
Automatic Data Fusion with HumMer

Alexander Bilke† Jens Bleiholder‡ Christoph Böhm‡ Karsten Draba‡

Felix Naumann‡ Melanie Weis‡

† Technische Universität Berlin, Germany
bilke@cs.tu-berlin.de

‡ Humboldt-Universität zu Berlin, Germany
{bleiho|boehm|kdraba|naumann|mweis}@informatik.hu-berlin.de

Abstract

Heterogeneous and dirty data is abundant.
It is stored under different, often opaque
schemata, it represents identical real-world
objects multiple times, causing duplicates,
and it has missing values and conflicting val-
ues. The Humboldt Merger (HumMer) is a
tool that allows ad-hoc, declarative fusion of
such data using a simple extension to SQL.

Guided by a query against multiple tables,
HumMer proceeds in three fully automated
steps: First, instance-based schema matching
bridges schematic heterogeneity of the tables
by aligning corresponding attributes. Next,
duplicate detection techniques find multiple
representations of identical real-world objects.
Finally, data fusion and conflict resolution
merges duplicates into a single, consistent,
and clean representation.

1 Fusing Heterogeneous, Duplicate,
and Conflicting Data

The task of fusing data involves the solution of many
different problems, each one in itself formidable: Apart
from the technical challenges of accessing remote data,
heterogeneous schemata of different data sets must be
aligned, multiple but differing representations of iden-
tical real-world objects (duplicates) must be discov-
ered, and finally the duplicates must be merged to
present a clean and consistent result to a user.

Each of these tasks has been addressed individually
at least to some extent. (i) Access to remote sources

Permission to copy without fee all or part of this material is
granted provided that the copies are not made or distributed for
direct commercial advantage, the VLDB copyright notice and
the title of the publication and its date appear, and notice is
given that copying is by permission of the Very Large Data Base
Endowment. To copy otherwise, or to republish, requires a fee
and/or special permission from the Endowment.

Proceedings of the 31st VLDB Conference,
Trondheim, Norway, 2005

is now state of the art of most systems, using tech-
niques such as JDBC, wrappers, Web Services etc.
(ii) Schematic heterogeneity has been a research issue
for at least two decades, first in schema integration and
then in schema mapping. Recently, schema matching
techniques have made great progress in automatically
detecting correspondences among elements of different
schemata. (iii) Duplicate detection is successful in cer-
tain domains, such as address matching, and several
research projects have presented domain-independent
algorithms. It is usually performed as an individual
task, such as the cleansing step in an ETL procedure.
(iv) Data fusion, i.e., the step of actually merging mul-
tiple tuples into a single representation of a real world
object, has only marginally been dealt with in research
and hardly at all in commercial products.

With the Humboldt Merger (HumMer) we present
a tool that combines all these techniques to a one-stop
solution for fusing data from heterogeneous sources.
A unique feature of HumMer is that all steps are
performed in an ad-hoc fashion at run-time, initiated
by a user query to the sources; in a sense, HumMer
performs automatic and virtual ETL. Apart from the
known advantages of virtual data integration, this on-
demand approach allows for maximum flexibility: New
sources can be queried immediately, albeit at the price
of not generating as perfect query results as if the inte-
gration process were defined by hand. To compensate,
HumMer optionally visualizes each intermediate step
of data fusion and allows users to interfere: The result
of schema matching can be adjusted, tuples discovered
as being border-line duplicates can be separated and
vice versa, and finally, resolved data conflicts can be
undone and resolved manually. Note that these steps
are optional: In the usual case, users simply formulate
a data fusion query and enjoy the query result.

Ad-hoc and automatic data fusion is useful in many
scenarios: Catalog integration is a typical one-time
problem for companies that have merged, but it is also
of interest for shopping agents collecting data about
identical products offered at different sites. A cus-
tomer shopping for CDs might want to supply only
the different sites to search on. The entire integration

process, from finding corresponding metadata, to de-
tecting entries for identical CDs, and finally to fuse
all conflicting data, possibly favoring the data of the
cheapest store, is performed under the covers. In such
a scenario, a schema matching component is of special
importance, as many web sites use different labels for
data fields or even no labels at all.

Another application made possible only by auto-
matic data fusion systems like HumMer is the provi-
sion of online data cleansing services. Users of such a
service simply submit sets of heterogeneous and dirty
data and receive a consistent and clean data set in re-
sponse. Such a service is useful for individuals trying
to compare different data sets, but also for organiza-
tions not wanting to employ complex ETL procedures
for all data sets.

