ADAM A N 83.3 % 89.3 % 86.2 % 16.8 % 100 % 28.8 %
RECONA O(N2) 83.3 % 89.3 % 86.2 % 88.7 % 72.6 % 79.8 %

Standard [17] N 89.7 % 85.3 % 86.9 % 36.0 % 75.4 % 48.6 %
Combined Polynomial 86.1 % 87.1 % 85.8 % 85.7 % 88.7 % 86.5 %

Learning [17]

Standard [7] N 91.3 % 98.5 % 94.8 % 36.9 % 98.2 % 52.9 %
DEPGRAPH [7] O(N2) 92.4 % 98.5 % 95.4 % 71.4 % 83.7 % 77.1 %

Table 5: Comparison of Results on Cora dataset

In Tab. 5, we summarize the results of RECONA and ADAM A and results on the cora dataset reported
in [17] and [7], two approaches that use relationships to increase effectiveness. Within these papers, the
authors also compared their results to the standard approach that does not use relationships, which we name
Standard. ADAM A performs the same number of comparisons as Standard, but takes care in choosing a
good order for comparisons by usingr. Bold results in Tab. 5 are part of the discussion below.

PUBLICATIONS . We observe that ADAMA and RECONA obtain the same result in terms of effective-
ness when considering publications. That is, by choosing a suited comparison order, we are able to be as
effective as more complex algorithms ( runtime> N ). The results are comparable to those in [17]. The
results in [7] are better for both the standard approach and the approach using relationships. The standard
approach already being better indicates that the similarity measure used is better than ours, because the
comparisons that are performed are the same.

VENUES. Effectiveness for venues, measured on the 30% of venues we annotated is low compared to
the effectiveness of other approaches that use the standardtechnique. This may be due to (i) a poor simi-
larity measure, or (ii) the fact that we did not link a venue toall publications, but only to the publication it
is nested in. That is, venues whose only publication has not been identified as duplicate are unlikely to be
classified as a duplicate. By increasing the number of publications per venue, it is more likely that publica-
tions are shared, which increases their similarity. We suspect that the second reason is the cause, because
the recall for venues obtained by RECONA outperforms the recall for venues of other approaches allowing
re-comparisons. In that case, venues are simply re-compared as their related publication is classified as
duplicate. The re-comparisons performed by RECONA only represent an overhead of 3.5 % compared to
ADAM A, hence, efficiency is not compromised. These promising results will be verified on the complete
data set in the near future.

18



8 Conclusion

In this paper we presented a novel duplicate detection approach for XML data, which, unlike the common
top-down and bottom-up approaches, performs well in presence of all kinds of relationships between en-
tities, i.e., 1:1, 1:n, and m:n. The comparison strategy we presented considers pairwise comparisons in
ascending order of a rank, which estimates how many pairs must be reconsidered if the original pair was
classified at the current processing state. We applied this strategy to two algorithms: RECONA uses the or-
der to classify only few pairs more than once, whereas ADAM A does not perform re-comparisons and uses
the order to miss few re-comparisons and therefore potentially few duplicates. We further presented two
extensions to the algorithms: Early classification reducesthe number of complex similarity computations
by computing an upper and lower bound to the similarity measure that can be used as filters. Constraint-
enforcement is used to benefit from a top-down strategy when applicable, by enforcing that influencing
elements are required to be duplicates in order for a candidate pair to be duplicates.

Experiments showed that the order obtained using ascendingr is very effective in reducing the number
of re-comparisons for RECONA, given a high interdependency between entities. For low interdependency
there are only few possible re-comparisons, so the difference between the orders is not significant for
efficiency. When applied to ADAM A we observed that the order usingr performs slightly better in terms of
recall and precision than other orders for high interdependency. However, the benefit in effectiveness is less
than the benefit of saved re-comparisons in RECONA, which shows that additional re-comparisons induced
by other orders do not find proportionally more duplicates. When comparing RECONA and ADAM A we
observe that the more re-comparisons are missed by ADAM A, the larger the difference is between the f-
measure achieved by RECONAẆhen evaluating our extensions we observed that the selectivity of early
classification is moderate, because it applies only to re-comparisons, which do not occur frequently when
using orderr. As for constraint enforcement, we showed that we can significantly improve efficiency
by enforcing top-down when appropriate. On the real-world Cora dataset, we observed that our solution
is competitive with other, possibly more complex solutions, and that re-comparisons do not jeopardize
efficiency while greatly improving effectiveness.

