
Mapping XML and Relational Schemas with Clio

Lucian Popa
�

Mauricio A. Hernández
�

Yannis Velegrakis
�

Renée J. Miller
�

Felix Naumann
�

Howard Ho
�

�
IBM Almaden Research Center

�
Dept. of Computer Science - University of Toronto

650 Harry Road 6 King’s College Rd.
San Jose, CA 95120 Toronto, ON, Canada M5S 3H5

1. Mapping Schemas with Clio

Merging and coalescing data from multiple and diverse
sources into different data formats continues to be an im-
portant problem in modern information systems. Schema
Matching, the process of matching elements of a source
schema with elements of a target schema, and Schema Map-
ping, the process of creating a query that maps between two
disparate schemas, are at the heart of data integration sys-
tems. We demonstrate Clio, a semi-automatic schema map-
ping tool developed at the IBM Almaden Research Cen-
ter. In this demonstration we showcase Clio’s mapping en-
gine that allows mapping to and from relational and XML
schemas, and takes advantage of data constraints in order to
preserve data associations.

The semantically correct and complete creation and in-
terpretation of mappings is a highly nontrivial process. Cur-
rent tools in the market generate only trivial mappings
across relational schemas or nested schemas, leaving it to
the user to manually identify and specify the intricate details
of a mapping, such as the generation of keys, references,
join conditions, etc. To shield the user from writing com-
plex queries or programs for every translation problem at
hand, we advocate the use of a high-level schema mapping
tool like Clio[1], where users are guided towards the spec-
ification of a high-level mapping using value correspon-
dences. Informally, value correspondences specify how val-
ues for a target attribute are generated by one or more source
attributes. Given this high-level mapping, Clio’s mapping
engine “discovers” a likely implementation of that mapping
as a query (e.g., SQL, XQuery). In effect, Clio’s mapping
engine compiles the given high-level mapping (value corre-
spondences) into a low-level representation (a query).

The compilation proceeds in two steps. In the seman-
tic translation step, a precise and faithful understanding of
the given value correspondences (the high-level mapping)
is inferred. In other words, the semantics of the high-level
mapping must be understood and converted into a precise
logical mapping. In the data translation step, the logical
mapping is converted into a low-level mapping (a query)

that captures the data and schema transformation procedure.
We explore some of the issues that must be tackled in each
step by means of an example. The full details of the map-
ping engine algorithm can be found in [2].
An Illustrating Scenario: To understand the data transla-
tion implied by the given value correspondences, one must
first identify all the different attributes that form a real-
world object at the source and target. We discover such sets
of attributes, which are not necessarily in the same table or
nested schema, by chasing over the schema’s constraints.
We refer to these sets of attributes as associations. Asso-
ciations are computed, all at once, when schemas and their
constrains are loaded into the mapping tool. Value corre-
spondences are then grouped by the associations that they
affect and are interpreted as a whole, not individually. In
effect, the mapping is viewed at an association-level rather
than at an attribute-level. The result of this phase is a logical
mapping that reflects the many ways the target associations
can be constructed from the source associations through the
given value correspondences.

Consider the two schemas shown in Figure 1. The source
relational schema on the left, expenseDB, contains three
tables: company , grant, and project . The nested tar-
get schema on the right, statisticsDB(specified either
as a DTD or an XML Schema), groups information about
companies and their funding by cities. In order to handle
relational and XML schemas, Clio has an internal nested
schema model that is expressive enough to capture both
structures.

Given these two schemas, the user defines value corre-
spondences from source to target. Consider, for example,
the value correspondence

���
in Figure 1. The meaning we

associate with this (individual) correspondence is that for
each company name in the source, one organization with
the same name must exist in the target. In the same manner,���

indicates that for each principal investigator (pi) in the
source, there must exist a funding of some organization in
the target that has the same pi. The lines marked � �	� � � , and
�	
 in the figure specify foreign key constraints. According
to the foreign key � � , each grant tuple in the source is as-



1 1

11/20/2001file://C:\Documents%20and%20Settings\mauricio\My%20Documents\My%20Pictures\clioExample.jpg...

