Efficiently Computing Inclusion Dependencies for Schema Discovery

Jana Bauckmann

UIf Leser

Felix Naumann

Department for Computer Science, Humboldt-Universitit zu Berlin
Rudower Chaussee 25, 12489 Berlin, Germany
{bauckmann, leser, naumann}@informatik.hu-berlin.de

Abstract

Large data integration projects must often cope with un-
documented data sources. Schema discovery aims at au-
tomatically finding structures in such cases. An impor-
tant class of relationships between attributes that can be
detected automatically are inclusion dependencies (IND),
which provide an excellent basis for guessing foreign key
constraints. INDs can be discovered by comparing the sets
of distinct values of pairs of attributes.

In this paper we present efficient algorithms for finding
unary INDs. We first show that (and why) SQL is not suit-
able for this task. We then develop two algorithms that com-
pute inclusion dependencies outside of the database. Both
are much faster than the SQL-based methods; in fact, for
larger schemas they are the only feasible solution. Our
experiments show that we can compute all unary INDs in
a schema of 1,680 attributes with a total database size of
3.2 GB in approximately 2.5 hours.

1. Problem Description

In large integration projects one often copes with undoc-
umented data sources, i. €., sets of relations with attributes,
without any knowledge about how these schema elements
refer to each other. Recovering their structure, which is a
prerequisite to semantic integration, is an interesting chal-
lenge in which users must be supported as much as pos-
sible by automated analysis. Two approaches can be dis-
tinguished [16]. Schema-driven approaches analyze only
the schema, i.e., try to find relationships between schema
elements by analyzing their names. In contrast, instance-
driven (or data-driven) approaches directly analyze the data
of a given database instance. Since names of schema ele-
ments very often carry little meaning, over the last years re-
search in this area has mostly concentrated on the instance-
driven approach [4, 6].

In relational databases, the most important means to

structure data are foreign key constraints indicating a 1:n
relationship between two relations. Foreign key constraints
are essentially inclusion dependencies, i.e., the assertion
that the set of values of the referring attribute is completely
contained in the set of values of the referenced attribute.
Thus, if no foreign key constraints are known, one can de-
rive strong guesses about their existence by finding pairs of
attributes A and B such that all values of A also exist as
values of B. Clearly, these guesses have to be confirmed
by a user using background knowledge, as foreign key con-
straints imply set inclusion but not vice versa. However, in
our experience cases of set inclusion without a correspond-
ing foreign key constraint only happen in certain settings
which can be filtered by additional heuristics (see Sec. 5).
Note that by finding all INDs in a given database, algo-
rithms can produce only false positives, but no false neg-
ative foreign key constraints.

1.1. Background and Motivation

The presented study is part of the Aladin project for
Almost hands-off data integration' in the life sciences [9].
The architecture of Aladin can be seen in Figure 1. Inte-
gration is performed in five steps: In the first step, data
sources are downloaded in whatever format and imported
into the Aladin database. If source databases are not avail-
able in a relational format, this step (and only this step) re-
quires manual intervention for writing a parser and loading
the database. However, there is a large degree of freedom
in the design of the target schema, as Aladin makes no as-
sumption about the generated schema; in particular, it does
not expect any constraints to be in place.

In the second step candidates for primary keys are com-
puted using the uniqueness constraint for keys. In the third
step, intra-source relationships are computed using set in-
clusion and several heuristics. In the life science domain
databases typically contain one major class of data with

'http://www.informatik.hu—berlin.de/wbi/
research/aladin

Step 5: Detection of
duplicate objects

Step 4: Discovering inter-
source relationships

Step 2 and 3:
Discovering intra-
source relationships

Step 1: Impart

Figure 1. Architecture of Aladin.

several annotations. So the relation representing this major
class of data is chosen as “primary relation”. This is only
possible by using domain knowledge, i.e., exploiting typ-
ical properties of biological databases (see Sec. 5). In the
fourth step relationships between data sources are inferred
by again using set inclusion and domain-specific heuristics.
This step only considers primary relations as targets, thus
drastically reducing the search space. In the fifth step du-
plicate objects are detected and flagged. More details on
Aladin can be found in [9].

The present paper describes methods for implementing
essential parts of the third and forth step. Efficiency is
crucial, especially during the development phase of Al-
adin where different heuristics for improving the relation-
ship guesses have to be tested. Using our first implemen-
tation of set inclusion in SQL on the Protein Data Bank
(PDB) database [3]—using only a fraction of the actual
database comprising 2.7 GB—did not finish within seven
days, which considerably impeded further development.

The problem of schema discovery also appears in other
applications. For instance, we recently compared four dif-
ferent public microarray databases [13]. Three of them
came with virtually no documentation, and two had no
predefined integrity constraints. One reason for omitting
constraints in biological RDBMS is intended compatibility
with MySQL, which until recently did not support foreign
key constraints. Further applications of schema discovery
are described in [15] and [12].

1.2. A High-level Solution

Consider two attributes a and b. For an attribute a, let
v(a) be the bag of all its values and s(a) be the sorted set
of its different values using an arbitrary but fixed sorting
criteria. We call a C b an IND candidate, which is satisfied
iff s(a) C s(b).