Future work will include further validation both on the Coradataset and a large real-world data set
for which we are currently manually (and tediously) determining all duplicates. In order to apply our
algorithms on this data, we will also address scalability issues. We will also further investigate on increasing
effectiveness, which was not the goal of this research. An interesting research issue we plan to tackle is
how to resolve the conflicts between nested XML duplicates toobtain clean XML data.
Acknowledgment. This research was supported by the German Research Society (DFG grant no. NA
432).

References
[1] R. Ananthakrishna, S. Chaudhuri, and V. Ganti. Eliminating fuzzy duplicates in data warehouses. InInternational

Conference on Very Large Databases (VLDB), Hong Kong, China, 2002.

[2] I. Bhattacharya and L. Getoor. Relational clustering for multi-type entity resolution. Workshop on Multi-
Relational Data Mining (MRDM), 2005.

[3] M. Bilenko and R. J. Mooney. Adaptive duplicate detection using learnable string similarity measures. In
International Conference on Knowledge Discovery and Data Mining (KDD), Washington, DC, 2003.

[4] S. Chaudhuri, V. Ganti, and R. Motwani. Robust identification of fuzzy duplicates. InProceedings of the
International Conference on Data Engineering (ICDE), Tokyo, Japan, 2005.

[5] Z. Chen, D. V. Kalashnikov, and S. Mehrotra. Exploiting relationships for object consolidation. InSIGMOD-2005
Workshop on Information Quality in Information Systems, Baltimore, MD, 2005.

[6] A. Doan, Y. Lu, Y. Lee, and J. Han. Object matching for information integration: A profiler-based approach.
IEEE Intelligent Systems, pages 54-59, 2003.

[7] X. Dong, A. Halevy, and J. Madhavan. Reference reconciliation incomplex information spaces. InInternational
Conference on the Management of Data (SIGMOD), Baltimore, MD, 2005.

[8] I. P. Fellegi and A. B. Sunter. A theory for record linkage.Journal of the American Statistical Association, 1969.

19



[9] H. Galhardas, D. Florescu, D. Shasha, E. Simon, and C. Saita. Declarative data cleaning: Language, model, and
algorithms. InInternational Conference on Very Large Databases (VLDB), pages 371–380, Rome, Italy, 2001.

[10] M. A. Hernández and S. J. Stolfo. The merge/purge problem for large databases. In International Conference on
Management of Data (SIGMOD), pages 127–138, San Jose, CA, May 1995.

[11] L. Jin, C. Li, and S. Mehrotra. Efficient record linkage in large data sets. InInternational Conference on Database
Systems for Advanced Applications (DASFAA), Kyoto, Japan, 2003.

[12] D. Lee, B.-W. On, J. Kang, and S. Park. Effective and scalable solutions for mixed and split citation problems
in digital libraries. InSIGMOD-2005 Workshop on Information Quality in Information Systems, Baltimore, MD,
2005.

[13] A. E. Monge and C. P. Elkan. An efficient domain-independent algorithm for detecting approximately duplicate
database records. InSIGMOD-1997 Workshop on Research Issues on Data Mining and Knowledge Discovery,
pages 23–29, Tuscon, AZ, May 1997.

[14] H. Newcombe, J. Kennedy, S. Axford, and A. James. Automaticlinkage of vital records.Science 130 (1959) no.
3381, pages 954–959, 1959.

[15] S. Puhlmann, M. Weis, and F. Naumann. XML duplicate detection using sorted neigborhoods.International
Conference on Extending Database Technology (EDBT), 2006.

[16] E. Rahm and H. H. Do. Data cleaning: Problems and current approaches. IEEE Data Engineering Bulletin,
Volume 23, pages 3-13, 2000.

[17] P. Singla and P. Domingos. Object identification with attribute-mediated dependences. InEuropean Conference
on Principles and Practice of Knowledge Discovery in Databases (PKDD), Porto, Portugal, 2005.

[18] M. Weis and F. Naumann. Duplicate detection in XML. InSIGMOD-2004 Workshop on Information Quality in
Information Systems, pages 10–19, Paris, France, 2004.

[19] M. Weis and F. Naumann. Dogmatix tracks down duplicates in XML. InInternational Conference on the
Management of Data (SIGMOD), Baltimore, MD, 2005.

[20] M. Weis and F. Naumann. Detecting duplicates in complex XML data. InInternational Conference on Data
Engineering (ICDE), Atlanta, Georgia, 2006.

[21] W. E. Winkler. Advanced methods for record linkage. Technicalreport, Statistical Research Division, U.S.
Census Bureau, Washington, DC, 1994.

[22] W. E. Winkler. The state of record linkage and current researchproblems. Technical report, U. S. Bureau of the
Census, 1999.

20