Figure 1. A relational to XML schema mapping

sociated (assuming non-null foreign keys) with a company
tuple. In the target, funds are nested under the orgh ele-
ments. Therefore, a very likely interpretation of the group� � �	� �����

is to map, via
� �

, each pi in the source to a pi

in the target that is nested under precisely the same organi-
zation that is generated, via

���
, by the company associated

to the source pi. Such semantics cannot be achieved by
naively looking at

���
and

���
separately: a target instance

built in such a way may lose the association that exists be-
tween principal investigators and companies in the source.
For example, by using

���
, we can construct a set of organi-

zations (with no funds) with all the company names in the
source. On the other hand, by using

� �
(and independently

of
� �

) we can construct a set of funds (for each pi in the
source) within some organization. But the latter organiza-
tion may have nothing in common with the organizations
that have been constructed in the first step. The conclusion
of the above example is that in many cases value correspon-
dences should be grouped together in order to produce a
lossless mapping.

Consider now the third value correspondence
� 
 in Fig-

ure 1. In the source, amount and pi of a grant are both
in the same tuple. However, in the target, those two pieces
of information are located in different elements. pi is in
funds and amount in financials. The association be-
tween amount and pi of grant is achieved through the for-
eign key �	
 . The value correspondences

� �
and

� 
 indicate
that for each grant tuple in the source, there must be a
financials tuple in the target with the same amount and
a funds tuple with the same pi. Even if

� �
and

� 
 are
considered together for the generation of a mapping, the as-
sociation between amount and pi of a grant will be lost in
the target unless the appropriate aid value is generated in
the target funds and the financials tuples that have the
pi and amount values of the source. Constraints in the tar-
get are equally important for a correct mapping generation.

The second phase of schema mapping is the data transla-
tion phase which produces the query implied by the logical

mapping created by the previous phase. This query, which
is currently expressed in SQL or XQuery, must satisfy a
number of requirements. First, the appropriate grouping of
the data retrieved from the source must be produced. This
grouping is dependent on the shape of the target schema.
In our example, the query generation phase should be able
to create a query that: retrieves company names from the
source, then, for each such company, retrieves the princi-
pal investigators (pi) of its grants, and nests them under the
generated organization elements. Second, new values may
need to be generated in the target. Recall that aid in the tar-
get is required in order to maintain the association between
the amount of a grant and its pi. As it is often the case
with such elements (carrying structural information but no
real data), there is no correspondence to determine how that
value will be generated from the source. Thus, Clio must
invent a value that is the same for aid of financials and
aid of funds given the same mapped source values. Clio
achieves this by placing the appropriate skolem functions in
the query. Finally, the correct unnesting and, if needed, join
of source data must be expressed in the query.

2. The Demo

In this demo we showcase Clio’s XML mapping en-
gine algorithm and show some practical applications of the
tool. This engine features full support for mappings in any
direction and in any combination of relational and XML
schemas. The engine takes into consideration both source
and target data constraints when constructing the resulting
query and creates missing values at the target whenever
needed. Further, we illustrate the completeness and correct-
ness of our mapping algorithm. The algorithm has the com-
pleteness guarantee that all semantic relationships between
the schema attributes will be discovered by our semantic
translation phase, and a correctness guarantee in that the
produced query will preserve all relevant source informa-
tion. Moreover, since the algorithm produces all possible
interpretations (mappings) for the given set of correspon-
dences, we show how Clio’s GUI helps the user browse
and select the appropriate interpretation. We will use the
schemas shown on Figure 1 to demonstrate the basic con-
cepts and schemas from a Life Science problem to demon-
strate Clio on real-world schemas. To the best of our knowl-
edge, no commercial tool is able to correctly generate XML
transformations at the level of complexity of Clio.

References

[1] R. J. Miller, L. M. Haas, and M. A. Hernández. Schema Map-
ping as Query Discovery. In VLDB 2000, Cairo, Egypt, 2000.

[2] L. Popa, Y. Velegrakis, M. A. Hernández, R. J. Miller, and
R. Fagin. XML Schema Mapping and Data Translation. Sub-
mitted for publication (see http://www.almaden.ibm.com/cs/clio
for details), 2002.