To test if the IND candidate ¢ C b is satisfied, a natu-
ral method is to retrieve both v(a) and v(b), sort them with
duplicate removal to compute s(a) and s(b), and then scan
linearly through both sets. Starting from the smallest items
we can decide for each item in s(a) if it is contained in s(b)
while iterating once over both sets. The exact procedure is
described in Sec. 3.1. It requires O(|v(b)| X log(Jv(b)|) +
|v(a)| x log(|v(a)|)) comparisons for sorting and duplicate
removal and, for s(b) > s(a), O(|s(b)|) comparisons to test
for set inclusion. How many INDs do we have to test, given
a database with n attributes? For a pair of attributes, we test
fora C bif [s(a)| < |s(b)| and for b C a if [s(a)| > |s(D)[;
if both sets are of equal size, we also need to perform only
one test (which is then a test for set equivalence). Thus, we
need to perform "22_ % set inclusion tests to find all INDs.
Given a large database with many attributes and large num-
bers of tuples in each relation, the entire procedure might
take considerable time.

There are two obvious optimizations rendering our worst
case analysis as too pessimistic in most cases. First, if we
can store sorted sets we have to sort each attribute only once
and not for each IND test. Second, assume we have com-
puted s(a) and s(b) and let |s(a)| < |s(b)|. When we com-
pare those sets, we can immediately stop as soon as we find
one element of s(a) that is not included in s(b). Frequently
this happens after only a few comparisons. Note that each
satisfied IND candidate requires a complete scan through at
least the smaller set.

1.3. Implementation

There are two ways to implement a procedure as the one
just described. Assuming that the database to analyze is ac-
tually installed on a relational database management system
(RDBMYS)), it is natural to perform all tests directly inside
the RDBMS using SQL. This leverages the highly efficient
methods for sorting in RDBMS and avoids any data hav-
ing to be shipped to clients. However, we shall see that we
cannot force SQL to implement the two optimizations de-
scribed above. The second possibility is a client program.
We can retrieve sorted sets from the RDBMS and then per-
form the inclusion tests on the client. The drawback is that
data is shipped out of the database, and that temporary stor-
age, incurring additional I/O, is necessary if sets are too
large to fit into main memory. Thus, it is not immediately
clear which method is better. Our paper is a contribution to
answer this question.

1.4. Test Data

We tested our algorithms at three different data sets from
our application domain, i.e., the life sciences.

e UniProt?> is a database of annotated protein se-
quences [1]. It is available in several formats. We used
the BioSQL? schema and parser. It consists of 85 at-
tributes in 16 tables. The total size of the database
is 667 MB, with the largest attribute having approxi-
mately 1 million different values.

e SCOP* is a database of protein classification available
as a set of files [14]. We wrote our own parser, pop-
ulating 4 tables with 22 attributes. The total size of
the database is 17 MB, with the largest attribute hav-
ing 94, 441 different values.

e PDB is a large database of protein structures [3]. We
used the OpenMMS? software for parsing PDB files
into a relational database. The OpenMMS schema
consists of 1,711 attributes in 115 non-empty tables,
with a total size of 21 GB, with the largest attribute
having approximately 152 million different values.
The fraction of the PDB that we use for our tests is of
size 2.7 GB, with the largest attribute having approxi-
mately 16 million different values.

We defined indexes on the data as given by the used
schemas; for SCOP we did not define any indexes. We
ran all tests on a Linux system with 2 processors and 4 GB
RAM using a commercial object-relational database man-
agement system.

1.5. Contributions

In the important field of schema discovery we make sev-
eral contributions toward the problem of efficiently detect-
ing unary inclusion dependencies among attributes:

e We present several SQL queries for IND discovery and
show that and why they usually perform badly despite
advanced optimization techniques.

e We develop two algorithms for discovery, analyze their
efficiency, and show that they are superior to the in-
database approach.

¢ Finally, we bed our results into a life sciences data inte-
gration scenario where automatic schema discovery is
particularly important, due to abundant heterogeneity
and poor documentation.

1.6. Structure of This Paper

In the following two sections we present the two types
solutions, each with experimental results: In Sec. 2 we
show three variants for inclusion dependency detection us-
ing SQL. In Sec. 3 we present our new and more efficient
approaches, which let the database engine perform sorting

2http://www.pir.uniprot.org
3http://obda.open-bio.org
“http://scop.mrc-1lmb.cam.ac.uk/scop
Shttp://openmms.sdsc.edu

but perform the inclusion tests outside of the database. Sec-
tion 4 covers scalability issues at schema and at system
level. In Sec. 5 we turn back to our application scenario of
discovering foreign keys in life sciences data and analyze
the effectiveness of this approach. Finally, Sec. 6 reviews
other work in this area and Sec. 7 concludes with an out-
look on future work.

2. Approaches Using SQL

The most obvious approach for solving a problem of
sorting and set comparisons where the data is stored inside
an RDBMS is using the internal capabilities of the database
management system. So our first approaches use SQL for
performing set inclusion tests. We propose three alternative
statements to describe the problem: using join, minus,
and not in. In each case, only one query is necessary to
perform the actual test for a pair of attributes.

We build IND candidates by choosing pairs of poten-
tially dependent attributes and potentially referenced at-
tributes. We define potentially dependent attributes (or de-
pendent attributes for short) as non-empty columns of any
type except LOB and potentially referenced attributes (or
referenced attributes) as non-empty unique columns. Note
that each referenced attribute is also in the set of dependent
attributes, but not vice versa.