Finally, an important application has come to our
attention in the aftermath of the tsunami catastrophe.
In the affected area, data about damages, missing per-
sons, hospital treatments etc. is often collected mul-
tiple times (causing duplicates) at different levels of
detail (causing schematic heterogeneity) and with dif-
ferent levels of accuracy (causing data conflicts). The
motivation of this scenario is similar to that of Trio [7].
Fusing such data with the help of a graphical user in-
terface can help speed up the recovery process and for
instance expedite insurance pay-outs.

2 HumMer Components

2.1 Query Language

HumMer provides a subset of SQL as a query language,
which consists of Select-Project-Join queries, and al-
lows sorting, grouping, and aggregation. In addition,
we specifically support the Fuse By statement [2].
This statement is an extension of an SPJ statement
specially designed for easy specification of data fusion
(see Fig. 1).

,

SELECT colref
RESOLVE (colref)
RESOLVE (colref, function)

*
,

FUSE FROM tableref

where-clause

,

FUSE BY (colref)

Figure 1: Syntax diagram of the Fuse By statement
The overall idea of Fuse By is to fuse tuples repre-

senting a single real-world object by grouping and ag-
gregation. As attribute values in these tuples may con-
tain conflicting data, Fuse By allows the use of con-
flict resolution functions (marked by RESOLVE). They
are implemented as user defined aggregation functions
and specified within the SELECT clause of the Fuse By

statement. If multiple heterogeneous tables are to be
fused, it is not clear until after schema matching which
column names to refer to. We offer two solutions: The
first is to await schema matching and only then spec-
ify column names. The second is to use only column
names of one of the tables to be fused.

The FROM or FUSE FROM clause defines the tables
to be fused. Join and other predicates may be ap-
plied. Using FUSE FROM combines the given tables by
outer union instead of cross product. The attributes
given in the FUSE BY clause serve as object identifier,
and define which sets of tuples represent single real
world objects. HAVING and ORDER BY keep their origi-
nal meaning.

The Fuse By statement offers an intuitive default
behavior: The wildcard * is replaced by all attributes
present in the sources. If there is no explicit conflict
resolution function, SQL’s Coalesce is used as a de-
fault function. Coalesce is an n-ary function and
returns its first non-null parameter value. An exam-
ple for a Fuse By statement is:
SELECT Name, RESOLVE(Age, max)
FUSE FROM EE_Student, CS_Students
FUSE BY (Name)

This statement fuses data on EE - and CS Students,
leaving just one tuple per student. Students are iden-
tified by their name, and conflicts in the age of the
students are resolved by taking the higher age (assum-
ing students only get older).

2.2 Schema Matching and Data Transforma-
tion

Because we consider autonomous databases, they must
not conform to the same schema. Thus, the first
phase in the integration process is the resolution of
schematic heterogeneity. This phase proceeds in two
steps: schema matching and data transformation.

Schema matching is the (semi-automatic) process of
detecting attribute correspondences between two het-
erogeneous schemas. Various approaches that exploit
different kinds of information, i.e., schema informa-
tion, instances, or additional metadata, have been pro-
posed. As we assume the databases to contain dupli-
cates according to our scenarios, we apply the DUMAS
schema matching algorithm [1]. First, the algorithm
efficiently detects a few duplicates in two unaligned
databases and then derives attribute correspondences
based on similar attribute values of duplicates.

Duplicate detection in unaligned databases is more
difficult than in the usual setting, because attribute
correspondences are missing, i.e., it is not known which
attribute values to compare. However, the goal of this
phase is not to detect all duplicates, but only as many
as required for schema matching. Detecting all dupli-
cates is left to the next HumMer component. DUMAS
considers a tuple as one string and applies a string sim-
ilarity measure to extract the most similar tuple pairs.

From the information retrieval field we adopt the well-
known TFIDF similarity for comparing records. Ex-
perimental evaluation shows that the most similar tu-
ples are in fact duplicates.

These duplicates can be used for schema match-
ing. If two duplicate tuples have the same or a suffi-
ciently similar attribute value, we assume that these
attributes correspond. Because two non-corresponding
attributes might have a similar value by chance, we
use several duplicates instead of only one. Two du-
plicates are compared field-wise using the SoftTFIDF
similarity measure [3], resulting in a matrix containing
similarity scores for each attribute combination. The
matrices of each duplicate are averaged, and the max-
imum weight matching is computed, resulting in a set
of 1:1 correspondences. Correspondences with a simi-
larity score below a given threshold are pruned. In our
demo, the correspondences are presented, allowing to
manually add missing or delete false correspondences.
Since data fusion can take place for more than 2 re-
lations, HumMer is able to display correspondences
simultaneously over many relations.