The satisfiedness of these IND candidates is tested in two
phases: The first phase is a pretest on the cardinality of the
distinct values of both attributes as described in Sec. 1.2,
as the IND candidate cannot be satisfied if the number of
distinct values of the dependent attribute is greater than the
number of distinct values of the referenced attribute. The
second phase executes an SQL statement to verify the IND
candidates. In all SQL statements dependent tables and
columns are prefixed with ’dep’, and referenced tables and
columns are prefixed with ref’.

2.1. Three SQL Statements

Utilizing Join The first statement utilizes a join as
proposed by [2]. We perform a join on the assumed in-
clusion dependency and test the number of returned tuples
against the number of non-null values in the dependent at-
tribute. The IND is satisfied if both values are equal. The
statement can be seen in Figure 2.

This statement simply computes a join over two sets,
which is a different problem than IND test. We can use a
join to verify INDs, but we cannot tell the RDBMS engine
that the procedure can be stopped as soon as any tuple is de-
tected for which no join partner exists. Furthermore, there
is no way to give the database this hint using SQL and a
join. Therefore, we formulate two other statements that aim
to express this point. The idea is to find a statement that

select count(x) as matchedDeps
from (depTable JOIN refTable
on depTable.depColumn = refTable.refColumn)

IND candidate is satisfied <
|matchedDeps| = [non—null dependent values|

Figure 2. Statement utilizing join.

returns no tuples if the IND candidate is satisfied and one or
more tuples otherwise. This way, we can stop the compu-
tation after the first tuple in the result set, hoping that first
tuples can be produced without computing the entire result
(i.e., without sorting or grouping).

Utilizing Minus The idea of utilizing minus is to sub-
tract values of the referenced attribute from values of the
dependent attribute; if there are tuples in the result set then
the IND candidate is not satisfied. The statement can be
seen in Figure 3. Note that this requires product-specific,
non-standard SQL elements to enable the query engine to
stop execution early.

select count(x) as unmatchedDeps from
(select /x+ first rows (1) %/ %
from
(select to_char (depColumn)
from depTable
where depColumn is not null
MINUS
select to_char (refColumn)
from refTable)
where rownum < 2)

IND cand. is satisfied < |[unmatchedDeps| = 0

Figure 3. Statement utilizing minus.

Utilizing Not In Another possibility to obtain an empty
result set if the tested IND candidate is satisfied is to utilize
not in. The idea is to ask for values in the dependent
attribute that are not included in the referenced attribute.
Again, we can restrict the result set to a single tuple using
product-specific tricks, as can be seen Figure 4.

2.2. Experimental Results

We measured the required time for computing all INDs
for each of the three methods and for each of the three data
sets. The measured times together with the number of satis-
fied inclusion dependencies are given in Tab. 1. We observe
that the join approach is the fastest alternative, despite its
obvious inability to stop execution after the first mismatch.
We believe the reason lies in the extensive optimization of

select count(x) as unmatchedDeps from
(select /x+ first rows (1) %/ depColumn
from depTable
where depColumn NOT IN
(select refColumn
from refTable)
and rownum < 2)

IND cand. is satisfied < |[unmatchedDeps| = 0

Figure 4. Statement utilizing not in.

join operations in RDBMSs. Surprisingly, our attempts to
enable early stops using minus or not in failed, which
is probably caused by the special implementation of the
rownum function that obviously is not merged with the in-
ner queries during query rewriting. However, since even the
join times are much too slow for our purposes (see column
three in Table 1), we didn’t research deeper into the reasons
for this behavior.

All three measured are not applicable to discover all
INDs in a database of the size of the PDB. We first ran
tests on the entire PDB, but stopped after two days because
the RDBMS estimated a particular table-scan to last several
more days. We then eliminated the biggest PDB tables, con-
taining atom coordinates for each atom in each protein, and
thus reduced the database size from 21 GB to 2.7 GB. The
discovery procedure did not finish within seven days even
for this reduced data set.

The problems with using SQL for set inclusion are
twofold. First, one cannot tell the optimizer what the real
question is, and that, as a consequence, there are optimiza-
tion strategies that are clearly better than those used for “or-
dinary” SQL statements. The optimizer therefore fails to
perform the early stop after a first mismatch, described in
Sec. 1.2. Second, we have to run a single SQL statement
for each pair of attributes to be tested. Thus, the engine
cannot exploit a strategy where sorts of value sets are per-
formed only once for each attribute and later re-used in each
test. As relational databases by design do not store sorted
sets®, there is no way to implement such strategies using
SQL alone.

UniProt SCOP PDB
IND candidates 910 43 139, 356
satisfied INDs 36 11 30,753
join 15min03s 7.3s > 7days
minus 29min 16 s 14.3s -
not in 1h53min 46 min -

Table 1. Experimental results utilizing SQL.
We used only a 2, 7 GB fraction of PDB.

®Note that product-specific feature such as index-organized tables are
no solution, as one would have to build a new table for each attribute.

3. Using Order on Data

As the previous section showed, there is no possibility to
describe the problem of verifying IND candidates in SQL in
an efficient way. We can elegantly describe the task in vari-
ous ways in SQL, all leading to the same correct result. But
all tested SQL approaches could not take advantage of the
simple ideas described in the introduction. In the following,
we present two algorithms that follow exactly these ideas,
using the RDBMS only for tasks it is good at: We first ex-
tract from the database the sorted sets of distinct values of
each attribute using SQL. Second, we test the satisfiedness
of the IND candidates with a Java program.

The first approach is called brute force (see 3.1), because
it tests one IND candidate at a time and therefore has to read
value sets multiple times. The second approach is called
single-pass (see 3.2), because it reads all value sets only
once and tests all IND candidates in parallel.

3.1. Brute Force

The brute force approach creates all IND candidates
while iterating over all dependent and referenced attributes.
Each created IND candidate is tested directly after its cre-
ation. Therefore, the algorithm iterates n X m times over
the data of attributes where n is the number of all referenced
attributes and m is the number of all dependent attributes.
We implement this as follows: First, we extract sorted sets
of distinct attribute values from the database and store them
in sorted files. For each pair of one dependent and one ref-
erenced attribute, we open and traverse through both files.
Obviously, we could reduce I/O by first loading an entire de-
pendent attribute set and then test it against each referenced
set. To cope with limited memory, an approach similar to a
block-nested-loop join would help. We did not test such an
algorithm, but instead developed a more sophisticated opti-
mization described in Sec. 3.2.

The test of a single IND candidate is described in Al-
gorithm 1. We iterate over both data sets starting from the
smallest item. For each dependent item we look for an equal
item in the referenced items list by stepping to the next ref-
erenced item if the referenced item is less than or equal to
the dependent item. We can stop execution (i) if all depen-
dent values were positively tested or (ii) if at some point the
next referenced value is greater than the current dependent
value, because then we know that this dependent value is
not included in the set of referenced values.

3.2. A Single-Pass Algorithm

Our single-pass algorithm minimizes the amount of I/O
over the sets of attribute values. Each value is read only
once and all INDs are tested in parallel.

Input: refValues, depValues: ordered sets of distinct
attribute values
Output: Is dep C ref satisfied?
while depValues has next value do
currentDep := depValues.next() ;
if refValues is empty then
| return false;
while true do
currentRef := refValues.next() ;
// test next item in depValues

if currentDep = currentRef then
| break;

/I currentDep ¢ refValues

else if currentDep < currentRef then
| return false;

/I test next item in refValues
else if refValues has no next value then
| return false;

return frue;

Algorithm 1: Algorithm to test a single IND candi-
date.

The key idea is as follows: All value sets are extracted
from the database and stored in sorted files. We can use lex-
icographic sorting for all values including numeric values,
because the actual order of values is irrelevant as long as it
is consistent over all sets. In the brute-force approach, we
enumerate all IND candidates and test them by iteratively
skipping through two files. Now, we open all files at once
and move a cursor through each file. Recall that we distin-
guish (potentially) dependent and (potentially) referenced
attributes. For brevity, we call the corresponding files de-
pendent files or referenced files, respectively.

Intuitively, we move a cursor r on a referenced file R one
step further, i.e., read the next tuple, when all cursors to de-
pendent files point to values that are greater than the current
value pointed to by 7 in R. Conversely, we move a cursor d
on a dependent file D one step further, when the value that
d points at in D is smaller than all values currently pointed
at in referenced files. While moving cursors, the algorithm
keeps track of all IND candidates. Consider a pair D and R.
Whenever the cursor on D is moved without haven seen in
R the old value in D, the IND candidate D C R is refuted
and removed from the list of all candidates.

Our current implementation uses the subject-observer-
model pattern from [7]. We view each attribute as a self-
acting object that manages a list of its values and decides
when it reads the next value in this list. There are two types
of objects—objects representing referenced files (or refer-
enced objects for short) and objects representing dependent
files (or dependent objects). Each referenced object man-
ages a list of all dependent objects with which the IND can-

didate was not yet refuted, as these have to be considered in
future moves. Vice versa, each dependent object manages a
list of all referenced objects with which an IND candidate
could still be satisfied. As IND candidates are identified as
unsatisfied, both sets are updated.

The challenge is to synchronize the read operations of
all objects. We implemented it such that dependent objects
take control: Thus, all IND candidates are verified in paral-
lel by the dependent objects. A referenced object delivers
its next value only when each of its dependent objects has
issued a request for a move. A dependent object compares
its current value with all current values of its referenced ob-
jects, decides when it needs the next value of a referenced
object, decides when IND candidates are removed, and de-
cides when it reads its own next value.

Each dependent object has three lists with referenced ob-
jects, called currentWaiting, nextWaiting, and next. These
lists result from the idea to request a referenced object’s next
value as soon as possible, i. e., when a dependent object de-
cides to compare (its current or next value) with a next refer-
enced value. So currentWaiting contains all referenced ob-
jects whose next value still has to be compared with the cur-
rent dependent value. nextWaiting and next contain all refer-
enced objects whose next value has to be compared with the
next dependent value. The difference between them is that
nextWaiting contains all referenced objects that did not yet
deliver their next value, and next contains all referenced ob-
jects that already delivered their next value—together with
this value.

The algorithm of comparing the dependent value and a
received referenced value is given in Algorithm 2. The de-
cisions about which values should be compared next are
essentially equal to the decisions in Algorithm 1, but here
many more attributes have to be considered. This action is
controlled using the lists currentWaiting, next and nextWait-
ing.