The following transformation phase is straightfor-
ward: Without loss of generality, we assume that one
schema is the preferred schema, which determines the
names of attributes that semantically appear in mul-
tiple sources. The attributes in the non-preferred
schema that participate in a correspondence are re-
named accordingly. All tables receive an additional
sourceID attribute, which is required in later stages.
Finally, the full outer union of all tables is computed.

2.3 Duplicate Detection

In [6], we introduce an algorithm that detects dupli-
cates in XML documents. More precisely, duplicate
XML elements are detected by considering not only
their text nodes, but also those of selected children,
i.e., elements involved in a 1:N relationship with the
currently considered element. We map this method
to the relational world to detect duplicates in a table
using not only its attribute values, but also “inter-
esting” attributes from relations that have some re-
lationship to the current table. By interesting, we
mean attributes that are (i) related to the currently
considered object, (ii) useable by our similarity mea-
sure, and (iii) likely to distinguish duplicates from non-
duplicates. We developed several heuristics to select
such attributes. Additionally, our tool provides a com-
fortable means to modify the selection of interesting
attributes proposed by our heuristics.

Once relevant data for an object has been selected,
tuples are compared pairwisely using a similarity mea-
sure that takes into account (i) matched vs. unmatched
attributes, (ii) data similarity between matched at-
tributes using edit distance and numerical distance
functions, (iii) the identifying power of a data item,
measured by a soft version of IDF, and (iv) matched

but contradictory vs. non-specified (missing) data;
contradictory data reduces similarity whereas missing
data has no influence on similarity. The number of
pairwise comparisons are reduced by applying a filter
(upper bound to the similarity measure) and compar-
ing only the remaining pairs. Objects with a similar-
ity above a given threshold are considered duplicates.
The transitive closure over duplicate pairs is formed
to obtain clusters of objects that all represent a single
real-world entity. The output of duplicate detection
is the same as the input relation, but enriched by an
objectID column for identification. Conflicts among
duplicates are resolved during conflict resolution.

2.4 Conflict Resolution

Conflict resolution is implemented as user defined ag-
gregation. However, the concept of conflict resolution
is more general than the concept of aggregation, be-
cause it uses the entire query context to resolve con-
flicts. The query context consists not only of the con-
flicting values themselves, but also of the correspond-
ing tuples, all the remaining column values, and other
metadata, such as column name or table name. This
extension enables authors of Fuse By statements to
employ many different and powerful resolution func-
tions.

In addition to the standard aggregation functions
already available in SQL (min, max, sum,. . .), the fol-
lowing list gives further examples for functions that
may be used for conflict resolution. These functions
cover most of the strategies to resolve data conflicts re-
peatedly mentioned in the literature. Of course Hum-
Mer is extensible and new functions can be added.
Choose(source): Returns the value supplied by the
specific source.
Coalesce: Takes the first non-null value appearing.
First / Last: Takes the first/last value of all values,
even if it is a null value.
Vote: Returns the value that appears most often
among the present values. Ties could be broken by
a variety of strategies, e.g., choosing randomly.
Group: Returns a set of all conflicting values and
leaves resolution to the user.
(Annotated) Concat: Returns the concatenated
values, including annotations, such as the data source.
Shortest / Longest: Chooses the value of mini-
mum/maximum length according to a length measure.
Most Recent: Recency is evaluated with the help of
another attribute or other metadata.

3 HumMer Architecture and Demo

The Humboldt-Merger is implemented as a stand-
alone Java application. The underlying engine of
the entire process is the XXL framework, an exten-
sible library for building database management sys-
tems [4]. This engine together with some specialized

extensions handles tables and performs the necessary
table fetches, joins, unions, and groupings. On top of
the process lies a graphical user interface that drives
the user experience. HumMer combines the techniques
described in the previous section to achieve all phases
of data fusion in a single system. A metadata reposi-
tory stores all registered sources of data under an alias.
Sources can include tables in a database, flat files,
XML files, web services, etc. Since we assume rela-
tional data within the system, the metadata repository
additionally stores instructions to transform data into
its relational form. This section briefly describes the
architecture and dataflow within the system, as shown
in Fig. 2.