The procedure when a referenced value is delivered is
given in Algorithm 3. This algorithm saves the given refer-
enced value if it has to be compared with the next dependent
value. Otherwise it compares first the current dependent
value with the received referenced value and tests if all com-
parisons with the current dependent value have been done.
In this case the next dependent value is read and possible
comparisons (with values of referenced objects in list next)
are performed. These comparisons fill the lists current-
Waiting and nextWaiting, which are updated afterwards—if
currentWaiting is empty—>by fetching the next dependent
value.

The overall process is controlled by a monitor, which
collects requests and possible deliveries of all referenced
objects and activates delivery using a first-in-first-out queue.

In the following we show that the single-pass algorithm
indeed tests all IND candidates. A set of dependent objects

Input: referencedObject, referencedValue,
dependentValue
Output: satisfied IND or null
if dependentValue = referencedValue then
if 3 next dependent value then
if referencedObject.wantNextValue(this) then
nextWaiting :=
‘ nextWaiting U referencedObject ;
else
L /l exclude IND candidate
referencedObject.detach(this) ;

else
// IND candidate satisfied
referencedObject.detach(this) ;
| return this C referencedObject ;

else if dependentValue > referencedValue then
if referencedObject.wantNextValue(this) then
currentWaiting :=
currentWaiting U referencedObject ;
else
/l exclude IND candidate
| referencedObject.detach(this) ;

// current dep. value ¢ values of referencedObject
else
// exclude IND candidate
| referencedObject.detach(this) ;
return null ;

Algorithm 2: Alg. processComparison; compari-
son of current dependent value and received ref-
erenced value for single-pass approach.

influences when a referenced object’s next value is read.
Vice versa, a set of referenced objects influences when a
dependent object’s next value is read. Despite this mutual
dependency, the algorithm does not run into deadlocks. The
proof is based on the fact that we use sorted data sets.

Theorem 3.1 The single-pass algorithm is deadlock-free
and tests all IND candidates.

Proof: The algorithm could only fail if it runs into a dead-
lock. Assume without loss of generality a deadlock between
the dependent and referenced objects dep,, dep,, deps, and
refq, refs, refs, i.e.,
e dep; waits for next value of ref;
— ref; € dep,.currentWaiting
— ref;.currentValue < dep;.currentValue
e ref; waits with delivering its next value until dep,, re-
quests it
— ref; € dep,.next
— ref;.currentValue > dep,.currentValue
o dep, waits for next value of refs

Input: referencedObject, referenced Value
// compare with next dependent value
if referencedObject € nextWaiting then
nextWaiting := nextWaiting \ referencedObject ;
next := next U
{(referencedObject, referencedValue)} ;
return ;
/I compare with current dependent value
currentWaiting := currentWaiting \ referencedObject ;
processComparison(
referencedObject, referenced Value) ;
// Do we need current value any longer?
if currentWaiting =) and
(next != () or nextWaiting != ()) then
dependentValue := next dependent value ;
// update waiting lists
currentWaiting := nextWaiting ;
nextWaiting := () ;
// test corresponding inclusion dependencies
foreach otherReferencedObject in next do
processComparison(
L otherReferencedObject,
value of otherReferencedObject) ;
next:=0 ;
// Do we need current value any longer?
if currentWaiting = 0 and nextWaiting != () then
dependentValue := next dependent value ;
L currentWaiting := nextWaiting ;
nextWaiting := 0 ;

Algorithm 3: Perform an update in dependent ob-
ject, i. e., procedure after delivery of a referenced
value.

— refy € depy.currentWaiting
— refy.current Value < dep,.currentValue
o refy waits with delivering its next value until dep, re-
quests it
— refy € deps.next
— refy.current Value > depy.currentValue
o dep; waits for next value of refs
— refs € deps.currentWaiting
— refs.currentValue < deps.currentValue
o refs waits with delivering its next value until dep, re-
quests it
— refs € dep;.next
— refs.currentValue > dep,.currentValue

This means we have

dep; .currentValue < refs.currentValue

< deps.currentValue < refs.currentValue

< depy.currentValue < ref;.currentValue

< dep; .currentValue, which is a contradiction. O

3.3. Experimental Results

We compared the SQL approach against both order-
approaches. All tests were performed on the three databases
described in Sec. 1.4. The algorithms were implemented in
Java 1.5. The running times are given in Tab. 2, together
with the fastest SQL approach (utilizing join). Note that
the time measurements summarize all costs—inclusively
shipping the data outside the database. We run the tests on
two different fractions of the PDB, because of scaling issues
related to the single pass algorithm (number of dependent
and referenced attributes) that are addressed in Sec. 4. The
first fraction (with 139, 356 IND candidates) covers 2560 at-
tributes in 167 tables and 2.7 GB and the second fraction
(with 4, 268 IND candidates) covers 541 attributes in 39 ta-
bles over 2.6 GB.

UniProt SCOP PDB
#IND cand 910 43 139,356 18,230
#sat. INDs 36 11 30,753 4,268
DB size 667MB 17MB 2.7GB 2.6 GB
join 15mO03s 7.3s > Tdays -
brute-
force 2m38s 10.7s 3h13m 1h29m
single-
pass 3m08s 13.0s seeSec.4 3h06m

Table 2. Experimental results of approaches
using order on data compared to the SQL ap-
proach. Only fractions of the PDB were used.

Clearly, the algorithms using order on data are significantly
faster than the join approach for large databases, espe-
cially for the PDB. Using the brute force algorithm, we
could extend feasible databases sizes further and compute
all INDs on a 3.2 GB fraction of the PDB, which lasted
3 h 44 min and identified 33, 989 INDs.

Surprisingly, the brute force approach is faster than the
single-pass approach. We currently believe that the reason
is the synchronization overhead of our particular implemen-
tation of the single-pass approach using a strictly object-
oriented approach. To compare I/O efficiency of both al-
gorithms we counted the total number of tuples read using
growing subsets of attribute sets from the UniProt database.
The results are given in Figure 5 and clearly show that the
single-pass algorithm is much more I/O efficient than the
brute-force algorithm. Note that also the amount of I/O of
the brute-force algorithm seems to grow only linearly with
the number of attributes, although the number of IND can-
didates grows quadratic. This situation can be explained by
the fact that most candidates are refuted after reading only
few tuples, e.g., when one attribute contains strings (names,
sequences, descriptions, ...) and the other numbers (surro-
gate keys, numeric values, .. .).

150000000

1 /
130000000
120000000
o
§ 110000000
o el
£ 100000000
0] /
£ 90000000 ——
2 80000000 =
%5 70000000
o 60000000
€ 50000000 /
2 40000000
30000000
20000000 Z
10000000 e < g _
0 T T T T T 1

T T T
0 10 20 30 40 50 60 70 80 90
number of attributes

Figure 5. I/0O comparison for brute force and
single pass approach.

4. Scaling Up

In this section we describe scalability issues of the differ-
ent approaches. First, we regard heuristics to reduce the
number of IND candidates that have to be explicitly tested.
These apply to all described approaches. Second, we de-
scribe scalability issues at system level for the brute force
and the single pass approaches.

4.1. Pruning IND candidates

An important potential improvement is to reduce the num-
ber of IND candidates before actually testing their satisfied-
ness. Such improvements apply to all described approaches,
but the performance differences—caused by the cost for a
single IND test—remain.

We observed that in many cases, after sorting attribute value
sets, it is beneficial to first compare the respective maximum
values of the two sets. If the maximum of the (potentially)
dependent set is larger than the maximum of the (poten-
tially) referenced set, we can stop the test immediately. We
implemented this improvement in all described approaches.
For UniProt the reduction was from 910 to 541 candidates.
There was a benefit of 15 % for the join approach, 39 %
using minus, and 14 % using not in. The brute force
and single pass approach run about 20 % faster. Thus,
the approaches using order still outperform the SQL ap-
proaches. For PDB we cannot compare the SQL approaches
as they did not terminate within reasonable time. We ran
the brute force and single pass approach on the 2.6 GB frac-
tion of the PDB. The number of IND candidates decreased
from 18,230 to 7, 354 and both implementations ran about
40 % faster. There is no benefit for SCOP concerning all
approaches, as we believe due to the small size of SCOP.
Furthermore, there is a possibility to use the transitivity
property of inclusion dependencies to reduce the number of
IND candidates, as described in [2]. There, IND candidates
are excluded using already identified (satisfied and unsatis-
fied) INDs. Another idea is to pretest the IND candidates

using random samples of the dependent data. We believe
that this should exclude a large number of IND candidates.
We leave this point as further work.

Note that using data types as a heuristic to prune IND can-
didates is not applicable in the life science domain, because
often even attributes containing solely integers are repre-
sented as string.

4.2. Scalability at System Level

For scaling the approaches at system level we must consider
two facts: main memory consumption and number of open
files.

The brute force algorithm opens one referenced file and one
dependent file to test an induced IND candidate. Further-
more, it needs one dependent and one referenced value at a
time to decide the satisfiedness of the IND candidates. That
way the brute force algorithm scales up to test IND candi-
dates in very large databases.

The single-pass algorithm on the other hand opens all ref-
erenced and dependent files in parallel. It needs one value
of each dependent attribute and at most two values of each
referenced attribute (one actually delivered and one tempo-
rary stored in dependent attributes, waiting until it can be
used). Thus, the memory consumption is not the limiting
factor for the single-pass algorithm, but the number of open
files. That is the reason why we could not compute the sat-
isfied INDs of the PDB fraction covering 2.7 GB; we had
to open 2560 files, which is not feasible for our system. To
scale the single-pass algorithm to such numbers of depen-
dent and referenced attributes we must implement a block-
wise approach—comparing blocks of dependent attributes
against (all or blocks of) referenced attributes. As our cur-
rent implementation of the single-pass algorithm is slower
than the brute force implementation we will leave the block-
wise implementation as further work—following the speed
up of the single-pass implementation.

5. Schema Discovery using INDs

The final goal of computing all INDs in the Aladin project
is schema discovery. Therefore, we analyzed to what extent
the discovered INDs are in fact foreign key constraints. Fur-
thermore, the goal of the project is also to find links between
different databases. In our domain, databases typically con-
tain one major class of data (gene, protein, sequence, etc.)
with structured annotations. The identifier of the major ob-
jects are called accession numbers, and these are used as
link targets when databases refer to each other. To find
such links, one must first identify the primary relation of
a database, i.e., the relation containing the accession num-
ber of the primary objects. We also verified to what extent
our computed INDs are useful for this task.