1. Choose
sources

2. Adjust
matching

3. Adjust
duplicate
definition

4. Confirm
duplicates

5. Specify
resolution
functions

6. Browse
result
set

XXL DBMS

Rela-
tion

Rela-
tion

SchemaSchema
MatchingMatching

...

Schema
correspon-
dences

Source
list

Duplicate DetectionDuplicate Detection

Duplicate
definition

Probable
duplicates

Sample
conflicts

Clean &
consistent
result set

Conflict resolutionConflict resolution

Data sourceData sourceData sourceData sourceMetadata Repository

Figure 2: The HumMer framework fusing heteroge-
neous data in a single process

HumMer works in two modes: Fist, querying via
a basic SQL interface, which parses entire Fuse By
queries and returns the result. Second, querying via a
wizard guiding users in a step by step fashion: Given a
set of aliases as chosen by the user in a query, HumMer
first generates the relational form of each and passes
them to the schema matching component. There,
columns with same semantics are identified and re-
named accordingly, favoring the first source mentioned
in the query. The result is visualized by aligning cor-
responding attributes on the screen. Optionally, users
can correct or adjust the matching result. Data trans-
formation adds an extra sourceID column to each table
to store the alias of the data source and performs a full
outer union on the set of tables.

The resulting table is input to duplicate detection.
If source tables are part of a larger schema, this com-
ponent can consult the metadata repository to fetch
additional tables and generate child data to support
duplicate detection. First, the schema of the merged
table, along with other tables that still might reside
in the databases is visualized as a tree. Heuristics de-
termine which attributes should be used for duplicate
detection. Users can optionally adjust the results of
the heuristics by hand within the schema. The dupli-
cate detection component adds yet another column to
the input table—an objectID column designating tu-

ples that represent the same real-world object. The
results of duplicate detection are visualized in three
segments: Sure duplicates, sure non-duplicates, and
unsure cases, all of which users can decide upon indi-
vidually or in summary.

The final table is then input to the conflict resolu-
tion phase, where tuples with same objectID are fused
into a single tuple and conflicts among them are re-
solved according to the query specification. At this
point, the relational engine also applies other query
predicates. The final result is passed to the user to
browse or use for further processing. As an added fea-
ture, data values can be color-coded to represent their
individual lineage (one color per source relation, mixed
colors for merged values).

For the demonstration we provide sample data from
all scenarios mentioned in the introduction. Addition-
ally, we plan to show examples taken from the recent
THALIA benchmark for information integration [5].
Acknowledgments. This research was supported in
part by the German Research Society (DFG grants no.
NA 432 and GRK 316). We thank Louiqa Raschid for
bringing to our attention the informational situation
in the tsunami areas.

References

[1] A. Bilke and F. Naumann. Schema matching using
duplicates. In Proceedings of the International Confer-
ence on Data Engineering (ICDE), pages 69–80, Tokyo,
Japan, 2005.

[2] J. Bleiholder and F. Naumann. Declarative data fusion
- syntax, semantics, and implementation. In Advances
in Databases and Information Systems, Tallin, Estonia,
2005. to appear.

[3] W. W. Cohen, P. Ravikumar, and S. E. Fienberg.
A comparison of string distance metrics for name-
matching tasks. In Proceedings of IJCAI-03 Workshop
on Information Integration on the Web (IIWeb), pages
73–78, 2003.

[4] J. V. den Bercken, B. Blohsfeld, J.-P. Dittrich,
J. Krämer, T. Schäfer, M. Schneider, and B. Seeger.
XXL - a library approach to supporting efficient im-
plementations of advanced database queries. In Pro-
ceedings of the International Conference on Very Large
Databases (VLDB), pages 39–48, 2001.

[5] J. Hammer, M. Stonebraker, and O. Topsakal.
THALIA: Test harness for the assessment of legacy in-
formation integration approaches. In Proceedings of the
International Conference on Data Engineering (ICDE),
pages 485–486, Tokyo, Japan, 2005.

[6] M. Weis and F. Naumann. DogmatiX tracks down du-
plicates in XML. In Proceedings of the ACM Interna-
tional Conference on Management of Data (SIGMOD),
Baltimore, MD, 2005.

[7] J. Widom. Trio: A system for integrated manage-
ment of data, accuracy, and lineage. In Proceedings of
the Conference on Innovative Data Systems Research
(CIDR), pages 262–276, Asilomar, CA, 2005.