We verified the utility of INDs for finding foreign keys us-
ing UniProt and PDB. The BioSQL schema, which we used
for UniProt as explained in Sec. 1.4, defines foreign key
constraints, which we use as gold standard. The results are
promising: Our algorithm found all defined foreign keys as
INDs, with the exception of two foreign keys that are de-
fined on empty tables and obviously cannot be found when
regarding the data. Additionally, we found 11 INDs that are
in the transitive closure of the foreign key definitions, i.e.,
if there are foreign keys A C B and B C C we find the
satisfied INDs A C B, B C C, and A C C. Finally, no
false positives were produced.

The OpenMMS schema—into which we imported the PDB
data—does not define any foreign keys. On the one hand
this is a good example for the necessity of identifying for-
eign keys, it is on the other hand difficult to verify the identi-
fied satisfied INDs. As the OpenMMS schema is very large,
we could not perform a systematic test. However, we ob-
served that the OpenMMS schema often utilizes surrogate
IDs, i.e., semantic-free integers whose ranges all begin at
1, as primary keys. This is a case where INDs fail to iden-
tify foreign keys. There are INDs between almost all of
these ID attributes, leading to the observed 30, 000 satisfied
INDs. In future work we will look into heuristics for remov-
ing such false positives. One idea is to analyze the ranges
of attributes.

For identifying the primary relation of a database, we use
the following heuristics:

1. One of the attributes of a primary relation must be
an accession number candidate, which is a domain
specific criterion and means that all values of this at-
tribute are at least four characters long, contain at least
one character, and must not differ in length more than
20 %.

2. The number of INDs referencing any attribute in a rela-
tion containing an accession number candidate is max-
imal for the primary relation.

Applying these heuristics to BioSQL we identified
three accession number candidates (sg-bioentry.accession,
sg-reference.crc and sg-ontology.name). Out of them,
Heuristic 2 identifies unambiguously the correct primary re-
lation, namely sg_bioentry.

For the OpenMMS schema we find nine accession num-
ber candidates, and 19 accession number candidates
when softening the rules such that only 99.98 % of a
columns values must fulfill the first criteria. Heuristic 2
leads to three primary relation candidates (exptl, struct,
struct_keywords). Of these, struct is the correct solution,
whereas struct_keywords could be considered as a second
primary relation, as it is a table containing controlled vo-
cabulary. Even though this selection is not perfect, it is a
very effective pre-selection (three tables out of 115 tables),
which helps a human expert to manually choose the primary

relation. Furthermore, we believe that a filter on the satis-
fied INDs—concerning the described problem using natural
numbers as primary key—will yield a clearer decision for
the primary relation.

6. Related Work

Bell and Brockhausen propose to create all unary IND
candidates and test them sequentially by utilizing an SQL
join statement [2]. The tested (satisfied and not satisfied)
INDs are used to exclude further tests and therefore to re-
duce the number of IND candidates to test. Furthermore,
the number of IND candidates is reduced by constraints on
the datatypes and maximal and minimal values. The join
statement performs a join on the attributes A and B of the
IND candidate and compares the number of returned tuples
to the number of distinct values in A and B therefore ver-
ifying A C B and B C A. We use a similar join state-
ment in our join approach in Sec. 2. The further criteria to
exclude IND candidates could be used for any of our algo-
rithms. Thus, we expect that the difference in performance
will remain for larger schemas.

De Marchi et al. propose another way to identify unary
INDs [10]. They use a preprocessing on the data to cre-
ate a table for each datatype with tuples for each value con-
tained in the database and all attributes which contain this
value. After this they test all IND candidates using this ta-
bles by iterating over all values and excluding IND candi-
dates, which are violated by the current value and its con-
taining attributes. A major drawback of this method is its
huge preprocessing requirement. Furthermore, the authors
describe a levelwise approach to deduce multivalued IND
candidates, which is improved in [11]. The idea is to com-
bine the levelwise approach of [10] with an approach for
higher-level INDs reducing the number of IND candidates
by switching between a top-down and a bottom-up approach
using a optimistic positive border.

Koeller and Rundensteiner identify INDs in relations with
up to 100 attributes [8]. They utilize an exhaustive approach
for identifying unary and binary INDs similar to [2] and
identify multivalued IND candidates by finding cliques in k-
uniform hypergraphs created of lowervalued satisfied INDs.
We believe that our algorithms for finding unary INDs more
efficiently than with pure SQL will also be beneficial for
finding multivalued INDs.

Dasu et al. use data summaries to approximately identify
join path, i.e., to identify approximately inclusion depen-
dencies [5]. They use set resemblance and multiset re-
semblance to identify the join path and its size and direc-
tion. Although we want to compute exact satisfied INDs,
we could use this procedure to reduce the number of IND
candidates.

7. Conclusion

We described in this paper five approaches to test IND
candidates—three of them using variants of SQL joins on
the data stored in an RDBMS and two database external ap-
proaches that use linear scans through sorted sets.

The SQL approaches lack the ability to express the prob-
lem efficiently. All three approaches provide correct results,
but the database computes more than necessary. Although
all operations on the data occur inside the database engine,
i.e., no data is shipped out of the database, all SQL ap-
proaches are significantly slower than the database-external
approaches.

The database-external approaches—using ordered, distinct
sets of attribute values delivered from the RDBMS—
preclude an IND candidate at the first dependent value that
is not included in the set of referenced values. We described
a brute force approach (testing all IND candidates sequen-
tially) and a single-pass approach (testing all IND candi-
dates in parallel). Although the latter is much more I/O effi-
cient, as we also showed by experiments, our current brute
force implementation is faster. We believe that the reason
for this behavior is the synchronization overhead partly in-
curred by our object-oriented implementation of the single-
pass algorithm. Thus, in our current work we concentrate
on improving the performance of the single-pass algorithm.
Furthermore, we showed how a simple heuristic already
greatly reduces the number of IND candidates that need
to be tested. We will, in future work, research more such
heuristics, for instance using random sampling. Also, we
will consider using the transitivity property of inclusion de-
pendencies to further reduce the number of comparisons.
We evaluated the identified INDs in our application scenario
of discovering foreign keys in the life sciences and for iden-
tifying a domain-specific primary relation that describes the
main objects in the database. Our current heuristics pro-
duced very good results in one database, i.e., UniProt, but
need further improvements for another database, i.e., PDB.
For the PDB, the identified INDs contained many false pos-
itive foreign keys but where still very helpful for identify-
ing the primary relation. Clearly, we need to develop more
(probably domain-specific) filters to reduce the number of
false positives.

In future work we plan use this procedure to identify inclu-
sion dependencies between attributes of different databases
to identify object links and between concatenated values,
e.g., attributes containing PDB codes as “144f” or as
“PDB-144f”. Furthermore we plan to extend our procedure
to identify partial INDs on dirty data.

Acknowledgments. This research was supported by the German
Ministry of Research (BMBF grant no. 0312705B) and by the
German Research Society (DFG grant no. NA 432). We thank
Véronique Tietz for her extensive work in data preparation.

References

[1] A. Bairoch, R. Apweiler, C. H. Wu, W. C. Barker, B. Boeck-
mann, S. Ferro, E. Gasteiger, H. Huang, R. Lopez, M. Ma-
grane, M. Martin, D. Natale, C. O’Donovan, N. Redaschi,
and L. Yeh. The universal protein resource (uniprot). Nu-

cleic Acids Research, 33(Database issue):D154-9, 2005.
[2] S. Bell and P. Brockhausen. Discovery of data dependencies

in relational databases. In Y. Kodratoff, G. Nakhaeizadeh,
and C. Taylor, editors, Statistics, Machine Learning and
Knowledge Discovery in Databases, ML—Net Familiariza-

tion Workshop, pages 53-58, 1995.
[3] H. Berman, J. Westbrook, Z. Feng, G. Gilliland, T. Bhat,

H. Weissig, 1. Shindyalov, and P. Bourne. The protein data

bank. Nucleic Acids Research, 28:235-242, 2000.
[4] A. Bilke and F. Naumann. Schema matching using dupli-

cates. In Int. Conf. on Data Engineering (ICDE), 2005.
[5] T. Dasu, T. Johnson, S. Muthukrishnan, and V. Shkapenyuk.

Mining database structure; or, how to build a data quality
browser. In ACM SIGMOD Int. Conf. on Management of

Data, pages 240-251, 2002.
[6] A. Doan, P. Domingos, and A. Y. Halevy. Reconciling

schemas of disparate data sources: a machine-learning ap-
proach. In ACM SIGMOD Int. Conf. on Management of

Data, pages 509-520. ACM Press, 2001.
[7] E.Gamma, R. Helm, R. Johnson, and J. M. Vlissides. Design

Patterns: Elements of Reusable Object-Oriented Software.

Addison-Wesley, 1995.
[8] A. Koeller and E. A. Rundensteiner. Discovery of high-

dimensional inclusion dependencies. In Int. Conf. on Data

Engineering (ICDE), pages 683-685, 2003.
[9] U. Leser and F. Naumann. (Almost) hands-off informa-

tion integration for the life sciences. In Conf. on Innovative

Database Research (CIDR), 2005.
[10] E D. Marchi, S. Lopes, and J.-M. Petit. Efficient algorithms

for mining inclusion dependencies. In Int. Conf. on Extend-
ing Database Technology (EDBT), pages 464—476. Springer-

Verlag, 2002.
[11] F. D. Marchi and J.-M. Petit. Zigzag: a new algorithm for

mining large inclusion dependencies in databases. In /IEEE

Int. Conf. on Data Mining (ICDM), pages 27-34, 2003.
[12] R. J. Miller, M. A. Hernandez, L. M. Haas, L. Yan, H. Ho,

R. Fagin, and L. Popa. The clio project: Managing hetero-

geneity. SIGMOD Record, 30(1):78-83, 2001.
[13] G. Muhammad. Performanzvergleich von Genexpressions-

datenbanken. Master’s thesis, Humboldt-Universitit zu
Berlin, 2004.

[14] A. G. Murzin, S. E. Brenner, T. Hubbard, and C. Chothia.
Scop: a structural classification of proteins database for
the investigation of sequences and structures. J Mol Biol,

247(4):536-40, 1995.
[15] R. A. Pottinger and P. A. Bernstein. Merging models based

on given correspondences. In Int. Conf. on Very Large Data

Bases (VLDB), pages 862-873, 2003.
[16] E. Rahm and P. A. Bernstein. A survey of approaches to

automatic schema matching. The VLDB Journal, 10(4):334—
350, 2001.

